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Abstract

Studies have shown that the standard law of belief updating—Bayes’ rule—is de-
scriptively invalid in various settings. In this paper, I introduce and analyze a gen-
eralization of Bayes’ rule—Coarse Bayesian updating—accommodating much of the
empirical evidence. I characterize the model axiomatically, show how it generates sev-
eral well-known biases, and derive its main implications in static and dynamic settings.
Each axiom expresses a property of Bayes’ rule but, conditional on the others, stops
just short of making the agent fully Bayesian. The model employs standard primitives,
making it suitable for applications; I demonstrate this by applying it to a standard
setting of decision under risk, leading to a close relationship with the Blackwell infor-

mation ordering and comparative measures of cognitive sophistication and bias.

1 Introduction

Bayesian updating plays a central role in economic theory. A number of studies, however,
document behavior that cannot be reconciled with Bayes’ rule. For example, individuals
may under-react to new information or even ignore it altogether; others may over-react by
falsely extrapolating or, more generally, engaging in pattern-seeking behavior. “Motivated”
reasoning, among other mechanisms, may lead individuals to under-react to some signals but
over-react to others. Still others may be Bayesian except when information is too extreme or
unexpected. Such heterogeneity, both within and between individuals, poses an interesting

challenge to the Bayesian paradigm and calls not just for new models of behavior, but for
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analysis of the features of Bayesianism that are compatible or incompatible with the wide
range of documented behavior.

In this paper, I introduce and analyze a generalization of Bayesian updating— Coarse
Bayesian updating—encompassing many documented phenomena. The main results charac-
terize, axiomatically, both the model and the gap between it and standard Bayesian updating.
There are two advantages to this approach. First, each axiom expresses a falsifiable property
of Bayes’ rule. This provides a normative foundation for Coarse Bayesian behavior and as-
surance that, despite its flexibility, the model is not so general as to accommodate anything.
Second, the characterizations identify not just which properties of Bayes’ rule are compatible
with Coarse Bayesian behavior, but also which properties are necessarily violated by proper
(non-Bayesian) Coarse Bayesians. This provides a transparent comparison of the model’s
conceptual trade-offs and, as described below, a sense in which it is a small departure from
standard Bayesianism. The end result is a framework capturing a variety of departures from
Bayes’ rule while remaining tractable for economic applications; I illustrate this by deriving
its main implications in a general setting of decision under risk.

Intuitively, a Coarse Bayesian simplifies the world by considering only a subset of the
probability space. Given this restriction, the agent applies subjective criteria to switch
among beliefs in that set. More precisely, a Coarse Bayesian agent is characterized by (i) a
partition of the probability simplex into convex cells, and (ii) a representative distribution
for each cell of the partition, one of which is the prior. After observing a signal, the agent
determines which cell contains the Bayesian posterior and adopts the representative of that
cell as posterior belief (see Figure 1). Importantly, the agent need not point-identify the
Bayesian posterior; instead, he merely approximates it by determining which cell it belongs
to. For example, the agent might analyze information in small steps, gradually eliminating
candidates for the true distribution until only one cell remains in contention. Thus, the
procedure is not “more difficult” than Bayesian updating to begin with.

The parameters of the model—cells and their representative points—are characteristics
of the individual: two Coarse Bayesians may differ in their sets of feasible beliefs, their
partitions, or both. In contrast to the canonical framework of Savage (1954), then, Coarse
Bayesians exhibit subjectivity not only in their prior beliefs but in their criteria for revising
those beliefs. Consequently, different agents may exhibit over-reaction, under-reaction, or
other biases depending on the signal, the partition, and the positions of representative points
within their cells. There are several ways of interpreting this behavior, such as categorical
thinking or signal distortion—I discuss these, and other, interpretations in section 2.

The first result provides a simple characterization of the updating procedure. I take as

primitive a finite, exogenous state space and an updating rule specifying an individual’s be-



Figure 1: Coarse Bayesian updating. In this example, there are three feasible beliefs (solid
dots). The point p€ is the prior. After observing a signal, the agent determines which cell of
the partition contains the Bayesian posterior ji, then adopts the representative of that cell
(in this case, p’) as his new belief.

liefs at every possible signal. In my framework, signals represent messages that can be gener-
ated by stochastic information structures. Thus, a signal is a profile of numbers representing
likelihoods of the associated message being generated in different states. By employing such
primitives, the model is readily adaptable to standard economic or game-theoretic settings.

The characterization involves three testable axioms on the updating rule, each capturing a
property of standard Bayesian behavior. First, Homogeneity states that beliefs are invariant
to scalar transformations of signals: like Bayes’ rule, Coarse Bayesian updating rules only
depend on the likelihood ratios of the observed signal. Second, Cognizance states that if
two signals result in the same belief, then so does a “garbled” signal indicating that one
of those signals was generated. A natural interpretation of this axiom is that the agent
understands, or is cognizant of, his own updating procedure: if he is uncertain about which
of two signals was generated but recognizes that each would lead to the same posterior belief,
then he adopts that belief. Finally, Confirmation states that if a signal exactly supports (or
confirms) some feasible belief, then the updating rule associates that belief to the given
signal. Theorem 1 establishes that an updating rule has a Coarse Bayesian representation
if and only if it is Homogeneous, Cognizant, and Confirmatory; moreover, the associated
partition, representative elements, and prior are unique.

Next, Proposition 1 establishes that, under mild assumptions, strengthening any of the
axioms to an if-and-only-if form forces the agent to be Bayesian. For example, Homogeneity
states that if two signals have the same likelihood ratios, then they induce the same beliefs.
The proposition implies that if one adds a fourth axiom, “two signals have the same likelihood
ratios if they induce the same beliefs” (the converse to Homogeneity), then the agent must
be Bayesian—the added responsiveness to information implied by this converse statement
closes the gap between Bayesian and Coarse Bayesian behavior. The same property holds
for Cognizance and Confirmation: adding the converse statement to either axiom makes

the agent Bayesian. This is the sense in which Coarse Bayesian updating is, qualitatively,



a “small” departure from Bayes’ rule. Moreover, since Bayes’ rule satisfies all three axioms
and their converse statements, the converse statements capture the features of Bayes’ rule
that are violated by (proper) Coarse Bayesians.

Section 3 explores the main implications of the model and how it might be applied.
In section 3.1, I discuss how the framework can be used as a tool for modeling various
biases (section 3.1.1), for predicting or understanding real behavior (section 3.1.2), or for
testing or identifying coarse cognition in experiments (section 3.1.3). For example, I show
in section 3.1.1 that Coarse Bayesians may exhibit over/under-reaction, “motivated” belief
updating, limited perception, or other biases and establish in section 3.1.2 that, generically,
all non-Bayesian behavior in the model stems from the combination of three particular
biases (an implication of Proposition 1); this fully characterizes the predictions of the model
and informs part of the discussion in section 3.1.3 on the design of experiments. I also
discuss, at an intuitive level, how the framework can be used in more applied settings to
shed light on behavior like financial decision making, stereotyping, and discourse or non-
informative persuasion. Finally,! section 3.2 explores some basic properties of the model
in dynamic settings. I consider two categories of dynamic updating rules: pooled rules and
sequential rules. Pooled rules incorporate, at every time period, the full history of signal
realizations; consequently, pooled rules satisfy strong forms of path-independence and have
simple convergence properties. Sequential rules, however, involve signal-by-signal updating,
introducing various degrees of path dependence and more nuanced convergence properties.

