Decision Theory for Treatment Choice Problems with Partial Identification

José Luis Montiel Olea, Cornell University, Chen Qiu, Cornell University, and Jörg Stoye, Cornell University

We apply classical statistical decision theory to a large class of treatment choice problems with partial identification. We show that, in a general class of problems with Gaussian likelihood, all decision rules are admissible; it is maximin-welfare optimal to ignore all data; and, for severe enough partial identification, there are infinitely many minimax-regret optimal decision rules, all of which sometimes randomize the policy recommendation. We uniquely characterize the minimax-regret optimal rule that least frequently randomizes, and show that, in some cases, it can outperform other minimax-regret optimal rules in terms of what we term profiled regret. We analyze the implications of our results in the aggregation of experimental estimates for policy adoption, extrapolation of Local Average Treatment Effects, and policy making in the presence of omitted variable bias.