
Decision Theory for Treatment Choice Problems
with Partial Identification∗

José Luis Montiel Olea† Chen Qiu‡ Jörg Stoye§

January 2026

Abstract

We apply classical statistical decision theory to a large class of treatment choice problems
with partial identification. We show that, in a general class of problems with Gaussian
likelihood, all decision rules are admissible; it is maximin-welfare optimal to ignore all data;
and, for severe enough partial identification, there are infinitely many minimax-regret optimal
decision rules, all of which sometimes randomize the policy recommendation. We uniquely
characterize the minimax-regret optimal rule that least frequently randomizes, and show that,
in some cases, it can outperform other minimax-regret optimal rules in terms of what we term
profiled regret. We analyze the implications of our results in the aggregation of experimental
estimates for policy adoption, extrapolation of Local Average Treatment Effects, and policy
making in the presence of omitted variable bias.
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1 Introduction

A policy maker must decide between implementing a new policy or preserving the status quo. Her
data provide information about the potential benefits of these two options. Unfortunately, these
data only partially identify payoff-relevant parameters and may therefore not reveal, even in large
samples, the correct course of action. Such treatment choice problems with partial identification
have recently received growing interest; for example, see D’Adamo (2021), Ishihara and Kitagawa
(2021), Yata (2021), Christensen, Moon, and Schorfheide (2022), Kido (2022) or Manski (2024).
Several interesting problems that arise in empirical research can be recast using this framework. A
non-exhaustive list includes extrapolation of experimental estimates for policy adoption (Ishihara
and Kitagawa, 2021; Menzel, 2023), policy-making with quasi-experimental data in the presence
of omitted variable bias (Diegert, Masten, and Poirier, 2022), and extrapolation of Local Average
Treatment Effects (Mogstad, Santos, and Torgovitsky, 2018; Mogstad and Torgovitsky, 2018).

In this paper, we analyze such problems in terms of Wald’s (1950) Statistical Decision
Theory. We do so in a finite-sample framework characterized by a Gaussian likelihood and partial
identification.

Main Results: Three optimality criteria are routinely used to endorse or discard decision
rules: admissibility, maximin welfare, and minimax regret.

Admissibility. A decision rule is (welfare-)admissible if one cannot improve its expected welfare
uniformly over the parameter space. This is usually considered a weak requirement for a decision
rule to be considered “good”. Our first result shows that, whenever problems in our setting exhibit
partial identification, every decision rule, no matter how exotic, is admissible (Theorem 1). As we
discuss later, this result stands in stark contrast with applications of the admissibility criterion to
point-identified treatment choice problems, in which admissibility meaningfully refines the class of
decision rules (by, for example, discarding rules that randomize the policy recommendation). We
also show that our result is not tied to the choice of Gaussian likelihood, but instead to the bounded
completeness of the statistical model for the available data (Theorem 5).

Maximin Welfare. A decision rule is maximin(-welfare) optimal if it attains the highest worst-
case expected welfare. Echoing critiques from Savage (1951) to Manski (2004), our second result
shows that maximin decision rules will preserve the status quo regardless of the data (Theorem 2).

Minimax Regret. A decision rule is minimax-regret (MMR) optimal if it attains the lowest worst-
case expected regret, where an action’s regret is its welfare loss relative to the action that would
be optimal if payoff-relevant parameters were known. In some point-identified treatment choice
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problems, the MMR rule is both essentially unique and nonrandomized (Canner, 1970; Stoye, 2009a;
Tetenov, 2012). We show this may not be true under partial identification. To make this point,
we specialize our framework to the class of treatment choice problems recently studied by Yata
(2021). Our third result shows that for cases where the identified set for payoff relevant parameters
is large enough, there are infinitely many MMR optimal decision rules, all of which randomize the
policy recommendation for some or all data realizations (Theorem 3). This presents an important
challenge for the application of MMR, at least if one hopes for the resulting recommendation to be
unique. Moreover, as we explain later by means of an example, different MMR optimal rules can
lead to meaningfully different policy choices for the same data.

Least Randomizing MMR rule: Finally, we refine the set of MMR optimal rules by identifying
the least randomizing (in a sense we make precise) MMR optimal rule. Our main motivation is
the following trade-off. Recall that, for a wide range of parameter values, any MMR optimal rule
must randomize for some data realizations. At the same time, despite wide adoption of randomized
treatment allocations in economics and the social sciences for the purpose of experimentation, it
might be difficult in many policy applications to randomize one’s policy. Thus, we look for a
rule that recommends such randomization as infrequently as possible. We explicitly characterize
(in Theorem 4) an essentially unique least randomizing rule for the problems considered by Yata
(2021).

We analyze the regret of the least randomizing MMR rule after profiling out some parameters
of the risk function. We specifically analyze profiled regret, by considering a parameter of interest
and reporting worst-case expected regret at each of these parameter values (in a sense we make
precise). We show, in the context of our running example, that our least-randomizing rule can
profiled-regret dominate the MMR rule suggested by Stoye (2012a) and recently extended by Yata
(2021) for a general class of treatment choice problems with partial identification (Proposition 2).
More generally, we show that the rule which uniformly randomizes policy is inadmissible with
respect to a profiled regret function that reports worst-case regret for differet fixed values of the
problem’s point-identified parameters (Proposition 3). We finally discuss the extent to which our
least-randomizing rule can be obtained by explicitly penalizing randomized policy recommendations
in the policy maker’s welfare function. We show that, under some conditions, the least-randomizing
rule is minimax regret optimal (among a suitably defined class of decision rules) for a penalty
function that penalizes all randomized assignments equally (Proposition 4).

Applications: We illustrate the practical implications of our results for three problems that
recently arose in applied work.
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First, we analyze in detail a running example based on Ishihara and Kitagawa’s (2021) “evidence
aggregation” framework. Here, a policy maker is interested in implementing a new policy in country
i = 0. She has access to estimates of the effect of the same policy for other countries i = 1, ..., n and
attempts to extrapolate results using baseline covariates. We give explicit MMR treatment rules
for this example. An interesting finding is that, when the identified set is large enough, the least
randomizing rule can be related to the estimated bounds on the treatment effect of interest and
randomizes only (though not always) if these bounds contain both positive and negative values.
This illustrates how an estimator of the identified set can be used for optimal decision making.

Second, we study extrapolation of Local Average Treatment Effects (Mogstad et al., 2018;
Mogstad and Torgovitsky, 2018) with binary instrument and no covariates. Here, the payoff-relevant
parameter is a “policy-relevant treatment effect” (Heckman and Vytlacil, 2005) that corresponds to
expanding the complier subpopulation. We show that Theorem 1 applies in this example, so that
all decision rules are admissible. In particular, a decision rule that implements the policy for large
values of the usual instrumental-variables estimator is not dominated.

Third, we consider a policy maker who uses quasi-experimental data to decide on a new policy.
She is willing to assume a constant treatment effect model and unconfoundedness given a set of
covariates (X,W ); however, only X is observable and W is not. In this setting, Diegert et al.
(2022) argue that researchers may be interested in how much selection on unobservables is required
to overturn findings that are based on a feasible linear regression. The least randomizing MMR rule
can inform a complementary, decision-theoretic breakdown point analysis: For a given estimated
effect of the policy, what is the largest effect of unobserved confounding under which it is still
optimal to adopt the seemingly better policy without any hedging? We show that this breakdown
point tolerates more confounding than the one of Diegert et al. (2022).

Related literature. The econometric literature on treatment choice has grown rapidly since
Manski (2004) and Dehejia (2005). When welfare is partially identified, Manski (2000, 2005, 2007a)
and Stoye (2007) provide optimal treatment rules assuming the true distribution of the data is
known. Stoye (2012a,b), Yata (2021), and Ishihara and Kitagawa (2021) focus on finite sample
MMR optimal rules, and Aradillas Fernández, Montiel Olea, Qiu, Stoye, and Tinda (2024) on
multiple prior MMR rules, in such settings. For different settings with point-identified welfare,
finite- and large-sample results on optimal treatment choice rules were derived by Canner (1970),
Chen and Guggenberger (2026), Hirano and Porter (2009, 2020), Kitagawa, Lee, and Qiu (2022),
Schlag (2006), Stoye (2009a), and Tetenov (2012). Christensen et al. (2022) extend Hirano and
Porter’s (2009) limit experiment framework to a class of partially identified settings; see on this
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also Kido (2023). Treatment choice is furthermore related to a large literature on optimal policy
learning that contains many results for point identified (Bhattacharya and Dupas, 2012; Kitagawa
and Tetenov, 2018, 2021; Mbakop and Tabord-Meehan, 2021; Kitagawa and Wang, 2023; Athey
and Wager, 2021; Kitagawa et al., 2021; Ida et al., 2022) as well as partially identified (Kallus and
Zhou, 2018; Ben-Michael et al., 2025, 2024; D’Adamo, 2021; Christensen et al., 2022; Adjaho and
Christensen, 2022; Kido, 2022; Lei et al., 2023) treatment choice that may condition on covariates.
Bayesian aspects of treatment choice are discussed in Chamberlain (2011).

The remainder of this paper is organized as follows: Section 2 introduces the formal framework
and the running example. Section 3 is devoted to the aforementioned main results on admissibility,
maximin wellfare, minimax regret and the least randomizing MMR rule. The applications are
presented in Section 4. Section 5 concludes. Appendix A contains proofs of our main results and
Appendix B discusses the notion of profiled regret. Additional proofs and results can be found in
the Online Appendix.

2 Notation and Framework

Statistical decision theory calls for three ingredients: the menu of actions available, their
consequences as a function of an unknown state of the world, and a statistical model of how the
data distribution depends on that state. We now present these elements and lay out an example
that will be used to illustrate objects, terms, and results throughout.

The policy maker can choose an action a ∈ [0, 1], which we interpret as the proportion of a
population that will be randomly assigned to the new policy. Thus, a = 1 means that everyone
is exposed to the new policy and a = 0 means that the status quo is preserved. Under this
interpretation, a = .5 means that 50% of the population will be exposed at random to the new
policy; however, the formal development equally applies to either individual or population-level
randomization. Our interpretation abstracts from integer issues arising with small populations.

The policy maker’s payoff when taking action a ∈ [0, 1] is given by the known function W (a, θ),
where θ ∈ Θ is an unknown state of the world or parameter (possibly of infinite dimension).
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Following most of the literature, we take W (·, θ) to be affine, in the sense that1

W (a, θ) = aW (1, θ) + (1− a)W (0, θ). (2.1)

If the policy maker knew θ, her optimal choice of action would be

1 {U(θ) ≥ 0} , where U(θ) := W (1, θ)−W (0, θ). (2.2)

Following Hirano and Porter (2009), we refer to U(θ) as the welfare contrast at θ. Thus, the policy
maker’s optimal action in (2.2) is to expose the whole population to the new policy if the welfare
contrast is nonnegative and to preserve the status quo otherwise.

The policy maker observes a realization of Y ∈ Rn distributed as

Y ∼ N(m(θ),Σ). (2.3)

Here, the function m(· ) : Θ → Rn and the positive definite covariance matrix Σ are known.
However, m(·) need not be injective: m(θ) = m(θ′) does not imply θ = θ′. As a result, even
perfectly identifying m(θ) (from infinite data) may not identify the optimal action.