Section 4 applies the model to a standard setting of decision under risk. I analyze
how Coarse Bayesians value information (Blackwell experiments) when faced with menus of
actions with state-dependent payoffs. I show that a Coarse Bayesian’s ex-ante value of infor-
mation can be expressed in a familiar posterior-separable form, then establish that, unlike
Bayesians, Coarse Bayesians typically exhibit violations of the Blackwell (1951) informa-
tion ordering—they need not assign higher ex-ante value to more informative experiments.
[ characterize the menus (decision problems) in which a given Coarse Bayesian benefits
from Blackwell improvements and show that the connection runs much deeper: two Coarse
Bayesians are identical—same cells, same representative points—if and only if they benefit
from the same Blackwell improvements. Thus, the parameters of the model can be uniquely
identified from the agent’s menu-contingent rankings of Blackwell-comparable experiments.

In section 4.2, I examine how a Coarse Bayesian’s welfare changes as he becomes “more
Bayesian.” 1 consider three such orderings. First, an agent is more sophisticated if he

employs a finer partition. I show that more-sophisticated agents are characterized by height-

'The Online Appendix contains additional results related to observational learning and the connection
between my model and others involving maximum likelihood-style reasoning.



ened responsiveness to information, as captured by ex-ante value of information. Second,
one agent is more biased than another if his updating rule exhibits larger distortions away
from Bayesian posteriors. I show that greater bias is characterized by greater susceptibility
to harmful exploitation in that worst-case losses, relative to a Bayesian, increase as bias in-
creases. Importantly, neither greater sophistication nor lower bias imply the agent is better
off at all menus or signal realizations. The final result shows that such welfare enhancements
require the agent to be perfectly Bayesian on a larger set of signal realizations, giving rise
to a third ordering that jointly refines the sophistication and bias orderings.

Throughout the paper, my focus is on the general class of Coarse Bayesian representations
and their properties. I do not take a stance on where partitions or representative elements

“come from,”

viewing them instead as subjective (but identifiable) characteristics of an indi-
vidual, much like subjective prior beliefs. There are several ways to restrict or endogenize the
parameters by adding assumptions about the decision problem(s) agents expect to face, the
signaling structure, and costs or constraints on the fineness of the updating rule (for example,
a bound on the number of cells in the partition). The results of section 4.2 suggest a slightly
different approach may be valuable: rather than solving for an optimal updating rule in the
context of a specific environment, one may prefer a more robust objective—characterized
by the bias ordering, for example—accommodating uncertainty about the environment. I
discuss this at the end of section 4.2.

To summarize, the main contribution of the paper is a new model of belief updating
accompanied by analysis of its essential properties and implications. Few, if any other
models proposed in the literature can accommodate the range of behavior studied in section
3.1. Any model that can is necessarily quite flexible, but the Coarse Bayesian framework
has some advantages. First, it is testable: not all behavior satisfies the axioms. Second, it
involves a clear separation between properties of Bayes’ rule that are compatible with biases
in belief updating and those that are not. Third, the model is portable and tractable for
applications; it is one of just a few to take general stochastic signals as the starting point,
allowing it to be directly imported to standard settings in economics and game theory.
Section 4 demonstrates this by deriving the main implications of Coarse Bayesian updating
in standard settings of decision under risk—a core component of any new model of updating
behavior. Finally, it is simple: the key ideas can be captured by a single picture (Figure 1),

and the axioms and characterizations are easy to state, prove, and interpret.

Related Literature

Economists and psychologists have developed a large body of research documenting system-

atic violations of Bayesian updating; early contributions include Kahneman and Tversky



(1972), Tversky and Kahneman (1974), and Grether (1980). As seen in the surveys of
Camerer (1995), Rabin (1998), and Benjamin (2019), there is substantial variation in both
experimental protocols? and the patterns of behavior displayed by subjects. For example,
under-reaction is quite common but by no means an established law of behavior—over-
reaction occurs as well; there is mixed evidence for asymmetric processing of ego-relevant
information—subjects may or may not respond differently to good news than they do to bad
news; and numerous studies document individual heterogeneity—some subjects are more
Bayesian than others (see Benjamin, 2019 for a survey and meta-analysis of the literature).

Motivated by this evidence, several authors have developed models to better understand
the mechanisms behind, and consequences of, non-Bayesian updating. Models focusing on
implications of biased updating are typically cast in simplified frameworks (eg, two states
of the world; particular protocols or functional form assumptions) or involve non-standard
elements like ambiguous signals or framing effects. See, among others, Barberis et al. (1998),
Fryer et al. (2019), Gennaioli and Shleifer (2010), Rabin and Schrag (1999), and Mullainathan
et al. (2008). My emphasis, particularly in sections 3 and 4, is on implications that are
reasonably independent of any particular application. As such, I employ standard primitives
(a finite state space; stochastic information structures; general decision problems) that can
be adapted to any economic model.

Decision theorists have developed axiomatic approaches to non-Bayesian updating. Ko-
vach (2020), for example, develops a model of conservative updating. Epstein (2006) provides
a model of non-Bayesian updating accommodating under-reaction, over-reaction, and other
biases; Epstein et al. (2008) extend this model to an infinite-horizon setting. Zhao (2022) ax-
iomatizes an updating rule for signals indicating that one event is more likely than another.
Like these authors, I take a general approach and characterize behavior axiomatically. My
model is not geared toward a specific bias or application, but provides a general framework
of coarse cognition that accommodates (and generates) a variety of non-Bayesian behavior.

Coarse Bayesian updating resembles, to a degree, the well-known representativeness
heuristic of Kahneman and Tversky (1972), wherein an individual “evaluates the probability
of an uncertain event, or a sample, by the degree to which it is: (i) similar in essential prop-
erties to its parent population; and (ii) reflects the salient features of the process by which it
is generated” (Kahneman and Tversky, 1972 p. 431). One might interpret Coarse Bayesian
representations—cells and their representative points—as a way of formalizing the represen-
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tativeness heuristic by providing an agent’s subjective assessment of “similarity,” “essential

2For example, studies differ in whether subjects observe individual signals or larger samples/sequences
of evidence; whether prior beliefs are objectively induced or subjectively formed by participants; whether
choices are incentivized with monetary rewards; and how problems and information are framed.



properties,” or “salient features.” There are at least two problems with this. First, the
representativeness heuristic requires agents to ignore base rate (prior) information, which
is inconsistent with Coarse Bayesian behavior: the prior is directly relevant to a Coarse
Bayesian because the agent adopts the representative of the cell containing the Bayesian
posterior. Second, the Coarse Bayesian framework accommodates behavior that is at odds,
intuitively, with the representativeness heuristic. For example, Coarse Bayesian updating
permits agents to be perfectly Bayesian as long as they “notice” the signal (see section 3.1).
Despite the freedom afforded by the definition above, it would be a stretch to categorize
such behavior as an instance of the representativeness heuristic when other explanations,
like limited attention, seem more appropriate. In section 2, I offer other interpretations of
Coarse Bayesian behavior that avoid these difficulties.

Three studies are especially relevant to Coarse Bayesian updating. First, the hypothesis
testing model introduced by Ortoleva (2012) posits that agents apply Bayes’ rule except when
news is sufficiently “surprising,” in which case a maximum-likelihood criterion is applied us-
ing a second-order prior.® Specifically, an agent applies Bayes’ rule if the prior probability of
the signal exceeds a threshold £ > 0; otherwise, the agent updates a second-order prior via
Bayes’ rule and selects a belief of maximal probability under the new second-order beliefs. I
show that Coarse Bayesian updating can accommodate similar behavior and (in the Online
Appendix) compare Coarse Bayesian rules to a general class of Maximum-Likelihood updat-
ing rules. I show that Coarse Bayesian rules can be expressed as Maximum-Likelihood rules
if there are only two states but that, in general, neither category subsumes the other. No-
tably, Maximum-Likelihood rules may violate the Confirmation property—perfect evidence
of a candidate belief does not guarantee that that belief is selected.

Second, Wilson (2014) studies optimal updating rules for a boundedly rational agent
facing a binary decision problem and a stochastic sequence of signals. There are two states
and the agent has limited memory: only K memory states are available. In an optimal
protocol, each memory state is associated with a convex set of posterior beliefs and a repre-
sentative distribution for that set; if an interim Bayesian posterior belongs to some cell, then
the representative of that cell is adopted as the agent’s belief. Thus, the optimal protocol
emerging from Wilson’s model can be represented as a (dynamic) Coarse Bayesian updating
procedure. Naturally, the parameters of this representation—cells and their representative
points—depend on features of the environment like the signal structure, the stakes of the
decision problem, and the bound K. Like Bayesian updating, Coarse Bayesian updating
procedures do not depend on any factors other than the informational content of realized

signals. I do not require Coarse Bayesian representations to be optimal in any sense, nor do

3See also Dominiak et al. (2023), who study a behaviorally equivalent model.



[ impose cognitive bounds such as a restriction on the number of cells. This allows my model
to capture documented behavior (for example, Bayesian updating except when signals are
too “extreme”—see section 3.1) that is inconsistent with Wilson’s model.

Third, in a working paper, Mullainathan (2002) develops a model of categorical thinking.
Agents in this model follow a procedure similar to Coarse Bayesian updating where feasible
posteriors represent categories and the mapping from Bayesian posteriors to categories is
determined by a partition of the simplex. A key difference is that Mullainathan’s partition
is derived from the set of feasible posteriors: given a set of feasible posteriors, an optimality
condition similar in spirit to maximization of a likelihood function is used to select a posterior.
The resulting partition has convex cells, as in a Coarse Bayesian representation, but cells
need not contain their representative elements. In other words, behavior in this model need

not satisfy Confirmation—see the Online Appendix for a concrete example.

2 Model

Let Q@ = {1,..., N} denote a finite set of N > 2 states and A the set of probability distri-
butions over 2. A distribution i € A assigns probability /i, to state w € €.

An experiment is a matrix with N rows, finitely many columns, and entries in [0, 1] such
that each row is a probability distribution and each column has a nonzero entry. Columns
represent messages that might be generated, and rows state-contingent probability distribu-
tions over messages. Let £ denote the set of all experiments, with generic element o.

As in Jakobsen (2021), a signal is a profile s = (s,)uen € [0,1] such that s, # 0 for
at least one state w. Let S denote the set of all signals. A signal s represents a column
(message) of some experiment, and s, the likelihood of the message being generated in state
w. The notation s € ¢ indicates that s is a column of o. I reserve e to denote the signal
e € S such that e, = 1 for all w € §; note that e qualifies as an (uninformative) experiment.?
Using the notation of signals, an experiment can be viewed as a collection (matrix) of signals,
of state-contingent distributions over signals, or of points in S that sum to e; see Figure 2.

For profiles v = (v,)weq and w = (w,,)yeq of real numbers, let vw := (v,w,),ecq denote
the profile formed by multiplying v and w component-wise. Similarly, if w, > 0 for all w,
let v/w := (Vu/Wy)weo. The dot product of v and w is given by v - w = > v,w,. The
notation v &~ w indicates that v = Aw for some A > 0, where \w := (Aw,),eq is the scalar
product of A\ with w. The standard Euclidean norm of v is denoted ||v||.

For i € A and s € S where s- 1 # 0, let B(ji|s) = Sﬁ% € A denote the Bayesian

4Any signal s such that s, = s, for all w,w’ € € is uninformative, as is any experiment composed of
such signals; e is a convenient representative because it qualifies as both a signal and an experiment.
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Figure 2: Three representations of an experiment o = [r, s, t].

posterior of i at s. To allow non-Bayesian behavior, the key primitive of the model is a
function g : S — A (an updating rule) assigning distributions p* := u(s) € A to signals
s € S. The interpretation is that p* is the agent’s posterior belief conditional on observing
signal s. Being a function on S, the updating rule specifies beliefs at all conceivable signals,
not just those generated by a particular experiment. I assume ¢, the prior, has full support.®

My notion of an updating rule implicitly makes two assumptions about behavior. First,
updating rules condition beliefs on signal realizations s but not the experiment(s) generating
them. In practice, one might record posterior beliefs as ;(%®) where s € o, changing the
domain of p to (a subset of) £ x S. Like Bayesian updating, however, Coarse Bayesian
updating depends on s but not the other columns of o; therefore, I omit dependence on
experiments o. Second, the agent’s prior coincides with his posterior belief after observing

e. This, too, is a property of Bayes’ rule that Coarse Bayesians satisfy.

2.1 Coarse Bayesian Representations

Consider an agent whose behavior is summarized by an updating rule p : S — A. In this
section, I show that Coarse Bayesian updating is characterized by three axioms on y. Each
axiom expresses a property of Bayes’ rule and is falsifiable with data in the form of an
updating rule. The axioms also lead to a simple comparison with Bayes’ rule (Proposition
1), capturing the sense in which the model is a “small” departure from Bayes’ rule and the

exact properties of Bayesian rationality that are violated by (proper) Coarse Bayesians.
Axiom 1 (Homogeneity). If s & ¢, then p* = p'.

Homogeneity requires the agent’s analysis of a signal s to depend only on the likelihood

®Some authors define updating rules as functions ¢ : A x S — A, with the interpretation that (i, s) is
the posterior belief given a prior (i and signal s. That approach is not appropriate here because it assumes
the agent can hold any belief fi. Coarse Bayesians entertain only a subset of A as possible beliefs, so one
cannot freely vary the prior. In my model, the set of candidate beliefs (including the prior) is subjective
and revealed via updating behavior. Dynamic extensions (section 3.2) that condition beliefs on histories of
signals provide a way to study updating as the agent moves around the set of candidate beliefs.



ratios s,/s.. This is a key feature of Bayesian updating and it implies the agent is not
susceptible to certain types of framing effects. For example, whether information is stated
in terms of frequencies or likelihoods has no effect on the agent’s cognitive process.

By Homogeneity, the notation p® can be extended to all non-zero profiles § such that
S, > 0 for all w because, if necessary, such profiles can be scaled by a factor A > 0 to yield

a signal As € S. This will be convenient for expressing the remaining axioms.
Axiom 2 (Cognizance). If pu* = p*, then pst" = p.

Cognizance states that if signals s and ¢ result in the same posterior belief, then the
agent adopts that belief if he knows that either s or ¢ has realized. This interpretation stems
from the fact that s + ¢ is a “garbled” signal indicating that either s or ¢ was generated.®
Thus, an interpretation of Cognizance is that the agent understands his own updating rule:
if he knows that one of two signals was generated and realizes that either one would lead to
the same posterior belief—that is, if he is cognizant of his own updating procedure—then
he ought to adopt that belief.”

Although Cognizance is mainly motivated by normative considerations, it is also po-
tentially important in applications. For example, section 4 studies how Coarse Bayesians
value information. This involves ex-ante rankings of information structures that rely on
correct forecasts of updating behavior. For such exercises to make sense, an assumption like

Cognizance is required.
Axiom 3 (Confirmation). If ¢t ~ p*/u®, then p! = pb.