In economics applications, the normality assumption in (2.3) is unlikely to hold exactly; however,
the data can often be summarized by statistics that are asymptotically normal and whose asymptotic
variances can be estimated. Treating the limiting model as a finite-sample statistical model then
eases exposition and allows us to focus on the core features of the policy problem. Working directly
with such a limiting model is common in applications of statistical decision theory to econometrics;
see Müller (2011) and the references therein for theoretical support and applications in the context of
testing problems and Ishihara and Kitagawa (2021), Stoye (2012a), or Tetenov (2012) for precedents
in closely related work.

We finally define a decision rule, d : Rn → [0, 1], as (measurable) mapping from the data Y to
the unit interval. We let Dn denote the set of all decision rules. We call d ∈ Dn non-randomized if
d(y) ∈ {0, 1} for (Lebesgue) almost every y ∈ Rn and randomized otherwise.

Running Example: Our running example is a special case of Ishihara and Kitagawa’s
(2021; see also Manski (2020)) “evidence aggregation” framework. A policy maker is interested in

1In particular, this applies if W (·, θ) is an expectation and, for the case where randomization is interpreted
as fractional assignment, there are no spillover effects or externalities. These assumptions are the default in the
literature. An exception is Manski and Tetenov (2007), who consider the welfare of an action to be a concave
transformation of W (·, θ).
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implementing a new policy in country i = 0 and observes estimates of the policy’s effect for countries
i = 1, ..., n. Let Y = (Y1, ..., Yn)

⊤ ∈ Rn denote such experimental estimates and let (x0, . . . , xn) be
nonrandom baseline covariates living in a metric (typically Euclidean) space X with norm ∥·∥. The
policy maker is willing to extrapolate from her data by assuming that W (1, θ) = θ(x0), W (0, θ) = 0,
U(θ) = θ(x0) and that

Y =


Y1

...
Yn

 ∼ N(m(θ),Σ), m(θ) =


θ(x1)

...
θ(xn)

 , Σ = diag(σ2
1, . . . , σ

2
n),

where θ : X → R is an unknown Lipschitz function with known constant C.2 For simplicity, in
the example we write µi for θ(xi) henceforth, thus Yi ∼ N(µi, σ

2
i ). We also assume w.l.o.g. that

countries are arranged in nondecreasing order of ∥xi − x0∥. While our analysis extends to x1 = x0,
we focus on the case of x1 ̸= x0, so that the sign of µ0 is not necessarily identified. We assume that
(x1, . . . , xn) are distinct. Even if this were not the case in raw data, one would presumably want
to induce it (by adding fixed effects, whose size can be bounded) because the Lipschitz constraint
would otherwise imply that countries with same x exhibit no heterogeneity whatsoever. Finally, we
assume ∥x1 − x0∥ < ∥x2 − x0∥, i.e., the nearest neighbor of country 0 is unique.3 □

3 Main Results

In statistical decision theory, three criteria are commonly used to recommend decision rules:
admissibility, maximin welfare, and minimax regret.4 In this section, we show that application
of these criteria to our setting presents nontrivial challenges.

3.1 Everything is Admissible

Let Em(θ)[·] denote expectation with respect to Y ∼ N(m(θ),Σ). Recall the following definition:

2In fairness, while we seemingly have only one free parameter C, the choice of norm on X may not be obvious. This
is a common issue in causal inference; see Imbens and Rubin (2015, Section 18.5) for a discussion and suggestions.

3If two or more countries are nearest neighbors, their signals can be merged into one more precise signal.
4See Stoye (2012b) and references therein for theoretical trade-offs between these criteria.
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Definition 1. A rule d ∈ Dn is (welfare-)admissible if there does not exist d′ ∈ Dn such that

Em(θ)[W (d′(Y ), θ)] ≥ Em(θ)[W (d(Y ), θ)], ∀θ ∈ Θ,

with strict inequality for some θ ∈ Θ.

Thus, a rule is admissible if it is not dominated (in the usual sense of weak dominance
everywhere and strict dominance somewhere). This is generally considered a minimal but compelling
requirement for a decision rule to be “good” and goes back at least to Wald (1950). Admissibility
can be used to recommend classes of rules whose payoff cannot be uniformly improved and/or whose
members improve uniformly on non-members, as in complete class theorems (Karlin and Rubin,
1956; Manski and Tetenov, 2007); conversely, one may use it to caution against particular (classes
of) decision rules, as was recently done by Andrews and Mikusheva (2022).

Our first result shows that, under mild assumptions, admissibility cannot serve either purpose
in our problem. This is because any decision rule is admissible. To formalize this, let

M := {µ ∈ Rn : m(θ) = µ, θ ∈ Θ} (3.1)

collect all means that can be generated as θ ranges over Θ. We refer to elements µ ∈ M as
reduced-form parameters because they are identified in the statistical model (2.3).5 Define the
identified set for the welfare contrast as function of µ as

I(µ) := {u ∈ R : U(θ) = u,m(θ) = µ, θ ∈ Θ} (3.2)

and the corresponding upper and lower bounds as

I(µ) := sup I(µ), I(µ) := inf I(µ). (3.3)

When we refer to models as “partially identified,” we henceforth mean that partial identification
obtains on an open set in parameter space (i.e., not almost nowhere).

Definition 2 (Nontrivial partial identification). The treatment choice problem with payoff function
(2.1) and statistical model (2.3) exhibits nontrivial partial identification if there exists an open set

5The notation is consistent with our running example, in which the observable moments are (µ1, . . . , µn).
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S ⊆ M ⊆ Rn such that6

I(µ) < 0 < I(µ), for all µ ∈ S.

Running Example—Continued: The identified set for the welfare contrast µ0 is

I(µ) = {u ∈ R : |µi − u| ≤ C ∥xi − x0∥ , i = 1, . . . , n}.

Its extrema can be written as intersection bounds:

I(µ) = max
i=1,...,n

{µi − C ∥xi − x0∥}, I(µ) = min
i=1,...,n

{µi + C ∥xi − x0∥} .

For µ sufficiently close to the zero vector, we therefore have nontrivial partial identification. □

We are now ready to state the first main result.

Theorem 1. If a treatment choice problem with payoff function (2.1) and statistical model (2.3)
exhibits nontrivial partial identification in the sense of Definition 2, then every decision rule d ∈ Dn

is (welfare-)admissible.

Proof. See Appendix A.1.

For a proof sketch, suppose by contradiction that some rule d is inadmissible. Then some other
rule d′ dominates it. This d′ must perform weakly better at every θ ∈ m−1(S), where S is the
set that appears in Definition 2. Because of nontrivial partial identification, all θ ∈ m−1(S) are
compatible with positive and negative welfare contrast U(θ). This implies that

Em(θ)[d(Y )] = Em(θ)[d
′(Y )] for each θ ∈ m−1(S).

By i) completeness (hence, bounded completeness) of the Gaussian statistical model in (2.3) and ii)
mutual absolute continuity of the Gaussian and Lebesgue measures in Rn, we then have d(·) = d′(·)
(Lebesgue) almost everywhere in Rn, a contradiction.7

While the statement of Theorem 1 makes reference to the Gaussian model in (2.3), the above
proof sketch only uses this model’s bounded completeness (and the mutual absolute continuity of

6We force M to have a non-empty interior for simplicity of exposition. This would, for example, exclude equality
constraints. For Theorem 3, we can weaken the assumption to allow such cases as long as S is rich within M .

7A family P of distributions P is complete if EP [f(X)] = 0 for all P ∈ P implies f(x) = 0 P -almost everywhere,
for every P ∈ P. See, for example, Lehmann and Romano (2005, p.115).
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the Gaussian and Lebesgue measures in Rn). Indeed, Theorem 5 in Appendix A.5, establishes a
stronger version of Theorem 1 that applies to boundedly complete statistical models (in a sense
we make precise).8 It is known that many exponential family distributions (Lehmann and Casella,
1998, Theorem 4.3.1, p.116) as well as some location families (Mattner, 1993, Theorem 2.1) are
boundedly complete. However, our proof does not apply to distributions that are not boundedly
complete even if they are close to Normal; for example, if Y = Z + ϵ, where Z ∼ N(m(θ),Σ) and
ϵ is independent of Z and contains i.i.d components with characteristic functions containing zeros
such as the uniform distributions in [−η, η] for any η > 0 (c.f. Mattner 1993, Theorem 2.1 and
references therein). While we do not know whether bounded completeness is strictly necessary for
this result, it cannot just be dropped. To see this, consider the preceding counterexample with a
uniform error term, in which we further impose n = 1, Σ = 0 and η = 1. Furthermore, suppose
I(µ) = µ + 1 and I(µ) = µ − 1. Then the coin-flip rule dcoin-flip(Y ) = 1/2 would be dominated by
the rule that chooses 0 if Y < −2, chooses 1 if Y > 2, and 1/2 otherwise.

Remark 1. Theorem 1 shows that the notion of admissibility does not have any refinement power on
the class of decision rules considered by the policy maker. We think this result is quite surprising,
given that in treatment choice problems with point identification, admissibility does meaningfully
refine the class of decision rules. For example, let n = 1, Θ = R, m(θ) = W (1, θ) = θ, and
W (0, θ) = 0. In this case, the policy maker observes a noisy signal, Y ∼ N(θ, σ2), of the payoff-
relevant, point-identified parameter θ ∈ R. By Karlin and Rubin’s (1956, Theorem 2) classic
result, any decision rule that is not a threshold rule (i.e., is not of form 1{Y > c} for some fixed
c ∈ R∪{−∞,∞}) is dominated. In fact, the class of all threshold rules is complete (in the sense that
any non-threshold rule is dominated by a threshold rule). Therefore, any decision rule that is not
a threshold rule can be dismissed by appealing to the notion of admissibility alone. We think it is
quite surprising that introducing partial identification renders all decision rules admissible. Indeed,
Theorem 1 implies that no rule, regardless how eccentric it may appear, is (welfare-)dominated.
This makes it much more challenging to recommend a rule or a class of rules, at least without
commitment to a more specific decision-theoretic optimality criterion (such as maximin welfare or
minimax regret).

Theorem 1 also admits a more optimistic interpretation. The positive interpretation is that
the procedures suggested in the related literature will all perform well relative to one another in
some parts of parameter space. This is an important observation because some of these suggestions
contain novel or nonstandard components. For example, Ishihara and Kitagawa (2021) place ex-
ante restrictions on the class of decision rules, while Christensen et al. (2022) transform the original

8We would like to thank Tim Christensen and the Editor for pointing this out.
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loss function by profiling out partially identified parameters. By Theorem 1, all these approaches
are at least admissible. This was arguably obvious in the former case (since for any linear threshold
rule, it is easy to find a prior that it uniquely best responds to) but certainly not the latter one.

3.2 Maximin Welfare is Ultra-Pessimistic

We next analyze the maximin welfare criterion. Our main result echoes earlier findings by Savage
(1951) and Manski (2004): Maximin typically leads to “no-data rules” that preserve the status quo.

Definition 3. A rule dmaximin ∈ Dn is maximin optimal if

inf
θ∈Θ

Em(θ)[W (dmaximin(Y ), θ)] = sup
d∈Dn

inf
θ∈Θ

Em(θ)[W (d(Y ), θ)].

Theorem 2. Suppose that there exists θ ∈ Θ such that U(θ) ≤ 0. If

inf
θ∈Θ

W (0, θ) = inf
θ∈Θ:U(θ)≤0

W (0, θ), (3.4)

then the no-data rule dno-data(y) := 0 is maximin optimal. The maximin value is

inf
θ∈Θ

W (0, θ).

Proof. See Appendix A.2.

This result can be seen as follows. When U(θ) ≤ 0, it is optimal to preserve the status quo;
substituting in for this response, we find that infθ∈Θ Em(θ)[W (d(Y ), θ)] ≤ infθ∈Θ,U(θ)≤0W (0, θ) for
any rule d ∈ Dn. Under condition (3.4), this upper bound is attained by dno-data.

Running Example—Continued: Theorem 2 applies to the running example. In particular,
the example’s maximin welfare equals 0 and is achieved by never assigning the new policy. □

A similar result was shown by Manski (2004) for testing an innovation with point-identified
welfare contrast (a result that we generalize9), and the concern can be traced back at least to Savage
(1951). There is a discussion of whether such “ultrapessimism” occurs, in a technical sense, more
generically with maximin utility versus minimax regret (Parmigiani, 1992; Sadler, 2015). However,
a string of more optimistic results regarding MMR (Canner, 1970; Stoye, 2009a, 2012b; Tetenov,

9In Manski’s (2004) example, W (0, θ) does not depend on θ, so that condition (3.4) is trivially satisfied.
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2012; Yata, 2021) suggests that, with state spaces that describe real-world decision problems, the
concern is more salient for maximin.10

3.3 Minimax Regret Admits Many Solutions

In view of Theorem 1 and Theorem 2, it seems natural to consider the minimax regret (MMR)
optimality criterion. It is known that some point-identified treatment choice problems admit
nonrandomized, essentially unique MMR optimal rules. In contrast, our results below will show
that uniqueness of MMR optimal rules should not be expected to hold generally with partial
identification. To make this point, we consider a class of problems where finite-sample minimax
optimal results are available. Within this class, we show that, if the identified set for the welfare
contrast is sufficiently large relative to sampling error, then i) we can find infinitely many MMR
optimal decision rules, all of which depend on data through an optimal linear index and ii) under
weak additional conditions, any MMR rule that depends on the data through the optimal linear
index must be randomized.

Our numerical and analytic findings below (see Figure 2 and Proposition 2) demonstrate that,
beyond having the same worst-case regret, two MMR optimal rules might be qualitatively and
quantitatively very different. This presents a practical challenge for a policy maker as, given the
same data realizations, two MMR optimal rules may recommend different policy actions.

The expected regret of a decision rule d ∈ Dn in state θ is its expected welfare loss compared to
the oracle rule:

R(d, θ) := U(θ)
{
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

}
. (3.5)

Definition 4. A rule d∗ ∈ Dn is minimax regret (MMR) optimal if

sup
θ∈Θ

R(d∗, θ) = inf
d∈Dn

sup
θ∈Θ

R(d, θ). (3.6)

Solving minimax regret problems is often hard, both analytically and algorithmically. Algorithms
exist for certain cases (Yu and Kouvelis, 1995; Chamberlain, 2000; Aradillas Fernández et al., 2025;
Guggenberger and Huang, 2025), but it is known that obtaining the minimax solution of a decision

10Given that we next elaborate on multiplicity of MMR rules, it is of interest to also discuss the potential
multiplicity of maximin rules: if W (0, θ) is treated as known (e.g., equal to 0), the maximin rule may be unique.
However, in settings where both W (1, θ) and W (0, θ) are unknown and can be arbitrarily “bad”, the typical result is
that all decision rules are maximin.
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problem—and sometimes even deciding whether a minimax solution exists—is NP hard in general;
see Daskalakis et al. (2021). In important, recent work, Yata (2021) characterizes MMR optimal
rules for a large class of binary action problems. He imposes the following restrictions on the
parameter space and welfare function.

Assumption 1. (i) Θ is convex, centrosymmetric (i.e., θ ∈ Θ implies −θ ∈ Θ) and nonempty.

(ii) m(·) and U(·) are linear.

Running Example—Continued: Our example satisfies Assumption 1. In particular, the space
of C-Lipschitz functions, θ : X → R is convex as well as centrosymmetric, and the functions U(·)
and m(·) are linear in θ as they simply report the values of θ at points (x0, . . . , xn). □

Under Assumption 1, Yata (2021) shows existence of an MMR rule that depends on the data only
through (w∗)⊤Y , where the unit vector w∗ can be approximated by solving a sequence of tractable
optimization problems. When the identified set for the welfare contrast at µ = 0 := 0n×1 is large
enough, Yata’s (2021) MMR rule can be expressed as

d∗RT(Y ) := d∗RT((w
∗)⊤Y ) := Φ

(
(w∗)⊤Y/σ̃) (3.7)

for some uniquely characterized σ̃ > 0.11 Moreover, it then has two important algebraic properties:

Em(θ)[d
∗
RT(Y )] = 1/2 when m(θ) = 0 (3.8)

and
sup
θ∈Θ

R(d∗RT, θ) = sup
θ∈Θ,m(θ)=0

R(d∗RT, θ). (3.9)

In words, these features are as follows: First, if the mean function m(·) equals zero, expected
exposure to the new policy is 1/2. Second, worst-case regret occurs precisely at this point.12 The
latter is due to careful calibration of the MMR decision rule, and one might conjecture that it
renders this rule unique. However, the following result establishes the contrary.

Theorem 3. Consider a treatment choice problem with payoff function (2.1) and statistical model
(2.3) that exhibits nontrivial partial identification in the sense of Definition 2. Suppose that

11For readability, we slightly abuse notation and, when a decision rule d depends on data Y only through a simple
feature like w⊤Y or Y1, we write d(Y ) as d(w⊤Y ) or d(Y1).

12Yata (2021) also provide sufficient conditions under which these conditions hold true. Our proof is constructive,
and our results below apply to a large class of models with these properties and shall not be considered as a specific
example.
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Assumption 1 holds and that there is a MMR optimal rule d∗ that depends on the data only through
(w∗)⊤Y and that satisfies (3.8) and (3.9). If there exists µ ∈ M such that I(µ) > I(0) and I(0) is
large enough (see (A.2)), then

(i) There are infinitely many MMR optimal rules.

(ii) Any MMR rule that depends on the data only through (w∗)⊤Y (and is weakly increasing in
this argument) must randomize for some data realizations.

(iii) If I(µ) is differentiable at µ = 0, then no linear threshold rule, i.e., no rule of form 1{w⊤Y ≥
c} for some w ∈ Rn and c ∈ R ∪ {−∞,∞}, is MMR optimal.

Proof. See Appendix A.3.

To be clear, this finding applies if the problem is sufficiently far from point identification, with
an exact condition given in the proof.13 Close to point identification and under mild additional
assumptions, Yata (2021) shows MMR optimality of a linear threshold rule.

Part (i) of Theorem 3 is established constructively: We show that, whenever d∗RT is MMR
optimal, then so is the piecewise linear rule

d∗linear((w
∗)⊤Y ) :=


0, (w∗)⊤Y < −ρ∗,

(w∗)⊤Y+ρ∗

2ρ∗
, −ρ∗ ≤ (w∗)⊤Y ≤ ρ∗,

1, (w∗)⊤Y > ρ∗,

(3.10)

where ρ∗ > 0 is characterized in Appendix A.3, Equation (A.11). This implies existence of infinitely
many MMR rules because the set of such rules is closed under convex combination.

Next, if the identified set is large enough for given Σ (or as Σ vanishes for given identified set),
all of the above rules randomize for some data realizations. A natural question to ask is whether
this feature is shared by all MMR rules. Parts (ii) and (iii) give qualified affirmative answers: If we
focus on decision rules that increase in (w∗)⊤Y and if I(0) is large enough, then randomization is
necessary for MMR optimality; if bounds are furthermore differentiable in reduced-form parameters

13This condition will always be met if Σ is sufficiently small, holding other parameter values fixed. Heuristically,
this means that our multiplicity result is always relevant as sample size becomes large. However, to what extent our
result is a useful characterization in a limit experiment is beyond the scope of the current paper and an interesting
question that we leave for future research.
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at 0, randomization is necessary for any MMR rule that depends on a linear index of the data.14

In particular, the threshold rule

d∗0((w
∗)⊤Y ) = 1{(w∗)⊤Y ≥ 0} (3.11)

is not MMR optimal.

Running Example—Continued: Theorem 3 applies to our running example. We next improve
on this observation by providing explicit MMR optimal rules for the example. Broadly speaking,
these are characterized by a weighting of studentized signals that resembles a triangular kernel for
small enough C and turns into a nearest neighbor kernel as C becomes large. □

Proposition 1. In the running example, the following statements hold true.

(i) If
C ∥x1 − x0∥ <

√
π/2 · σ1, (3.12)

then the following decision rule is uniquely (up to almost sure agreement) MMR optimal:

dm∗
0

:= 1{w⊤
m∗

0
Y ≥ 0},

w⊤
m∗

0
:=

(
1,

max{m∗
0 − C ∥x2 − x0∥ , 0}/σ2

2

(m∗
0 − C ∥x1 − x0∥)/σ2

1

, . . . ,
max{m∗

0 − C ∥xn − x0∥ , 0}/σ2
n

(m∗
0 − C ∥x1 − x0∥)/σ2

1

)
,

where m∗
0 > C ∥x1 − x0∥ solves a simple fixed point problem ( (C.7) in Online Appendix C.3).

(ii) If
C ∥x1 − x0∥ =

√
π/2 · σ1,

then 1{Y1 ≥ 0} is MMR optimal.

(iii) If
C ∥x1 − x0∥ >

√
π/2 · σ1, (3.13)

14The class of nonrandomized but otherwise unrestricted rules is not interestingly different from the class of all
rules due to the possibility of purifying randomized rules. See Remark 5 for discussion and references. Similarly, the
differentiability condition is needed to preclude that some component of Y can effectively be used as randomization
device.
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then the rule

d∗linear(Y1) :=


0, Y1 < −ρ∗,

Y1+ρ∗

2ρ∗
, −ρ∗ ≤ Y1 ≤ ρ∗,

1, Y1 > ρ∗,

(3.14)

is MMR optimal; here, ρ∗ < C ∥x1 − x0∥ is the unique strictly positive solution to ρ∗ =

C ∥x1 − x0∥ (1− 2Φ (ρ∗/σ1)). The rule d∗RT(Y1) := Φ
(
Y1/σ̃), where

σ̃ =

√
2C2 ∥x1 − x0∥2 /π − σ2

1, (3.15)

is MMR optimal as well, as are all convex combinations of these rules.

(iv) If Equation (3.13) holds, no linear threshold rule is MMR optimal.

Proof. See Online Appendix C.3.

Remark 2. All decision rules above converge to the one from case (ii) as C∥x1 − x0∥ →
√
π/2 · σ1.