To understand Confirmation, observe that the set of attainable beliefs, {u® : s € S},
serves as a kind of consideration set—mno other points in A are candidate posteriors. Con-
firmation states that if the Bayesian posterior is a point in that set, the agent adopts that
point as posterior belief. In particular, t &~ p°/u¢ satisfies B(u|t) = p® (that is, t confirms
p® by providing “perfect” evidence of it for an agent with prior ;¢), so u* = p. In contra-
positive form, this means that if 4® does not coincide with the Bayesian posterior at s, then
the Bayesian posterior is not a candidate belief. Although quite intuitive and normatively

appealing, Confirmation is not satisfied by some related models—see the Online Appendix.

6For example, if s,t € o, there is a garbling matrix M such that ¢/ = oM collapses columns s and ¢ to a
single column s + ¢ without altering any other columns of o.

7Axioms 1 and 2 can be combined into one statement: if u° = ut, o, 8 > 0 and as+ 3t € S, then p*stFt =
u® (it would not suffice to replace the statement with convex combinations of s and ¢, ie, post—ajt — s
even though this property is implied by the axioms; conic combinations are needed). I have separated this
statement into two axioms because they capture intuitively distinct features of behavior.

10



Theorem 1. An updating rule p is Homogeneous, Cognizant, and Confirmatory if and only

if there is a partition P of A and a profile u” = (u*')pep of distributions such that
(1) each cell P € P is conver,
(ii) u* € P for all P € P, and

(iii) for all s € S, B(u|s) € P implies p° = p*.

Such a pair (P,u”) is a Coarse Bayesian Representation of p. If (Q,u2) is another
Coarse Bayesian Representation of p, then P = Q and (u")pep = (19)geo.

Proof. First, observe that if a, 3 > 0 and s,t,as + St € S, then

o asept et Bt-ps  tuc
(as+pBt)-pes-pe (as+pt)-pot-pe

. as-pf e Bt - p e

- (Oé8+5t) MEB(M |8)+ (O./S+ﬁt) /LEB(IM |t) (]‘)

Thus, B(uf|as + t) is a convex combination of B(u¢|s) and B(uf|t); the weight attached
to B(ufls) is the prior probability of signal as given that either as or ft is generated. It is
now straightforward to verify that if u has a Coarse Bayesian Representation, then Axioms
1-3 are satisfied (Axiom 2 follows from equation (1) and convexity of cells P € P).

For the converse, we construct a Coarse Bayesian Representation as follows. First, note
that Homogeneity and Cognizance imply p is Convex: if u® = p' and a € [0,1], then

,uoszr(lfa)t

to a partition of S into convex cones. That is, there is a partition C of S such that (i) pu* = '

= p°. Combined with Homogeneity, it follows that p is measurable with respect

if and only if there exists C' € C such that s,t € C, and (ii) every C' € C is a convex cone:
if s,t € C' and o, > 0 such that as + gt € S, then as + t € C. Every C' € C can be
identified with a subset of A by letting P := {B(u|s) : s € C'}. Each set P® is convex by
equation (1) and the fact that sets C' € C are convex cones. In addition, P := {P%: C € C}
is a partition of A because B(u¢|s) = B(p°|t) if and only if s & ¢, forcing s and ¢ to belong
to the same cone C € C. For each P € P, let uf denote the unique distribution f such
that u® = fi for all s € C, where P = P®. Confirmation implies p* = pf € P whenever
B(uf|s) € P € P. Uniqueness of (P, u”) follows from uniqueness of C. O

Theorem 1 formalizes the concept of a Coarse Bayesian Representation and establishes

that an updating rule has such a representation if and only if it is Homogeneous, Cognizant,

11



and Confirmatory. Each of these testable axioms imposes a degree of Bayesian rationality
on the agent by expressing a property of Bayes’ rule—indeed, each axiom is satisfied by a
standard Bayesian. As we shall see, Coarse Bayesian updating nonetheless accommodates a
variety of behavioral biases and other violations of Bayes’ rule.

Coarse Bayesians partition the probability simplex, assign a representative point to each
cell, and adopt the representative of a cell as posterior if the Bayesian posterior belongs to
that cell. Why might an agent behave this way? Below, I offer four interpretations of the

model, some of which may be more appropriate than others depending on the application.

1. Competing Theories. Here, the agent simplifies the world by considering a set of candidate
theories (representative points), sets criteria (the partition) for switching between them, and
analyzes signals to the extent necessary to determine whether a change is justified. The
agent is only interested in whether the evidence satisfies his “standard of proof” for a given
theory, so he does not necessarily point-identify the Bayesian posterior. For example, he
might process signals in small steps, gradually eliminating points in the simplex until he

determines which cell applies.

2. Limited Computation. An agent might wish to compute the Bayesian posterior but be
unable to point-identify it. Consequently, the agent lumps several posteriors together with
a single point, making the representation a simplifying heuristic or approximation to Bayes’
rule. Since different agents may employ different partitions or representative points, they

may disagree on what constitutes a hard problem or a good approximation.

3. Signal Distortions. Here, to update beliefs, the agent mentally transforms signals before
applying Bayes’ rule. Thus, apparent deviations from Bayes’ rule are the result of imperfect
perception or attention—not necessarily computational constraints. Theorem 2 below for-
malizes the concept of Signal Distortion Representations and establishes their equivalence
to Coarse Bayesian Representations in static settings.® In dynamic settings, however, the

distinction matters (see section 3.2).

4. Categorical Thinking. Here the agent reasons about categories of beliefs, each represented
by a cell of the partition. This way, a cell represents distributions that share some prop-
erties of interest, and its representative point is a natural example (or “archetype”) of a
distribution with those properties. When information arrives, the agent determines which

category applies and adopts its archetype as posterior. The key difference between this and

8The term “signal distortion” is often associated with Grether (1980) updating, where distorted signal
and/or prior likelihoods are used in the updating process. My notion of signal distortion employs a different
functional form and does not involve distorted priors; see Theorem 2 below.
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the competing-theories interpretation is that here the cells (not their representative points)
are focal: the agent is primarily interested in whether the true distribution belongs to a

given category, and uses representative points to envision the category.

In each case, the parameters of the representation are subjective characteristics of the in-
dividual: agents may differ in their priors, partitions, or representative points. In the same
way that standard Bayesian theories are agnostic about the source of one’s prior beliefs, my
model does not take a stance on how partitions or representative points are formed. Rather,
Theorem 1 characterizes Coarse Bayesian behavior in terms of observable primitives (the
updating rule) and establishes that all parameters can be uniquely identified from those
primitives—with or without additional assumptions about how they came to be.’

The next result provides a simple comparison between Bayesian and Coarse Bayesian
behavior. To proceed, an additional definition is required; some subsequent results in the

paper also utilize this definition.

Definition 1. Given (P, "), a cell P € P is regular if it has full dimension in A and its
representative pu” belongs to the relative interior of P. If every cell P € P is regular, then

(P, u”) is regular.

Proposition 1. Suppose pi is non-constant and has a Coarse Bayesian Representation (P, u”)
where every non-singleton cell of P is reqular. Then p is Bayesian (that is, u® = B(u°s)
for all s € S) if and only if any of the following three conditions hold:

(i) p* = p' implies s ~ t;
(it) p*t* = p° implies p° = p';
(111) p' = p® implies t =~ p®/uc.

Proposition 1 states that, under mild regularity conditions, strengthening any of Ax-
ioms 1-3 to an if-and-only-if form forces a Coarse Bayesian agent to be perfectly Bayesian.
Statement (i), the converse to Homogeneity, makes the agent highly responsive to changes
to information: different likelihood ratios lead to different posterior beliefs. Statement (ii),
the converse to Cognizance, requires that if the agent is unaffected by the knowledge that ¢
may have been generated instead of s, then s and ¢t must lead to the same beliefs. Finally,
statement (iii), the converse to Confirmation, asserts that if ¢ leads to the same posterior

as s, then ¢t must be perfect evidence of p®. These statements are themselves properties

9See also the discussion at the end of section 4.2 regarding approaches to endogenizing the parameters.
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of Bayes’ rule, and the proposition implies that if a Coarse Bayesian agent satisfies any of
them, then the agent actually satisfies all three and behaves like a standard Bayesian.!”