Remark 3. This solution relates to the literature as follows. The problem is within the framework
considered by Yata (2021) (who uses results from Stoye 2012a), and his analysis applies; in
particular, our linear index differs from his w∗ only by a more explicit characterization. Although
some of our proof steps use algebra from Stoye (2012a), the alternative solutions in (iii), the
uniqueness statement, and part (iv) are entirely new. Ishihara and Kitagawa (2021) numerically
find a solution within the class of symmetric threshold rules (i.e., rules of form 1{w⊤Y ≥ 0}). This
in principle recovers the global solution if C ∥x1 − x0∥ ≤

√
π/2 · σ1 but will exclude all globally

MMR optimal decision rules otherwise. That said, Ishihara and Kitagawa’s (2021) solution approach
applies considerably more generally. This is because we view their approach primarily as a numerical
strategy for finding a minimax solution over a constrained class. Indeed, given a statistical model
and a risk function, one can always try to find a minimax decision rule numerically within a class
of threshold rules, which may or may not pin down the true minimax rule.

Remark 4. If µ is exogenous and known, then the decision rule d∗known µ(µ) := max{min{I(µ)/(I(µ)−
I(µ)), 1}, 0} uniquely attains MMR (Manski, 2007b). Only our new rule d∗linear converges to d∗known µ

in certain special cases. Similarly, Ishihara and Kitagawa (2021, Section 3.3) discuss that an
analogous convergence fails for any MMR rule that they propose. This may appear puzzling;
however, any presumption that MMR rules “should” converge to such limits delicately depends on
how one conceives the limit of the decision problem. Hence, it is not clear that we observe failure
of any convergence that “should” have occurred.
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(b) d∗linear − d∗RT

Figure 1: Panel a): Visualization of rules (3.7) and (3.10) in the running example with estimates
from two countries (setting x0 = 0, x1 = −7.5, σ1 = 3.9, x2 = 7.9, σ2 = 2.4, C = 2.5). Panel b):
Difference between rules as a function of the nearest neighbor’s outcome.

We conclude that different MMR rules can lead to rather different policy actions for the same
data. This difference is illustrated in Figure 1 for parameter values calibrated to Ishihara and
Kitagawa’s (2021) empirical example. How serious a challenge it is depends on one’s view. If one
truly thinks of MMR as encoding a decision maker’s complete preferences, and hence of competing
optimal rules as mutually indifferent, it is not much of a concern. However, it may make it harder
to communicate MMR-based decisions to policy makers. In addition, our next results below will
show that one may plausibly have preferences among the different MMR rules.

Running Example—Continued: For some parameter values, there are infinitely many MMR
rules that depend on the data only through Y1 and therefore on (µ1, . . . , µn)

⊤ only through µ1. To
better compare and visualize these rules, it appears natural to examine their worst-case performance
for different fixed values of µ1. Formally, this leads us to define profiled regret

R(d, γ) := sup
(µ0,µ1,...,µn)⊤∈Rn+1:µ1=γ,µ0∈I(µ),µ∈M

µ0 (1{µ0 ≥ 0} − Eµ[d(Y )]) . (3.16)

For the same parameters used in Figure 1, Figure 2 traces out R(d, γ) over γ ∈ [−30, 30] for
four different decision rules. The blue (solid) line is d∗linear (see Equation (3.10)); the red (dotted)
line is d∗RT (see Equation (3.7)); the black (bimodal, solid) line is the symmetric threshold rule
d∗0(Y ) = 1{Y1 ≥ 0}; and the green (dashed) line is dcoin-flip = 1/2.15

An immediate use of Figure 2 is to compare decision rules in terms of their worst-case regret.
15Appendix C.7.1 presents algebraic and computational details that underlie this figure.
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Figure 2: Profiled regret of four decision rules; parameter values are as in Figure 1.

For example, consistent with Theorem 3-(ii), d∗0 is not MMR optimal (the maximum of the black
curve is clearly above those of d∗RT and d∗linear). For the specific parameter values used here, we can
furthermore show that d∗0 is minimax regret optimal among linear threshold rules; thus, the black
line also illustrates the minimax regret efficiency loss from restricting attention to linear threshold
rules. But Figure 2 also reveals interesting differences among MMR optimal rules. In particular,
d∗linear appears to have smaller profiled regret than d∗RT virtually everywhere. Indeed, Proposition
2 in Appendix B shows that whenever condition (iii) of Proposition 1 holds, d∗linear profiled-regret
dominates d∗RT for a large range of values of C ∥x1 − x0∥ and σ1, including those used in Figure 2
(though there exists parameter values under which the dominance does not hold for small nonzero
γ). Moreover, the considerable difference between profiled regret functions in Figure 2 continues
beyond the figure: The ratio R(d∗linear, γ)/R(d∗RT, γ) decays to zero at exponential rate as γ → ±∞.
Finally, Figure 2 illustrates that dcoin-flip is profiled-regret inadmissible in this example. In fact,
profiled-regret inadmissibility of dcoin-flip holds more generally; see Proposition 3 in Appendix B.

While profiling with respect to µ1 is natural in this example, we emphasize that the idea of
profiled regret is much more general. In Appendix B, we extend (3.16) to the profiling out of any
linear function of (µ1, . . . , µn)

⊤.

3.4 Least Randomizing MMR Optimal Rules

We next argue that further refining the MMR criterion presents an interesting research opportunity
and may even lead to unique recommendations. To this purpose, we propose consideration of,
and characterize, the least randomizing MMR rule. Our main motivation is that, despite the wide
adoption of randomized treatment allocations in economics and the social sciences, policy makers
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might shy away from exposing only a fraction of a population to the new policy. Thus, we attempt
to recommend actions a ∈ (0, 1) as infrequently as possible. We justify our approach by a decision
maker with a lexicographic preference (See Remark 5 below). Alternatively, one may also explicitly
incorporate aversion to randomization in the loss function and try to solve the MMR criterion under
a modified risk function. See Section C.1 for detailed discussions.

To formalize this, observe that d∗RT and d∗linear can be considered smoothed versions of d∗0 in a
sense that we now make precise. Let F : R → [0, 1] be a c.d.f. and consider a decision rule of form
F ◦ w∗ := F ((w∗)⊤Y ) ∈ Dn; that is, the step function d∗0 was smoothed into a c.d.f. We restrict
attention to c.d.f.’s whose associated distributions are symmetric (F (−x) = 1−F (x)) and unimodal
(F (·) is convex for x ≤ 0 and concave otherwise). Let F be the set of all such c.d.f’s and let

D̃n := {F ◦ w∗ ∈ Dn : F ∈ F}.

Note that each rule F ◦ w∗ ∈ D̃n depends on the data only via (w∗)⊤Y and is nondecreasing in
(w∗)⊤Y . Moreover, for each F ◦w∗ ∈ D̃n, the interval on which treatment assignment is randomized
equals (up to closure)

V (F ◦ w∗) :=
(
sup
{
x ∈ R : F (x) = 0

}
, inf

{
x ∈ R : F (x) = 1

})
. (3.17)

All MMR decision rules considered in this paper are in D̃n. We next show that d∗linear is least
randomizing among them and among all other MMR decision rules that might exist in this class.

Theorem 4. Suppose all conditions of Theorem 3 hold. If F ◦ w∗ ∈ D̃n is MMR optimal, then
V (d∗linear ◦ w∗) ⊆ V (F ◦ w∗), with equality if and only if F = d∗linear.

Proof. See Appendix A.4.

In words, any symmetric, weakly increasing and unimodal MMR optimal rule that depends on
data only via (w∗)⊤Y must have a randomization area that is wider than that of d∗linear, strictly so
if it is a meaningfully distinct rule. Thus, the least randomizing criterion provides a pragmatic and
unique refinement among the set of known MMR optimal rules.

To establish Theorem 4, we first show that for any rule F ◦ w∗ ∈ D̃n, its expected regret at
any θ for which (w∗)⊤m(θ) = 0 equals the MMR value of the problem. If F ◦ w∗ ∈ D̃n is MMR
optimal, its expected regret must therefore be maximized at (w∗)⊤m(θ) = 0. For any symmetric
and unimodal c.d.f. F with V (d∗linear ◦w∗) ⊈ V (F ◦w∗), we can show that a necessary condition for
this maximization fails.
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Running Example—Continued: Recall that, applied to the running example and for C large
enough, d∗linear can be expressed as (3.14). Of note, an identified set for µ0 given the true mean of
Y1 (i.e., µ1) is

[ µ1 − C ∥x1 − x0∥ , µ1 + C ∥x1 − x0∥ ] ,

which can be estimated naturally by

[ Y1 − C ∥x1 − x0∥ , Y1 + C ∥x1 − x0∥ ] . (3.18)

As d∗linear only randomizes when |Y1| < ρ∗, we see that interval (3.18) contains 0 whenever d∗linear

randomizes. Equivalently, d∗linear always (never) implements the new policy when (3.18) is to the
right (left) of zero. In this sense, the estimated identified set is explicitly used for decision making.16

In contrast, d∗RT always randomizes the policy recommendation, although for large Y1 the fraction
of population assigned to treatment will be large. □

Remark 5. Consider a decision maker who wishes to pick an optimal rule according to MMR but is
hesitant to implement randomized rules due to additional inconvenience cost from implementation
or concerns over ex-post fairness (i.e., units in the same population may receive different treatments).
In this case, it is indeed possible to define the MMR problem among nonrandomized rules. However,
if we do not place any restriction to the class of nonrandomized rules, game-theoretic purification
arguments (Dvoretzky et al., 1951; Khan et al., 2006) suggest existence of nonrandomized solutions
that approximate the risk profile of the randomized MMR optimal rule. Moreover, these solutions
would be unattractive and unnatural; for example, they cannot be monotone due to Theorem 3(iii).
In light of these observations, we think there is little value in pursuing solutions over nonrandomized
rules in our setup, unless one focuses on a specific class of benign or reasonable nonrandomized
rules, e.g. as in Ishihara and Kitagawa (2021). Furthermore, within the class of rules D̃n, our
least randomizing MMR rule can be justified by a decision maker who possesses a lexicographic
preference with a priority given to minimizing MMR criterion over minimizing the inconvenience
cost of randomization (in our case, the cost is proxied by the Lebesgue measure of the realization
of (w∗)⊤Y taking a value in (0, 1)). Such lexicographic ordering of statistical decisions has ample

16One may consider a scenario in which, to aid interpretability of decision rules, the decision maker does not wish
to randomize whenever the estimated identified set for µ0 (3.18) does not contain zero, i.e. the estimate suggests
that the sign of µ0 is identified. This restricts decision rules to the following set:

{d ∈ D̃n : F ∈ F , F (x) = 0 for all x ≤ −C ∥x1 − x0∥ and F (x) = 1 for all x ≥ C ∥x1 − x0∥} (3.19)

As (3.19) is a subset of D̃n containing d∗linear, Theorem 4 implies that d∗linear is also least-randomizing MMR in (3.19).
Moreover, d∗linear is currently the only known rule in set (3.19) that is also globally MMR optimal.
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precedents in the literature: for statistical decision rules, we first remove dominated rules and
then choose among undominated ones according to further optimality criteria (Wald, 1950; Manski,
2021); in the Neyman-Pearson paradigm of selecting hypothesis tests, one first controls size and
then maximizes power; in choosing estimators, it is customary to focus on unbiased estimators,
among which the one that minimizes variances is regarded as optimal.

4 Further Applications

4.1 Extrapolating Local Average Treatment Effects

We next apply our analysis to extrapolation of Local Average Treatment Effects (Mogstad et al.,
2018; Mogstad and Torgovitsky, 2018). Let Z ∈ {0, 1} be a binary instrument, D ∈ {0, 1} a binary
treatment assignment, and (Y (1), Y (0)) potential outcomes under treatment and control. As usual,
the observed outcome is Y = DY (1) + (1−D)Y (0). To simplify exposition, we assume that there
are no covariates and that Y (1), Y (0) ∈ {0, 1}. Following Heckman and Vytlacil (1999, 2005),17

let p(z) := P{D = 1 | Z = z} be the propensity score and write D = 1{V ≤ p(Z)}, where
(V | Z = z) ∼ Unif[0, 1]. The parameter space Θ contains all tuples θ := (p(1), p(0),MTE(·)),
where p(1) ∈ [0, 1], p(0) ∈ [0, 1], p(1) ≥ p(0), and MTE(·) is the marginal treatment effect function

MTE(v) := E[Y (1)− Y (0) | V = v].

The policy maker observes (
m̂1

m̂2

)
∼ N

((
m1(θ)

m2(θ)

)
,Σ

)
, (4.1)

where

m1(θ) := E[Y | Z = 1]− E[Y | Z = 0] =

∫ p(1)

p(0)

MTE(v)dv

m2(θ) := E[D | Z = 1]− E[D | Z = 0] = p(1)− p(0)

are the population reduced-form and first-stage coefficients and Σ is positive definite. Suppose a
new instrument expanded the complier subpopulation through shifting p(1) to p(1) + α for some
α > 0. Mogstad et al. (2018) show that one parameter of interest is the “policy-relevant treatment

17See, for example, Assumption I and Equation (2) in Mogstad and Torgovitsky (2018). Also see Imbens and
Angrist (1994) for additional references.
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effect” (Heckman and Vytlacil, 2005)

PRTE(α) = E[Y (1)− Y (0) | V ∈ (p(0), p(1) + α]].

Suppose the welfare contrast U(θ) equals PRTE(α)18, which can be written as

U(θ) := PRTE(α) =
m1(θ)

α +m2(θ)
+

1

α +m2(θ)

∫ p(1)+α

p(1)

MTE(v)dv. (4.2)

Hence, the decision maker wants to find an optimal treatment policy given partial identification
of parameter (4.2) in model (4.1). In Online Appendix C.7.3, we verify that Theorem 1 applies.
Therefore, any decision rule is admissible in this example. For example, implementing a policy
for large values (and more surprisingly, for very negative values) of the IV estimator would be
admissible, as would be the approach of Christensen et al. (2022), who discuss the same application.

4.2 Decision-theoretic Breakdown Analysis

Consider a policy maker who uses quasi-experimental data but is worried about confounding. More
specifically, she assumes a constant treatment effect model and unconfoundedness given covariates
(X,W ), motivating the linear regression model

Y = γ0 + βlongD + γ⊤
1 X + γ⊤

2 W + e,

where Y is observed outcome, D is the binary treatment, and e is a projection residual. The
infeasible optimal treatment policy is 1{βlong ≥ 0}. However, W is unobserved, so that the policy
maker can only estimate the “medium” regression

Y = π0 + βmedD + π⊤
1 X + u,

where u is a projection residual.19 In general, if there exists selection on unobservables (that is,
D is correlated with W ), then βlong is only partially identified. Specifically, Diegert et al. (2022,

18This could be motivated by a hypothetical policy question in which W (0, θ) = 0 and W (1, θ) = PRTE(α). Note
there exist other policy questions of interest and other versions of U(θ), different from PTRE(α) but still partially
identified, may arise.

19We express all regressions as projections for alignment with the literature and because only projection algebra
is used. However, motivating 1{βlong ≥ 0} as optimal usually requires causal interpretation and therefore slightly
stronger assumptions on e; in other words, readers may want to think of the long regression as causal and the medium
one as best linear prediction. See Hansen (2022, Chapter 2), whose notation we also borrow, for a lucid discussion.
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Theorem 4) show that the identified set of βlong given βmed is

βlong ∈ [βmed − k, βmed + k],

where

k :=


√

var(Y ⊥D,X)
var(D⊥X)

r2DR2
D∼X

1−R2
D∼X−r2D

, if 0 ≤ rD <
√
1−R2

D∼X ,

∞, if rD ≥
√
1−R2

D∼X ,

and where var
(
Y ⊥D,X

)
is the variance of the residual from projecting Y onto (1, D,X), var

(
D⊥X

)
is the variance of the residual from projecting D onto (1, X), R2

D∼X is the R2 from projecting D onto
(1, X), and rD ≥ 0 is a user-specified sensitivity parameter that measures the relative importance
of selection on unobservables versus selection on observables.

Diegert et al. (2022) use this result to ask: How strong does omitted variables bias have to be
to potentially overturn findings based on βmed? At population level, the answer is that this can
happen if |k| > |βmed|, a condition that can be related to primitive parameters through the above
display and for which Diegert et al. (2022) provide estimation and inference theory.

Suppose now that there is an estimator β̂med ∼ N(βmed, σ
2). The results of Diegert et al. (2022)

imply an estimated breakdown point k̃(β̂med) := β̂med for positive β̂med. Our results apply upon
letting θ = (βlong, βmed)

⊤ ∈ R2, U(θ) = βlong and m(θ) = βmed. In particular, when k >
√

π
2
σ, there

are infinitely many MMR optimal rules, with the least randomizing one among known ones being

d∗linear(β̂med) :=


0, β̂med < −ρ∗,

β̂med+ρ∗

2ρ∗
, −ρ∗ ≤ β̂med ≤ ρ∗,

1, β̂med > ρ∗,

(4.3)

where ρ∗ < k is the unique strictly positive solution to ρ∗ = k(1 − 2Φ(−ρ∗/σ)). When k ≤
√

π
2
σ,

we know from Stoye (2012a) that d∗0(β̂med) = 1{β̂med ≥ 0} is essentially uniquely MMR optimal.

These results motivate a complementary breakdown analysis guided by statistical decision
theory. For given β̂med > 0, we can ask: How large could k have to be so that the MMR optimality
criterion still supports assigning the new policy without any hedging?20 Due to its least randomizing
property, d∗linear implies the tightest possible answer to this question. Specifically, MMR supports

20Informal exploration of this question goes back at least to Stoye (2009b, see Table 3).
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Figure 3: k (solid) and k̃ (dashed) as a function of β̂med

non-randomized policy assignment up to the “decision theoretic breakdown point”

k(β̂med) := sup{k > 0 : d∗(β̂med) = 1}

d∗(β̂med) :=

1{β̂med ≥ 0} if k ≤
√

π
2
σ

d∗linear(β̂med) if k >
√

π
2
σ
.

In contrast, the implied breakdown point of d∗RT is a constant across all values of β̂med, as d∗RT

always randomizes regardless of data realizations when k >
√

π
2
σ. Figure 3 displays both k̃(β̂med)

and k̄(β̂med) when σ = 1. It turns out that the decision theoretic breakdown point tolerates more
ambiguity; this difference is salient for smaller values of β̂med and vanishes as β̂med diverges.

5 Conclusion

In this paper, we used statistical decision theory to study treatment choice problems with partial
identification. For a large and empirically relevant class of such problems, we show that every
decision rule is admissible, that maximin welfare optimality criterion often select no-data decision
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rules, and that there are infinitely many minimax regret optimal rules, all of which randomize
the policy action at least for some data realizations. These results stand in stark contrast with
treatment choice problems with point-identified welfare.

We also provide a decision rule that is least randomizing in a large class of MMR optimal
rules including all known ones. We show, in the context of our running example, that our least-
randomizing rule can profiled-regret dominate other MMR rules.

We illustrate our results in three applications that arise in applied work: extrapolation of
experimental estimates for policy adoption, policy-making with quasi-experimental data when
omitted variable bias is a concern, and extrapolation of Local Average Treatment Effects.

A Proofs of Main Results

A.1 Proof of Theorem 1

It suffices to verify conditions A1-A2 in Theorem 5 for the class of distributions N(m(θ),Σ), θ ∈ Θ.

A1: Consider the class of distributions N(m(θ),Σ), θ ∈ m−1(S). As θ ranges over m−1(S), m(θ)

ranges over S. Thus, it suffices to show that

Y ∼ N(µ,Σ), µ ∈ S, (A.1)

is complete (Casella and Berger, 2002, Definition 6.2.21) and therefore also bounded complete.
Define the vector µ̃ := Σ−1µ ranging over the set

S̃ := {µ̃ ∈ Rn : µ̃ = Σ−1µ, µ ∈ S}.

Note S̃ is open under Definition 2. Furthermore, the pdf pµ̃ of Y given µ̃ is of the form

pµ̃(Y ) = h(Y )C(µ̃) exp
[
µ̃⊤Y

]
.

Thus, the family of distributions for Y is complete by Casella and Berger (2002, Theorem 6.2.25).

A2: Consider any set E such that P (E) = 0 for all P ∼ N(m(θ),Σ) as θ ranges over m−1(S).
By Skorohod (2012) (Theorem 2, p. 83), the Gaussian measures in Rn with the same positive
definite covariance matrix Σ are equivalent (mutually absolute continuous with each other), implying
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P (E) = 0 for all P ∼ N(m(θ),Σ) such that θ ∈ Θ \m−1(S) as well.

A.2 Proof of Theorem 2

First, we can bound

sup
d∈Dn

inf
θ∈Θ

Em(θ) [W (d(Y ), θ)] = sup
d∈Dn

inf
θ∈Θ

[
W (0, θ) + U(θ)Em(θ) [d(Y )]

]
≤ sup

d∈Dn

inf
θ∈Θ:U(θ)≤0

[
W (0, θ) + U(θ)Em(θ) [d(Y )]

]
≤ inf

θ∈Θ:U(θ)≤0
W (0, θ),

using that Em(θ) [d(Y )] ≥ 0. To see that this bound is tight, write

inf
θ∈Θ

Em(θ) [W (dno-data, θ)] = inf
θ∈Θ

[
W (0, θ) + U(θ)Em(θ) [dno-data(Y )]

]
= inf

θ∈Θ
W (0, θ).

and recall that infθ∈ΘW (0, θ) = infθ∈Θ:U(θ)≤0W (0, θ) by assumption.

A.3 Proof of Theorem 3

Recall that we impose Assumption 1, the existence of a MMR optimal rule d∗ that depends on the
data only through (w∗)⊤Y and that satisfies (3.8) and (3.9), that

I(0) >
√

π/2 ·
√

(w∗)⊤Σw∗ · sw∗(0), (A.2)

and finally that I(µ) > I(0) for some µ ∈ M .