There are two key takeaways from Proposition 1. First, the “wedge” between Bayesian
and Coarse Bayesian updating is, qualitatively, fairly small: Axioms 1-3 impose enough
Bayesian rationality that slightly strengthening any of them eliminates non-Bayesian be-
havior. Nonetheless, the model permits many documented departures from Bayes’ rule.
Thus, one can accommodate a variety of non-Bayesian behavior without abandoning tenets
of Bayesian rationality that, combined, almost make the agent perfectly Bayesian. Sec-
ond, Proposition 1 identifies the properties of Bayes’ rule that are necessarily violated by
proper Coarse Bayesians. This provides a more comprehensive understanding of the model,
enables direct comparison of its conceptual trade-offs and, as we shall see, leads to a full
characterization of the non-Bayesian behavior predicted by the model.

I conclude this section by providing an alternative representation of Coarse Bayesian

behavior and a brief discussion of some limitations of the model.

Theorem 2. An updating rule p has a Coarse Bayesian Representation if and only if there
is a function d : S — S such that

(i) s =t implies d(s) = d(t),
(11) d(s) =~ d(t) implies d(As + (1 — \)t) = d(s) for all X € [0,1],

(iii) d(d(s)) = d(s) for all s,

and p® = B(uf|d(s)) for all s. The function d is a Signal Distortion Representation
of w. If d’' is another such representation, then d'(s) ~ d(s) for all s € S.

Signal Distortion Representations formalize the signal distortion interpretation of Coarse
Bayesian behavior, replacing the parameters (P, u”) with a function d satisfying three prop-
erties analogous to Axioms 1-3; in particular, an agent who receives signal s applies Bayes’
rule to a distorted signal d(s). Theorem 2 establishes that Coarse Bayesian and Signal
Distortion behavior is equivalent in static settings; however, as shown in section 3.2, this
equivalence fails in dynamic settings.

Naturally, Coarse Bayesian updating is not without its limitations. Although Theorem
1 and Proposition 1 fully characterize and contrast Coarse Bayesian and standard Bayesian

behavior, it is worth highlighting a few additional implications of the framework.

0The regularity assumptions of Proposition 1 are only needed to establish that statement (ii) forces the
agent to be Bayesian—statements (i) and (iii) each make any Coarse Bayesian perfectly Bayesian.
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1. Only the realized signal matters. More precisely, Homogeneity requires that only the
likelihood ratios of s can affect posterior beliefs. This rules out sensitivity to the way
information is framed, as well as the possibility that extraneous features of the environment

might impact beliefs.

2. Beliefs are represented by probability distributions. For example, the conjunction fallacy
(illustrated by the well-known “Linda” problem of Tversky and Kahneman, 1983) occurs
when subjects declare an event E less likely than a conjunction £ N F'. Such beliefs cannot

be represented by probability distributions and therefore fall outside the scope of the model.

3. Discontinuities in s. Jumps can occur when perturbations to a signal make the Bayesian
posterior cross over a cell boundary. This is a feature of any model involving threshold-style
behavior, including that of Wilson (2014), the Categorical-Thinking model of Mullainathan
(2002), the Hypothesis-Testing model of Ortoleva (2012) and the related Maximum Like-
lihood models examined in the Online Appendix. If continuity is an essential conceptual
feature of some pattern of behavior—rather than a convenient technical assumption—then

Coarse Bayesian updating will, at most, provide an approximation to that behavior.

4. Conver cells. This convexity is driven by Cognizance and can be discarded by dropping
that axiom. However, as explained above, Cognizance is potentially important in applications

because it means agents correctly forecast their own updating behavior.

3 Implications, Applications, and Dynamics

This section explores the main implications and applications of the model as well as its rela-
tionship to empirical work on non-Bayesian updating. Sections 3.1 and 3.2 are independent

of each other and can be read in any order; section 4 is also independent of this section.

3.1 Implications and Applications

To map out the main implications and applications of Coarse Bayesian updating, this section
considers three ways one might employ the framework: (i) as a tool for modeling specific
biases (section 3.1.1), (ii) as a model for predicting or understanding behavior (section 3.1.2),

and (iii) as a guide for designing experiments and testing for coarse cognition (section 3.1.3).

3.1.1 Modeling Biased Updating

The Coarse Bayesian framework does not target a specific bias (or collection thereof) but

instead provides a standalone model of coarse cognition that will, in various circumstances,
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Figure 3: Four Coarse Bayesian Representations on A = [0, 1].

generate well-known biases. That said, one might be interested in modeling specific biases
when bringing the framework to applications. Below, I illustrate how a variety of documented
biases can be represented as Coarse Bayesian behavior. Since they are Coarse Bayesian Rep-
resentations, Axioms 1-3 provide foundations while other findings in the paper, like those of

sections 3.2 and 4, provide general tools and results for their analysis.

1. Under-reaction, QOver-reaction, and Asymmetric Updating. Conservative updating, or
under-reaction to information, is a well-documented behavior violating Bayes’ rule.!! Ben-
jamin (2019) conducts meta-analysis of the experimental literature and finds that under-
reaction is the most common bias. On the other hand, individuals also over-react to in-
formation in various settings. De Bondt and Thaler (1985), for example, find evidence of
over-reaction in financial markets (in particular, to unexpected news); more recently, Thaler
(2021) finds evidence of over-reaction to weak signals and under-reaction to strong signals.
When information is “ego-relevant,” subjects may respond asymmetrically to informa-
tion. Eil and Rao (2011) find that if information concerns personal attributes such as attrac-
tiveness, individuals under-react to negative signals but are approximately Bayesian when
processing positive signals; see also Sharot and Garrett (2016) for a survey of related studies.
To represent such behavior in the Coarse Bayesian framework, I follow the literature by
considering two-state settings; this way, A can be identified with the unit interval. Figures
3a and 3b illustrate under- and over-reaction. In 3a, the agent never over-reacts but typically
under-reacts: his posterior belief (solid dot) is as close as possible to u® given the partition
of A into sub-intervals (light /dark gray regions representing different cells). In 3b, the agent
never under-reacts but typically over-reacts: his posterior is farthest away from p® given the
partition. Figure 3c exhibits a biased agent who favors one state: posteriors typically assign
higher probability to state 1 than the Bayesian posterior and never less. Thus, it is relatively

easy for the agent to revise beliefs upward and more difficult to revise downward.

1See Phillips and Edwards (1966) and Edwards (1968) for early experiments on conservative updating.
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A common feature of Figures 3a-3c is that representative points of cells sit on cell bound-
aries; this is needed to model such biases in the Coarse Bayesian framework because there is
either an ideal belief the agent aspires to or an unappealing belief they seek to avoid. Figure
3d depicts a more typical Coarse Bayesian: representative points do not necessarily sit on

the boundaries of cells, so both over- and under-reaction occur, depending on the signal.

2. Limited Perception, Extreme-Belief Aversion, and Reactions to Unexpected News. The
model also accommodates agents who behave like standard Bayesians except in particular
circumstances. For example, consider Figure 4a. In this representation, the agent retains
prior p€ unless the Bayesian posterior is sufficiently far away from u¢, in which case he applies
Bayes’ rule. An interpretation is that the agent only notices signals that are sufficiently
strong or provocative to yield a large shift in the Bayesian posterior. This provides a way of
capturing imperfect attention or perception.'?