A.3.1 Proof of Part (i) of Theorem 3

Let R denote the minimax value of the policy maker’s decision problem:

R := inf
d∈Dn

sup
θ∈Θ

{
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

)}
. (A.3)

Step 1 (Minimax Regret Value): We first show that

R = (1/2) · kw∗(0),
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where
kw∗(0) := sup

θ∈Θ
U(θ) s.t (w∗)⊤m(θ) = 0.

Lemma C.1 shows that Equation (3.8) implies

(1/2) · kw∗(0) ≤ R.

Since d∗ is MMR optimal, Equations (3.8)-(3.9) and centrosymmetry of Θ imply

R = sup
θ∈Θ,m(θ)=0

R(d∗, θ) = sup
θ∈Θ,m(θ)=0

U(θ)

(
1{U(θ) ≥ 0} − 1

2

)
=

I(0)

2
.

By definition, I(0) ≤ kw∗(0). Thus, we have

(1/2) · kw∗(0) ≤ R = (1/2) · I(0) ≤ (1/2) · kw∗(0).

Step 2 (Upper bound for the worst-case regret of decision rules that depend on the data only
through (w∗)⊤Y ): We obtain an upper bound for the worst-case regret of such rules by linearizing
the parameter space. We introduce some notation to formalize this step.

Let Γw∗ :=
{
γ ∈ R : (w∗)⊤m(θ) = γ, θ ∈ Θ

}
be the image of the transformation θ 7→ (w∗)⊤m(θ).

We define the identified set for the welfare contrast U(θ) given γ ∈ Γw∗ as

ISUw∗(γ) := {u ∈ R : U(θ) = u, (w∗)⊤m(θ) = γ, θ ∈ Θ}.

Any decision rule that depends on the data only through (w∗)⊤Y can be identified with a
(measurable) function d from R to [0, 1]. For future reference, let D collect all such functions. The
worst-case expected regret of any d ∈ D can be expressed as

sup
θ∈Θ

(
U(θ)

(
1{U(θ) ≥ 0} − Eγ[d((w

∗)⊤Y )]
))

(A.4)

= sup
γ∈Γw∗

(
sup

θ∈Θ, (w∗)⊤m(θ)=γ

U(θ)
(
1{U(θ) ≥ 0} − Eγ[d((w

∗)⊤Y )]
))

= sup
γ∈Γw∗

(
sup

U∗∈ISUw∗ (γ)

U∗ (1{U∗ ≥ 0} − Eγ[d((w
∗)⊤Y )]

))
, (A.5)
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where the expectation Eγ[·] is taken over (w∗)⊤Y ∼ N(γ, (w∗)⊤Σw∗). For γ ∈ Γw∗ , define

kw∗(γ) := inf ISUw∗(γ) = inf{U(θ) : (w∗)⊤m(θ) = γ, θ ∈ Θ}

kw∗(γ) := sup ISUw∗(γ) = sup{U(θ) : (w∗)⊤m(θ) = γ, θ ∈ Θ}. (A.6)

By centrosymmetry of Θ and linearity of U(θ) and m(θ), we have that

inf{U(θ) : (w∗)⊤m(θ) = γ, θ ∈ Θ} = − sup{U(θ) : (w∗)⊤m(θ) = −γ, θ ∈ Θ}

=⇒ kw∗(γ) = −kw∗(−γ)

and therefore that ISUw∗(γ) ⊆
[
−kw∗(−γ), kw∗(γ)

]
, ∀γ ∈ Γw∗ . Equation (A.5) then implies that

(A.4) is bounded above by

sup
γ∈Γw∗

 sup
U∗∈[−kw∗ (−γ), kw∗ (γ)]

U∗ (1{U∗ ≥ 0} − Eγ[d((w
∗)⊤Y )]

) . (A.7)

Lemma C.2 shows that, under Assumption 1, kw∗(γ) is concave (and therefore −kw∗(−γ)

is convex). Furthermore, Lemma C.3 shows that, under Assumption 1, the superdifferential
(Rockafellar, 1997, p. 214-215) of the function kw∗(·) at γ = 0,

∂kw∗(0) := {s ∈ R : kw∗(γ) ≤ kw∗(0) + sγ, ∀γ ∈ Γw∗},

is nonempty, bounded, and closed.

Let sw∗(0) be the largest element of ∂kw∗(0) and suppose without loss of generality that sw∗(0) ≥
0. Step 3 in the proof of Lemma C.3 established that Γw∗ is symmetric around 0. The definition of
superdifferential then gives

sw∗(0)γ − kw∗(0) ≤ −kw∗(−γ) ∀γ ∈ Γw∗ .

It follows that
[−kw∗(−γ) , kw∗(γ)] ⊆ [sw∗(0)γ − kw∗(0) , sw∗(0)γ + kw∗(0)].
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Substituting into (A.7) then implies that (A.4) is further bounded above by

sup
γ∈Γw∗

 sup
U∗∈[sw∗ (0)γ−kw∗ (0) , sw∗ (0)γ+kw∗ (0)]

U∗ (1{U∗ ≥ 0} − Eγ[d((w
∗)⊤Y )]

) .

We note that the choice set for U∗ in this expression is linear in γ.

Step 3 (“Linear Embedding” Minimax Regret Problem): The previous step and the fact that
Γw∗ ⊆ R imply that (A.4) is bounded above by

inf
d∈D

sup
γ∈R

 sup
U∗∈[sw∗ (0)γ−kw∗ (0) , sw∗ (0)γ+kw∗ (0)]

U∗ (1{U∗ ≥ 0} − Eγ[d (γ̂)])

 , (A.8)

where
γ̂ ∼ N

(
γ , (w∗)⊤Σw∗) , γ ∈ R.

Lemma C.4 shows that if sw∗(0) > 0 and kw∗(0) >
√

π
2

√
(w∗)⊤Σw∗ · sw∗(0), then (A.8) equals

kw∗(0)/2 and there are infinitely many rules that give such value. In particular, a solution is given
by any convex combination of the following rules:

d∗RT(γ̂) := Φ

γ̂/

√
2 · kw∗(0)2

π · sw∗(0)2
− (w∗)⊤Σw∗

 (A.9)

d∗linear(γ̂) :=


0, γ̂ < −ρ∗,

γ̂+ρ∗

2ρ∗
, −ρ∗ ≤ γ̂ ≤ ρ∗,

1, γ̂ > ρ∗,

(A.10)

where ρ∗ < kw∗ (0)
sw∗ (0)

is the unique strictly positive solution to

(
sw∗(0)

2 · kw∗(0)

)
ρ∗ − 1

2
+ Φ

(
− ρ∗√

(w∗)⊤Σw∗

)
= 0. (A.11)

Step 4 (Rules that solve the “Linear Embedding” minimax regret problem also solve the original
problem). If sw∗(0) > 0, kw∗(0) >

√
π
2

√
(w∗)⊤Σw∗ ·sw∗(0), and d⋆ ∈ D solves the linear embedding

problem, then
d⋆ ◦ w∗(Y ) := d⋆((w∗)⊤Y ) ∈ Dn
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is MMR optimal in the original decision problem (A.3).

This is because Step 1 implies that

(1/2)kw∗(0) = R ≤ sup
θ∈Θ

{
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d

⋆((w∗)⊤Y )]
)}

and Step 2 implies that

sup
θ∈Θ

{
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d

⋆((w∗)⊤Y )]
)}

≤ sup
γ∈R

 sup
U∗∈[sw∗ (0)γ−kw∗ (0) , sw∗ (0)γ+kw∗ (0)]

U∗ (1{U∗ ≥ 0} − Eγ[d
⋆ (γ̂)]

)
=

kw∗(0)

2
,

where the last equality follows from Step 3. Consequently,

sup
θ∈Θ

{
U(θ)

(
1{U(θ) ≥ 0} − Em(θ)[d

⋆((w∗)⊤Y )]
)}

=
kw∗(0)

2
.

Step 5: Finally, we show that the assumptions of Theorem 3 imply

sw∗(0) > 0

and
kw∗(0) >

√
π/2 ·

√
(w∗)⊤Σw∗ · sw∗(0). (A.12)

First, we show that sw∗(0) > 0. The definitions of I(·) and kw∗(·) imply

I(µ) ≤ kw∗((w∗)⊤µ), for all µ ∈ M.

As sw∗(0) is a supergradient of kw∗(0),

kw∗((w∗)⊤µ) ≤ kw∗(0) + sw∗(0)((w∗)⊤µ), for all µ ∈ M.

Step 1 showed that I(0) = kw∗(0). Hence, combining the above equations yields

I(µ) ≤ I(0) + sw∗(0)(w∗)⊤µ, for all µ ∈ M. (A.13)
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If sw∗(0) = 0, Equation (A.13) then implies I(µ) ≤ I(0) for all µ ∈ M , contradicting the assumption
that there exists µ ∈ M such that I(µ) > I(0).

Second, as Step 1 showed that I(0) = kw∗(0), (A.12) is directly implied by (A.2).

Conclusion: Steps 1-5 imply there are infinitely many rules that solve the problem (A.3).

A.3.2 Proof of Part (ii) of Theorem 3

Consider any decision rule dm(·) that depends on the data only as nondecreasing function of w⊤Y

(for some w ̸= 0 that is not necessarily w∗) and such that dm(·) ∈ {0, 1} for all data realizations.
Then we must have dm(w

⊤Y ) = 1
{
w⊤Y ≥ c

}
for some −∞ ≤ c ≤ ∞. The worst-case expected

regret of such a rule satisfies

sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[dm(Y )]

)
≥ sup

θ∈Θ:m(θ)=0

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[dm(Y )]

)
= max

{
−I(0)E0[dm(Y )], I(0)(1− E0[dm(Y )])

}
≥ I(0)/2,

where we used that I(0) = −I(0) by centrosymmetry. The last inequality is strict unless c = 0.
As I(0)/2 is the MMR value of the problem, dm(·) cannot be MMR optimal if c ̸= 0. For w = w∗,
substantial additional algebra that we relegate to Lemma C.8 extends the result to c = 0 (by
showing that a first-order condition cannot hold at (w∗)⊤Y = 0).

A.3.3 Proof of Part (iii) of Theorem 3

The preceding argument established the claim for rules of form 1{w⊤Y ≥ c}, where c ̸= 0. It
remains to consider symmetric threshold rules 1{w⊤Y ≥ 0}. To this end, bound the worst-case
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expected regret of such rules as follows:

sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[1{w⊤Y ≥ 0}]

)
≥ sup

θ∈Θ,m(θ)=µ,U(θ)≥0,µ∈M
U(θ)

(
1{U(θ) ≥ 0} − Eµ[1{w⊤Y ≥ 0}]

)
= sup

µ∈M,I(µ)>0

I(µ)
(
1− Eµ[1{w⊤Y ≥ 0}]

)
= sup

µ∈M,I(µ)>0

I(µ)Φ

(
− w⊤µ√

w⊤Σw

)
:= sup

µ∈M,I(µ)>0

gw(µ).