Figure 4b exhibits rather the opposite behavior: the agent is Bayesian unless posterior
beliefs are too “extreme”—that is, close to degenerate distributions representing certainty
about the state. Ducharme (1970) argues that such behavior may explain some of the
experimental evidence for under-reaction (see also Benjamin et al., 2016, who introduce the
term “extreme-belief aversion”). Indeed, a Coarse Bayesian employing the representation in
Figure 4b would effectively under-react to signals that strongly support any particular state.

Figure 4c illustrates an updating rule that coincides with Bayes’ rule unless the observed
signal is sufficiently “surprising.” In this case, the prior strongly supports a particular state
and the agent exhibits non-Bayesian behavior only if the signal has a low probability of
occurrence in that state. Several studies, such as De Bondt and Thaler (1985), find that
updating behavior at such unexpected signals may be inconsistent with Bayes’ rule. See also

Ortoleva (2012), who develops a model to accommodate this, and related, evidence.

3.1.2 Understanding & Predicting Behavior

What does the Coarse Bayesian model predict, and how might it help explain real behavior?
Since the model accommodates a variety of biases, it does not necessarily predict whether one
bias prevails over another—additional assumptions are needed to make such comparisons.
Nonetheless, the model makes several concrete predictions about non-Bayesian behavior and

provides meaningful implications (and explanations) in a variety of settings.

12This makes the most sense in the signal-distortion interpretation of the model, where the agent transforms
signals before applying Bayes’ rule. The underlying signal distortion function d represents the agent’s
attention, avoiding the “circularity” of having the agent compute the Bayesian posterior of ignored signals—
a common criticism of rational inattention models.
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Figure 4: Limited Perception, Extreme-Belief Aversion, and Reactions to Unexpected News.
Each point in the shaded regions represents a singleton cell.

General Predictions
1. (Non)Genericity of “quasiconver” biases. While the model accommodates (for example)
those who always under-react or always over-react, it also suggests that such extremes are
unusual or non-generic. To see why, consider Figure 3. In Figure 3a, the agent always
under-reacts: relative to Bayesian posteriors, realized beliefs are closer to the prior. For this
to hold, representative points must sit on the boundaries of their cells. Therefore, global
under-reaction is a hairline case; a more typical Coarse Bayesian, depicted in Figure 3d,
under-reacts to some signals and over-reacts to others. More broadly, the biases depicted
by Figures 3a—3c are “quasiconvex”—the set of beliefs that distort upward is convex, as is
the set that distorts downward—and such quasiconvexity is non-generic because (outside of
trivial cases) it requires representative points to sit on cell boundaries.

Note, however, that the model predicts local uniformity of directional biases: if an indi-
vidual (say) over-reacts to a signal s, he likely over-reacts to signals near s as well. This holds
for regular Coarse Bayesian Representations and is a special case of the stability property

discussed next.

2. Local stability of Bayesian and non-Bayesian behavior. As illustrated by Figure 4, the
model accommodates individuals who apply Bayes’ rule in many (even most) circumstances.
In regions where the agent is Bayesian, cells are singletons and posterior beliefs vary smoothly
(and non-trivially) with the signal. In contrast, signals yielding non-Bayesian reactions can
typically be perturbed without affecting beliefs; this holds because in regular representations,
non-singleton cells have full dimension, implying that if a Bayesian posterior belongs to
the cell, the cell almost surely contains a neighborhood around that posterior—the only
exception is if the posterior sits on the boundary of the cell. Thus, non-Bayesian behavior
is locally stable: if a signal s evokes a non-Bayesian response, signals near s typically will,
too. Moreover, such signals yield the same (non-Bayesian) posterior.

Interestingly, Bayesian updating also tends to hold locally: if behavior at s is consistent
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with Bayes’ rule, then (almost surely) so is behavior at nearby signals. This is so because
consistency with Bayes’ rule at s implies Bayes’ rule is violated at nearby signals only if (i)
w® is the representative point of a non-singleton cell, or (ii) p® is the representative of a sin-
gleton cell that sits on the boundary of a region of non-singleton cells (like those illustrated
in Figure 4). Both scenarios are non-generic and amount to zero-probability events in signal
space. Therefore, conditional on being consistent with Bayes’ rule at s, the agent is very

likely to be consistent with Bayes’ rule at nearby signals.

3. Full characterization of predicted non-Bayesian behavior. Proposition 1 provides a com-
plete characterization of the non-Bayesian behavior that Coarse Bayesians must exhibit. In
particular, proper Coarse Bayesians satisfy the negations of properties (i)—(iii) in Proposition

1. This yields the following predictions:

(i) There exist signals s 5 ¢ such that p® = u'. In other words, Coarse Bayesians consider

some signals to be equivalent that a Bayesian would not.

(ii) There exist signals s,¢ such that u® # p' while p*t* = p5. That is, there exist sig-
nals that a Coarse Bayesian distinguishes unless he is uncertain about which one was

generated, in which case one of the signals becomes the default.

(iii) There exist s,¢ such that p® = p* and ¢ % p®/p. That is, there are signals s,t such
that ¢ brings the agent to u® even though ¢ is not perfect evidence of pf.'* This is a

kind of false extrapolation.

Statements (i)—(iii) are, in effect, three different biases that must be exhibited by a Coarse

Bayesian and they account for all non-Bayesian behavior generated by the model.

Applications
The following explores some of the ways the model can be used to understand behavior in
more applied contexts. The goal is to illustrate various applications of the model without

delving too deep into any of them, so the discussion is kept at a fairly high-level.

1. Categorization, Extrapolation and Financial Markets. There is a vast literature on coarse
(or categorical) thinking in psychology and economics. Broadly speaking, coarseness in-
volves lumping “similar” situations together and basing analysis (and subsequent decisions)
on features of categories. My model provides a unifying framework for settings where cate-

gorization involves belief updating; naturally, this affects choice and consumption behavior.

13Note that these signals may satisfy s ~ ¢, so this is not equivalent to property (i).
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For example, patterns in financial markets and investor behavior can be understood
through the lens of Coarse Bayesian updating. Stocks are often classified into categories
and “style investors” choose how to invest across categories rather than individual stocks.
In a Coarse Bayesian framework, states represent characteristics of stocks, categories are
cells and representative points reflect the average within a cell—here, the cells are plausibly
exogenous. Crucially, information is processed on the level of categories and this is what
drives style investing. Such belief updating naturally entails false extrapolation to all stocks
within a category and explains, among other regularities, co-movement within categories (see
Sharpe et al., 1992 or Barberis and Shleifer, 2003). More recently, Teeple (2022) employs
a version of Coarse Bayesian updating to study behavior involving support and resistance
levels; again, the cells (levels) are naturally exogenous.

Stereotyping also fits the model particularly well. Suppose states are multidimensional,
with different dimensions capturing characteristics people or places might have. Cells of
the representation group signals—that is, noisy information about attributes—the agent
might receive about another person and representative points are the “stereotypes” associ-
ated with such information. For example, the representation might make the agent believe,
erroneously, that an individual with attribute x is likely to have attribute y. The exposure
an individual has to different people naturally affects how the individual groups or cate-
gorizes them; consequently, we should expect the partition to be finer (coarser) in regions
the individual encounters more (less) frequently. Thus, a basic version of the model, with
minimal assumptions on how cells and representative points are formed, can explain patterns
in stereotyping; for example, stereotypes contain a “kernel of truth” and inferences about
out-group members are more error-prone than those about in-group members—see Bordalo
et al. (2016) and Bursztyn and Yang (2022).

These and many other phenomena involving coarseness (polarization, inertial behavior,
etc) are widely studied but typically involve stylized models and specific assumptions about
how agents assess “similarity” to form categories. My framework allows such assessments to
be fully subjective and shows that they can be identified from behavior. The tools developed
here are based on standard primitives and therefore can aid the analysis of such applica-
tions; for example, section 4 establishes that more information, or finer categories, need not

be advantageous, and characterizes under what circumstances they actually are.

2. Discourse and Persuasion. While individual behavior is the focus of this paper, there are
interesting ways the model can be used to shed light on interactive phenomena, particularly
those involving communication or persuasion. Much of our discourse involves not just infor-

mation provision but arguments about how information should be interpreted and whether
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it justifies switching positions on some issue. Do recent data suggest a recession is coming?
What did the policymaker really mean when they said they were exploring options? Can
existing models adequately explain our observations or do we need a new theory?

A natural way to apply the model to such settings is to allow players (“persuaders”)
to influence its parameters. For example, a juror may wish to persuade another that the
evidence proves guilt beyond reasonable doubt. This is not a matter of acquiring new in-
formation (admissible evidence has already been presented in court) but of arguing about
where the cutoff should be between two competing theories (innocence or guilt); effectively,
the jurors argue about what “reasonable doubt” means and, thereby, how to evaluate avail-
able information. In other contexts, persuaders might wish to influence others’ actions by
proposing new theories (representative points) to explain or “frame” available information;
a carefully-constructed set of theories can make the receiver adopt beliefs and take actions
that are beneficial to the persuader.!* Again, this kind of persuasion is not about providing
new information but influencing the way available information is perceived.

Viewed this way, the model provides a lens through which patterns in discourse can be
better understood. A given Coarse Bayesian Representation captures the heuristics and
biases an agent employs when processing information. This affects a persuader’s incentives
for information provision but also for influencing those heuristics—that is, challenging the
set of theories under consideration or the standard of proof for switching between them.
Tactics like false dichotomies (arguing one of only two possible theories must be correct) or
straw-man arguments (misrepresenting a theory in order to more easily refute it) are but
two common examples that fit the model well and are difficult to explain without a notion

of coarse cognition.

3.1.3 Testing & Identifying Coarse Cognition

The results of this paper can help inform the design of experiments on non-Bayesian up-
dating. Below, I discuss key criteria for testing the model in the lab and how one might

separate Coarse Bayesian updating from competing explanations for non-Bayesian behavior.

1. Theorem 1 and Proposition 1 as guides for experiments. As a full axiomatic characteri-
zation of Coarse Bayesian updating, Theorem 1 provides a recipe for an ideal experiment:
Axioms 1-3 describe patterns in updating behavior that must be satisfied by any Coarse
Bayesian and thereby provide a guide for eliciting comparisons in the lab. Homogeneity, for

example, indicates that updating behavior is invariant to scalar transformations of signals,

14See Schwartzstein and Sunderam (2021) for an approach where the theories proposed by the persuader
are evaluated by the receiver according to a maximum-likelihood criterion.
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so a good experimental test of the model would expose subjects to signals of the form s and
As; if a subject responds differently to As than to s, they are not Coarse Bayesian. Similarly,
Cognizance and Confirmation provide testable properties of behavior that can falsify the
model by eliciting the right kinds of comparisons. This is generally true of any axiomatic
characterization provided the axioms are falsifiable, as is the case here.

As explained in section 3.1.2, Proposition 1 identifies patterns capturing proper Coarse
Bayesian behavior. Specifically, the negations of properties (i)—(iii) in Proposition 1 amount
to three different biases that must be exhibited by a proper Coarse Bayesian. Thus, docu-
menting such behavior helps support (not refute) the hypothesis that coarse cognition is at
work and can be used to distinguish Coarse Bayesian updating from alternative explanations

for non-Bayesian updating.

2. FExploring the signal space. A key implication of the model, discussed above, is local
stability of both Bayesian and non-Bayesian behavior. Intuitively, stability means that if
there is a non-Bayesian response to some signal, then nearby signals tend to generate the
same response. If instead behavior is consistent with Bayes’ rule, then it is likely consistent
at nearby signals as well. This yields two implications for experimental design. First, it
is important to consider signals near an original signal that was tested. If, for example, a
subject violates Bayes’ rule at s, behavior at signals near s indicates whether Coarse Bayesian
behavior is in play; if it is, then nearby signals yield the same posterior p® as s. Second, if
behavior at s is inconsistent with Bayes’ rule, one should also test signals that, under Bayes’
rule, would lead the subject to beliefs 1*; this helps establish whether p® is, in fact, the
representative of some cell in a Coarse Bayesian representation.

More generally, the implications of the model suggest it is important to explore the signal
space. The fact that over/under-reaction are likely to hold locally but not globally in the
model (see section 3.1.2) suggests, for example, that one should test a broad set of signals,
not just those confined to a particular region. The same holds for Bayesian behavior: the
model predicts that adherence to Bayes’ rule, when it occurs, tends to hold at nearby signals
as well. Consequently, a broader range of signals must be considered. The axioms, as well

as Proposition 1, can help guide the selection of signals to test.

3. Qualitative experimental data. Experiments sometimes elicit “soft” data in addition to
standard measurements like action choices. For example, experiments on level-k strategic
reasoning might ask subjects to explain their action choices; such descriptions, while difficult
to analyze quantitatively, can provide insight about subjects’ reasoning processes and help

establish whether they employ a level-k heuristic.
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The Coarse Bayesian framework lends itself quite naturally to such data: its leading
interpretations involve boundedly-rational thinking procedures or heuristics that subjects
might knowingly engage in. For example, if asked to explain their assessments, Coarse
Bayesians following the competing-theories heuristic might explicitly describe how they nar-
rowed down the possibilities and decided which one best fits the data, while those adhering
to a limited-computation heuristic might describe how they arrived at their approximation.

Going beyond such descriptions, an analyst might ask subjects more concrete questions
targeting the various interpretations of, and mechanisms for, Coarse Bayesian behavior.
Questions like “what would it take to change your mind?” probe a subject’s standard of
proof for switching between competing theories, while eliciting ranges of beliefs or asking
for a 90% confidence interval can help tease out limited-computation heuristics. Asking
subjects to classify their beliefs (eg, “high/medium/low” likelihood of a given state) can
capture categorical thinking, and asking whether they incorporated a piece of information
into their analysis or how similar they consider different pieces of information to be can
capture signal distortion. These approaches provide yet another way to test the model or

weigh it against competing explanations.

3.2 Dynamics

This section examines some basic dynamic properties of the model. Suppose an agent ob-
serves a sequence of signals § = (s',...,s"), where s’ is the signal generated in period t.
How do properties of § affect the agent’s final belief? Must beliefs converge to the truth?
For standard Bayesians, terminal beliefs do not depend on how signals are pooled or
ordered. For example, consider a sequence § = (s',s% s®). The terminal Bayesian belief
is B(u¢|s's?s?) regardless of whether the sequence is rearranged (eg. (s?, s!,s®)), pooled
differently (eg. (s',s?s%)), or both.'®> Another feature of Bayesian updating is that, for
sufficiently informative structures o, repeated draws of signals from o make beliefs converge
to the truth (a point mass d,, on the true state w). More precisely, suppose the true state is w

and that for every n, s” is an independent draw from o (if t € o, then s™ = ¢ with probability

oo

% , induces a sequence (B")22, of beliefs B" =

6

t,). For a Bayesian, the sequence (s™)
B(u¢|s's?...s") such that B™ — §,, almost surely, provided o is sufficiently informative.!
Under non-Bayesian updating, including Coarse Bayesian updating, dynamics are more

nuanced. For example, the terminal belief of an agent who incorporates the full history of

15See Cripps (2018) for a general analysis of updating rules that are invariant to how an agent partitions
histories of signals.