Note that gw(0) = I(0)/2 is the MMR value of the problem, implying that µ = 0 attains this
value under any symmetric threshold rule. For such a rule to be MMR optimal, µ = 0 must then
be a local constrained maximum point of gw(µ). Because M contains an open set including 0 by
Definition 2 and Assumption 1 and since we assumed differentiability of I(µ) at 0, this requires a
first-order condition

∂gw(µ)

∂µj

|µ=0 =
1

2

∂I(0)

∂µj

− wj√
w⊤Σw

I(0)ϕ (0) = 0, j = 1 . . . n. (A.14)

To simplify expressions, change co-ordinates (if necessary) so that w∗ = (1, 0, . . . , 0)⊤. Because w∗

must fulfil (A.14), we have that ∂I(0)
∂µj

= 0 for j = 2, . . . , n. But this, in turn, means that (A.14)
requires w2 = . . . = wn = 0. Next, noting that w in a symmetric threshold rule is determined
only up to scale, we restrict attention to w1 ∈ {−1, 0, 1}. But if w∗ = (1, 0, . . . , 0) solves (A.14) for
j = 1, then −w∗ cannot solve it because the sign change does not affect the denominator dividing
w1. Finally, w = 0, i.e. never adopting treatment, is excluded by part (ii) (it is the same as setting
c = ∞ there) and is also easily seen directly to not be MMR optimal.

A.4 Proof of Theorem 4

Step 1: If F ◦ w∗ ∈ D̃n is MMR optimal, then V (d∗linear ◦ w∗) ⊆ V (F ◦ w∗). To see this, pick any
F ◦ w∗ ∈ D̃n that is MMR optimal. Then we can write

F ◦ w∗(Y ) = F ((w∗)⊤Y ) = F (γ̂),
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where F ∈ F is a symmetric and unimodal c.d.f (thus weakly increasing as well), γ̂ := (w∗)⊤Y ∼
N(γ, σ2), with γ ∈ Γw∗ defined in Step 2 of the proof for Theorem 3(i), and σ2 = (w∗)⊤Σw∗. The
worst-case expected regret of rule F ◦ w∗ is

sup
θ∈Θ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[F ((w∗)⊤Y )]

)
= sup

γ∈Γw∗ :kw∗ (γ)>0

kw∗(γ) (1− Eγ[F (γ̂)]) ,

where k
∗
w is defined in (A.6). Letting gF (γ) := kw∗(γ) (1− Eγ[F (γ̂)]). Since γ̂ ∼ N(γ, σ2), we may

further calculate (using integration by parts)

Eγ[F (γ̂)] =

∫
F (s)dΦ(

s− γ

σ
)

= Φ

(
s− γ

σ

)
F (s)|∞−∞ −

∫
Φ

(
s− γ

σ

)
dF (s)

= 1−
∫

Φ

(
s− γ

σ

)
dF (s).

Therefore, gF (γ) = kw∗(γ)
∫
Φ( s−γ

σ
)dF (s). Note that F (−x) = 1 − F (x) for all x ∈ R; hence,∫

Φ( s
σ
)dF (s) = 1

2
and therefore gF (0) =

kw∗ (0)
2

. By Step 1 for the proof of Theorem 3(i), kw∗ (0)
2

is
the MMR value of the problem. MMR optimality of F ◦ w∗ implies

0 ∈ arg sup
γ∈Γw∗ ,kw∗ (γ)>0

gF (γ).

By Lemma C.3, 0 is an interior point of {γ ∈ R : kw∗(γ) > 0, γ ∈ Γw∗}. Thus, let ∂gF (0) denote
the generalized gradient of gF (·) at 0.21 Then 0 ∈ ∂gF (0) is necessary for optimality. To show that
it fails, compute the generalized gradient as22

s̃w∗(0)

∫
Φ(

s

σ
)dF (s)− kw∗(0)

σ

∫
ϕ
( s
σ

)
dF (s)

=
s̃w∗(0)

2
− kw∗(0)

σ

∫
ϕ
( s
σ

)
dF (s),

21The generalized gradient of g : R → R at x equals ∂g(x) := {ξ ∈ R : lim supy→x,t↓0
f(y+tv)−f(y)

t ≥ ξv, ∀v ∈ R}.
See Clarke (1990, p. 27).

22We can verify, following the same steps in the proof for Lemma C.8, that conditions of Proposition 2.3.13 in
Clarke (1990) are satisfied, so that the chain rule can be applied.
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where s̃w∗(0) is a supergradient of kw∗(γ) at γ = 0. Therefore, we conclude

s̃w∗(0)

2
− kw∗(0)

σ

∫
ϕ
( s
σ

)
dF (s) = 0 ⇐⇒

∫
ϕ
( s
σ

)
dF (s) =

s̃w∗(0)σ

2kw∗(0)

for some s̃w∗(0) > 0.

Next, d∗linear ∈ F can be verified to solve the linear embedding problem (A.8) (Lemma C.4). In
particular, evaluating g

(1)
linear(γ) at γ = 0, where glinear(γ) is defined in Lemma C.7 with k = kw∗ (0)

sw∗ (0)

and σ2 = (w∗)⊤Σw∗, one finds∫
ϕ
( s
σ

)
d(d∗linear(s)) =

∫ ρ∗

−ρ∗
ϕ
( s
σ

) 1

2ρ∗
ds =

sw∗(0)σ

2kw∗(0)
, (A.15)

where sw∗(0) > 0 is the largest supergradient of kw∗(γ) at γ = 0.

Since f is symmetric around 0, V (F ◦w∗) is as well. Write V (F ◦w∗) := (−aF , aF ) for some aF

and V (d∗linear ◦ w∗) := (−ρ∗, ρ∗). Suppose by contradiction that V (d∗linear ◦ w∗) ⊈ V (F ◦ w∗). Then
aF < ρ∗, but that would imply∫

ϕ
( s
σ

)
dF (s) =

∫ aF

−aF

ϕ
( s
σ

)
dF (s) >

sw∗(0)σ

2kw∗(0)
≥ s̃w∗(0)σ

2kw∗(0)
,

where the first inequality follows by the assumption that dF (x) = 0 for all x /∈ (−aF , aF ) and F (x)

is symmetric and unimodal, and the second inequality follows as sw∗(0) is the largest supergradient
of kw∗(0). Thus, 0 /∈ ∂gF (0), a contradiction.

Step 2: Next, V (d∗linear ◦w∗) = V (F ◦w∗) if and only if F = d∗linear. The “if” direction is obvious.
To see “only if,” suppose by contradiction that there exists some F̃ ∈ F not equal to d∗linear but such
that V (d∗linear ◦ w∗) = V (F ◦ w∗) and F̃ ◦ w∗ is MMR optimal. Then∫

ϕ
( s
σ

)
dF̃ (s) =

∫ ρ∗

−ρ∗
ϕ
( s
σ

)
dF̃ (s) >

∫ ρ∗

−ρ∗
ϕ
( s
σ

) 1

2ρ∗
ds =

sw∗(0)σ

2kw∗(0)
≥ s̃w∗(0)σ

2kw∗(0)
,

where the first step uses V (d∗linear ◦ w∗) = V (F ◦ w∗), the second one that F̃ is symmetric and
unimodal, the third one uses (A.15), and the last one that sw∗(0) is the largest supergradient of
kw∗(0). Thus, F̃ ◦ w∗ cannot be MMR optimal, a contradiction.
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A.5 Proof of Theorem 5: General Theorem on Admissibility.

In this section, we prove a general theorem regarding the admissibility of treatment choice rules in
partially identified models. Let θ ∈ Θ, U(· ), and m(· ) be defined as in Section 2 and the set S as
in Definition 2. We observe a random vector Y ∈ Y ⊆ Rn whose distribution Pm(θ) is in

P :=
{
Pm(θ) : θ ∈ Θ

}
(A.16)

defined over the common sample space Y endowed with a σ-algebra A.

Theorem 5. Consider a treatment choice problem with payoff function (2.1) and a class of statistical
models (A.16) that exhibit nontrivial partial identification in the sense of Definition 2. In addition,
suppose the following two conditions hold true:

A1 The family of distributions PS :=
{
Pm(θ) : θ ∈ m−1(S)

}
is bounded complete, i.e., for all

bounded functions f : Rn → R, Em(θ)[f(Y )] = 0 for all θ ∈ m−1(S) implies f(y) = 0, a.e. PS .

A2 For any set E ∈ A, P (E) = 0 for all P ∈ PS implies P (E) = 0 for all P ∈ P \ PS .

Then, every decision rule d ∈ Dn is (welfare-)admissible.

Proof. Suppose by contradiction that some rule d is dominated. Then there exists d′ such that

U(θ)Em(θ) [d
′(Y )] ≥ U(θ)Em(θ) [d(Y )] (A.17)

for all θ ∈ Θ, with a strict inequality for some θ.

Step 1: We first show that (A.17) must hold with equality for any θ ∈ m−1(S). Suppose not,
then there exists θ∗ ∈ m−1(S) such that

U(θ∗)Em(θ∗) [d
′(Y )] > U(θ∗)Em(θ∗) [d(Y )] ,

which implies that U(θ∗) ̸= 0. Without loss of generality, assume U(θ∗) > 0. Then

Em(θ∗) [d
′(Y )] > Em(θ∗) [d(Y )] . (A.18)

Define µ∗ := m(θ∗). Since µ∗ ∈ S, there must exist some θµ∗ ∈ Θ, such that m(θµ∗) = µ∗ = m(θ∗)
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and U(θµ∗) < 0. Therefore, (A.18) implies

U(θµ∗)Em(θµ∗ ) [d
′(Y )] < U(θµ∗)Em(θµ∗ ) [d(Y )] ,

contradicting (A.17). We conclude that

U(θ)Em(θ) [d
′(Y )] = U(θ)Em(θ) [d(Y )]

for any θ ∈ m−1(S).

Step 2: We next show that for any µ ∈ S, Eµ [d
′(Y )− d(Y )] = 0. Because of nontrivial partial

identification, for any µ ∈ S there exists θµ such that m(θµ) = µ and U(θµ) ̸= 0. Step 1 then
implies that for any µ ∈ S,

U(θµ)Eµ [d
′(Y )] = U(θµ)Eµ [d(Y )] .

Since U(θµ) ̸= 0, the desired result follows.

Step 3: The conclusion from step 2 implies that Em(θ) [d
′(Y )− d(Y )] = 0 for any θ ∈ m−1(S).

Consider now the family of distributions

Y ∼ PS =
{
Pm(θ) : θ ∈ m−1(S)

}
,

which is bounded complete under A1. Let E := {y ∈ Y : d′(y)− d(y) ̸= 0}. The definition of
bounded completeness implies that P (E) = 0 for all P ∈ PS . It follows by A2 that P (E) = 0 for
all P ∈ P \ PS . Therefore, P (E) = 0 for all P ∈ P .

Conclusion: We find that Em(θ)[d
′(Y )] = Em(θ)[d(Y )] for all θ ∈ Θ. This means that d′ cannot

dominate d. A contradiction.

B Profiled Risk

Given the findings in Section 3, in this section, we show that profiling out some parameters of
expected welfare or regret may yield interesting insights. We illustrate this idea by exploring a
profiled expected regret criterion. Beyond allowing to better visualize risk profiles of decision rules,
there are several additional values the profiling approach can provide in our problem. First, as we
have shown in Figure 2, two MMR optimal rules may display drastically different regret profiles.
In fact, as we show in Proposition 2, one dominates the other in terms of profiled regret for many
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parameter values. Therefore, the notion of profiled risk may help decision makers better distinguish
two rules that cannot otherwise be ranked according to the MMR criterion alone. Second, as we will
show below, the profiled approach may render some rules, e.g., the no-data rule dcoin-flip, inadmissible
(in a redefined sense; see Proposition 3).23 While we could profile out any known function h(m(θ)),
except for Proposition 3 we simplify exposition by restricting attention to linear indices. Thus, for
a vector w ∈ Rn\{0}, let

Γw :=
{
γ ∈ R : w⊤m(θ) = γ, θ ∈ Θ

}
be the image of the transformation θ 7→ w⊤m(θ). Then the worst-case expected regret of a rule d

can be expressed as

sup
θ∈Θ

R(d, θ) = sup
γ∈Γw

(
sup

θ∈Θ:w⊤m(θ)=γ

R(d, θ)

)
.

That is, we split (3.5) into an inner optimization problem over fixed level set {w⊤m(θ) = γ} and an
outer optimization over γ. The value function of the inner problem may be of interest, thus define:

Definition 5 (w-Profiled Regret). The w-profiled regret function Rw : Dn × Γw → R is given by

Rw(d, γ) := sup
θ∈Θ:w⊤m(θ)=γ

U(θ)
(
1{U(θ) ≥ 0} − Em(θ)[d(Y )]

)
, (B.1)

where Y ∼ N(m(θ),Σ).

In problems where MMR optimal rules depend on the data only through some linear combination
(w∗)⊤Y , it seems reasonable to set w equal to w∗. However, there could be other vectors w of interest.
For example, when extrapolating local average treatment effects in Section 4.1, Theorem 3 does not
apply and there are multiple reasonable alternatives for parameters to be profiled out. One may
use

w = (1,−β0)
⊤/
√

(1,−β0)Σ(1,−β0)⊤

for some β0 ∈ R. For motivation, note that the square of

(m1(θ)− β0m2(θ))/
√
(1,−β0)Σ(1,−β0)⊤

23Although dcoin-flip may also be ruled out by the MMR criterion, being inadmissible is a stronger statement than
not being MMR optimal. For example, it would be unclear whether dcoin-flip can be optimal for a decision maker
with a robust Bayes criterion for a class of priors advocated by Giacomini and Kitagawa (2021). As a Bayes rule
with respect to our profiled risk may be viewed as a robust Bayes criterion under some conditions, dcoin-flip being
inadmissible under the profiled risk criterion implies that it also cannot be Robust Bayes optimal for a large class of
priors in Giacomini and Kitagawa (2021)’s framework (see Remark 7 below for related discussions).
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can be viewed as the population Anderson and Rubin (1949) statistic for the null hypothesis of
the local average treat effect equal to β0. Thus, the profiled regret function reports the worst-case
regret as one keeps constant the population analog of that statistic. One may also profile out the
intention-to-treat effect m1(θ), the local average treatment effect m1(θ)/m2(θ), or even the entire
reduced-form parameter vector (m1(θ),m2(θ))

⊤. In this paper, we do not argue for one specific
criterion for profiling out, but believe researchers should have the freedom to choose the device
judiciously depending on the specific contexts of their problems.

Remark 6 (Not all decision rules are admissible with respect to w-profiled regret). One could say
that a decision rule d is w-profiled regret admissible if there is no other rule d′ for which

Rw(d
′, γ) ≤ Rw(d, γ)

for every γ ∈ Γw, with strict inequality for some γ ∈ Γw. Even if Theorem 1 applies, a decision rule
can fail to be w-profiled regret admissible for some w. Indeed, the no-data rule dcoin-flip(Y ) = 1/2 is
w∗-profiled regret dominated by any MMR optimal rule in our running example.24 Moreover, the
following proposition shows that, in the running example, d∗linear indeed w∗-profiled regret dominates
d∗RT for a large range of parameter values, including those used in Figure 2. Let ϕ(·) denote the
p.d.f. of a standard normal random variable, and let 0 < ρ∗ ≤ C∥x1 − x0∥ be the threshold after
which d∗linear implements the policy with probability one. Let γ be the effect of the policy of interest
in the nearest neighbor to Country 0 (which, by assumption, we have set to be Country 1). Let
Rw∗(d, γ) be the profiled-regret associated to the nearest-neighbor weights; that is, the largest value
of expected regret fo decision rule d for a fixed value of γ.

Proposition 2. Suppose C ∥x1 − x0∥ >
√

π
2
σ1.

(i) If ϕ
(

ρ∗

σ1

)(
C∥x1−x0∥√

π
2
σ1

)3

≤ ϕ(0), then Rw∗(d∗linear, γ) ≤ Rw∗(d∗RT, γ) for all γ with the inequality

strict for γ ̸= 0.

(ii) If ϕ
(

ρ∗

σ1

)(
C∥x1−x0∥√

π
2
σ1

)3

> ϕ(0), then Rw∗(d∗linear, γ) < Rw∗(d∗RT, γ) for all |γ| > γ, where γ > 0

is unique in (0,∞) such that Φ

− γ
C∥x1−x0∥√

π
2

 =
∫ 1

0
Φ
(

2ρ∗x−ρ∗−γ

σ

)
dx.

Proof. See Online Appendix C.4.
24Simple algebra shows that that the profiled regret of dcoin-flip is minimized at γ = 0, where it coincides with the

maximized regret of any MMR optimal rule. This can also be verified if C ∥x1 − x0∥ ≤
√
π/2 · σ1. See Figure 2.
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Part i) of Proposition 2 gives conditions on the Lipschitz constant (C), the variance of the
estimated effect in Country 1 (σ2

1), and the difference between the covariates between Countries
1 and 0 (∥x1 − x0∥) under which d∗linear w∗-profiled regret dominates d∗RT. Part ii) of Proposition
2 shows that for those parameter configurations for which we cannot establish w∗-profiled regret
dominance (which we later show can only happen when C ∥x1 − x0∥ ↓ σ1), the decision rule d∗linear

still has smaller w∗-profiled regrets than d∗RT for all |γ| large enough. Therefore, our new result
shows there is a strong sense that d∗linear performs better than d∗RT under the w∗-profiled regret
criterion, despite the fact that both of them are equivalent under the standard minimax regret
criterion. Finally, we also argue that Proposition 2 will continue to hold (with suitably redefined
parameter values) in a model as general as those studied in Theorem 3, as long as the upper and
lower bounds of the identified set of U(θ) given γ ∈ Γw∗ =

{
γ ∈ R|(w∗)⊤m(θ) = γ, θ ∈ Θ

}
are affine

with the same positive gradients. Under some conditions, a sufficient condition for this to happen
is for γ to be unbounded.

Below, we also present a general result on the profiled-regret inadmissibility of dcoin-flip in a large
class of general models when we profile out with respect to the reduced-form parameter m(θ).25

Just as before, let I(µ) and I(µ) be the upper and lower bounds of the identified set for the welfare
contrast given the reduced-form parameter µ.

Proposition 3. In the setup of Section 3.3, let the profiled regret (with respect to the reduced-form
parameter µ ∈ M) of a rule d be

Rr(d, µ) := sup
θ∈Θ,m(θ)=µ

R(d, θ).

Suppose all conditions of Theorem 3 hold true, and I(0) ≤ max
{
I(µ),−I(µ)

}
for all µ ∈ M with

the inequality strict for some µ ∈ M . Then, dcoin-flip is dominated in terms of Rr(d, µ).

Proof. See Online Appendix C.5.

One important remark about Proposition 3 is that, while it is possible to rule out dcoin-flip using
the minimax regret criterion, such a rule could still be optimal under some other criterion such as
Robust Bayes (for some class of priors). An implication of Proposition 3 is that dcoin-flip could never
be Robust Bayes optimal for a class of priors where i) the prior over the reduced-form parameter is
fixed, and ii) the priors of the partially identified parameters are arbitrary.

25We thank a referee for suggesting this result.
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Remark 7 (Bayes rules with respect to w-profiled regret are Π∗-minimax under some conditions).
Consider any decision rule that minimizes

inf
d∈Dn

∫
Γw

Rw(d, γ)dπ
∗(γ), (B.2)

the weighted average of w-profiled regret for some prior π∗ over Γw. If π∗ has full support and profiled
regret is continuous in γ (for any d), then any solution to (B.2) is w-profiled-regret admissible; see
Ferguson (1967, Theorem 3, Section 2, p. 62) and Berger (1985, Theorem 9, Section 4, p. 254).

We next provide sufficient conditions under which decision rules that solve (B.2) can be
interpreted as Π∗-minimax decision rules in the sense of Berger (1985, Definition 13, p. 216),
where Π∗ is a class of priors over Θ.26 Let Dw denote the class of decision rules that depend on the
data only through w⊤Y ∼ N(w⊤m(θ), w⊤Σw). Consider the Π∗-minimax problem

inf
d∈Dw

(
sup
π∈Π∗

∫
Θ

R(d, θ)dπ(θ)

)
. (B.3)

Let Π∗ collect all priors over Θ for which w⊤m(θ) ∼ π∗, where π∗ is the prior over Γw used in
(B.2). This class of priors has recently been advocated by Giacomini and Kitagawa (2021). Their
Theorem 2 establishes that, for any d ∈ Dw,

sup
π∈Π∗

∫
Θ

R(d, θ)dπ(θ) =

∫
Γw

Rw(d, γ)dπ
∗(γ).

Thus, the problem in (B.3) is equivalent to minimizing average w-profiled regret over decision rules
that depend on the data only through w⊤Y .

Second, computation of profiled regret can frequently be simplified. Algebra shows that Rw(d, γ)

equals the maximum between

k
+

w(γ) := sup
θ∈Θ

U(θ)(1− Em(θ)[d(Y )]) s.t. w⊤m(θ) = γ, U(θ) ≥ 0,

and
k
−
w(γ) := sup

θ∈Θ
−U(θ)Em(θ)[d(Y )] s.t. w⊤m(θ) = γ, U(θ) ≤ 0.

In principle, these are the value functions of two infinite-dimensional, nonlinear optimization
26To avoid notational conflict, we write Π∗-minimax instead of the more common Γ-minimax.
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problems. However, they can be recast as finite dimensional. For example, k+

w(γ) equals

I
+

w(γ) := sup
µ∈M

I(µ)(1− Eµ[d(Y )])) s.t. w⊤µ = γ, I(µ) ≥ 0. (B.4)

This problem has a scalar choice variable, one linear equality constraint, and one potentially
nonlinear inequality constraint. The bottleneck is evaluation of I(µ). The running example admits
a closed-form solution for I(µ), so that evaluating (B.4) is easy. More generally, the computational
cost of evaluating (B.4) can be reduced by imposing more structure on the parameter space Θ. For
instance, when Θ is convex, the set M is convex as well; the optimization problem is then over a
convex subset of Rn. Moreover, if m(·) is linear and U(·) is concave, the function I(µ) can be shown
to be concave. This means that under Assumption 1, the optimization problem in (B.4) is convex.

Data Availability Statement

The code underlying this research is available on Zenodo at
https://dx.doi.org/10.5281/zenodo.17711688.
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