16For example, the uninformative structure o = e yields B™ = u€ for all n, so that beliefs converge to u°
instead of d,,. For beliefs to converge to the truth, the distribution over signals s € o for state w (that is,
the row of matrix o corresponding to state w) must differ from that of other states.
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signal realizations typically differs from that of one who performs signal-by-signal updating.
Similarly, matters of belief convergence depend not only on o, but on how the (static)
non-Bayesian updating rule is extended to a dynamic updating rule. Fortunately, Coarse
Bayesian updating yields fairly simple results.

Some additional terminology and notation is needed to proceed. A signal s is interior
if s, > 0 for all w € €; let S° denote the set of interior signals. A dynamic updating
rule associates a belief p(¢" ") to every finite history § = (s',...,s") of interior signals.
Interpreting a signal s as a history of length 1, a dynamic updating rule gives rise to an

updating rule with prior u°.

Definition 2. A dynamic updating rule u is:

(i) Invariant to signal ordering if u° = ™ for all histories 5§ and permutations 7(3)
of 5.

(i) Invariant to signal pooling if, for all histories §= (s!,...,s") of length n > 2 and
sh=1 ghghtl k2 ony

all k < n, u° = u(sl"“’

Definition 2 formalizes two different notions of history independence. Under invariance to
signal ordering, any history 5 can be reordered without affecting the final belief.!” Invariance
to signal pooling, by contrast, requires that any signal in a history can be pooled with its
successor without affecting the final belief. Clearly, invariance to signal pooling implies
invariance to signal ordering.

Consider first the following dynamic extension of a Coarse Bayesian updating rule:

Definition 3. A dynamic updating rule i is a Pooled Coarse Bayesian updating rule if

either of the following equivalent conditions hold:

(i) There is a Coarse Bayesian Representation (P, u”) such that, for all histories (s', ..., s"),
pls' ") = P where B(u|s's®...s") € P e P.

(ii) There is a Signal Distortion Representation d : S — S such that, for all histories
(s',...,8"), u* = B(u|d(s's*...s")).

A Pooled Coarse Bayesian updating rule works by applying, at every n, the full history of

signals up to that point. The pooled signal s*s? ... s" represents the joint likelihood of having

17Rabin and Schrag (1999) analyze a model of history-dependent updating where, in each period, in-
formation is distorted to support the agent’s current belief. Such procedures are not invariant to signal
ordering.
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observed the sequence, and these likelihoods are applied either to the Coarse Bayesian Rep-
resentation (P, u”) or its associated Signal Distortion Representation d. Naturally, Pooled
Coarse Bayesian updating rules are invariant to signal pooling and, hence, signal ordering.
To study belief convergence, an additional definition is needed. A Coarse Bayesian Rep-
resentation (P, u”) is stable at w if there exists P € P and € > 0 such that the e-ball
{fn € A || — du]| < e} around §, is contained in P. The next result summarizes the

dynamic properties of Pooled Coarse Bayesian updating rules.

Proposition 2. Pooled Coarse Bayesian updating rules are invariant to signal ordering and
pooling. If (P, u¥) is stable at w, (s™), is the stochastic sequence generated by o in state

w (that is, s" =t € o with probability t,,), and B(u¢|s'...s") %5 6, then p's") 25 P,
where 6, € P € P.

Proposition 2 states that if (P, u”) is stable at w and o is sufficiently informative for
Bayesian beliefs to converge to d,, then Pooled Coarse Bayesian beliefs converge to the
representative u” of the cell P containing &,,. Thus, Pooled Coarse Bayesian beliefs converge
whenever Bayesian beliefs do, but not necessarily to the point é,,.

Next, consider the following two types of signal-by-signal updating:

Definition 4. A dynamic updating rule u is:

(i) A Sequential Coarse Bayesian updating rule if there is a Coarse Bayesian Repre-
sentation (P, u”) for histories of length 1 such that, for every history (s',...,s") of
length n > 2, p"") = 4P where B(p"""|s") € P € P.

(ii) A Sequential Signal Distortion updating rule if there is a Signal Distortion Repre-
sentation d : S® — SO for histories of length 1 such that, for every history (s, ..., s")
of length n > 2, uH5") = B(us'5""D|d(s)).18

A Sequential Coarse Bayesian updating rule employs a fixed Coarse Bayesian Representa-
tion to perform signal-by-signal updating. Starting at prior ¢, the agent applies (P, u”) to
reach posterior usl after observing s'. Then, treating /ﬁl as the prior, the agent applies the

1 .2 .
$55°) after observing s2, and so on. A Se-

same representation (P, u”) to reach posterior u
quential Signal Distortion rule follows a similar procedure, substituting d for (P, u”). Thus,
sequential rules apply to agents who have imperfect memory and rely on current beliefs as

summary statistics of the history.

18Restricting d to take values in SO ensures that B(u(¢" " )|d(s")) is well defined at all possible histories.
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Proposition 3. Let pu° have full support. Then:

(i) Sequential Signal Distortion rules are invariant to signal ordering but not necessarily

to signal pooling.

(ii) Sequential Coarse Bayesian updating rules need not be invariant to signal ordering nor
to signal pooling. If there are full-support representatives u* # u®" and a signal s* such
that both B(u®|s*) € P and B(u"'|s*) € P, then the updating rule is not invariant to

signal ordering.

Proposition 3 establishes that the path-dependence properties of sequential updating rules
depend on how the static rule is extended to a dynamic rule: Sequential Signal Distortion
rules are invariant to signal ordering, but Sequential Coarse Bayesian rules need not satisfy
either type of path-independence. The requirements specified by the second part of (ii) are
satisfied by many Coarse Bayesian rules; such rules fail to be invariant to signal ordering and,
therefore, fail to be invariant to signal pooling as well. Intuitively, these differences stem
from the fact that fixing d while updating beliefs signal-by-signal effectively yields different
Coarse Bayesian Representations at different histories, making Sequential Signal Distortion
rules quite different from Sequential Coarse Bayesian rules.

The distinction between Sequential Coarse Bayesian and Signal Distortion rules also has
implications for belief convergence. In general, sequences of beliefs induced by Sequential
Coarse Bayesian rules need not converge to the true state, or even to converge at all. Sequen-
tial Signal Distortion rules, however, do induce belief convergence, though not necessarily to

the true state:

Proposition 4. Suppose p is a Sequential Signal Distortion rule with distortion function d.
Fiz o = [t',...,t'] and w € Q. Let (s")5, denote a sequence of random vectors s" € o
independently and identically distributed by o in state w (for alln, s™ = 9 € o with probability
t). Let

w

* 1 2 J le 3} i
t = d)ed() e . dt)) e = (d(tl)i,d(tQ)fu, d@t) ,>w/69 . (2)

Then p®5") — B(uc|tg) almost surely, where E* = {w' € Q : 5, > t*, V" € Q) and

w/l

tpe = liep+) € S is the indicator vector for E*.

Proposition 4 states that, in the limit, Sequential Signal Distortion narrows the set of pos-
sible states down to E* = argmax,, t7,, where t* is the “average” distorted signal generated
by o in state w. For standard Bayesians, E* = {w} provided o is sufficiently informative.

As the next example illustrates, however, E* need not contain the true state; thus, although
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beliefs converge, they need not converge to the true state.

Example 1. Consider a two-state setting. Let

e if 22 <3
d(s) = 5
(3,1) otherwise
and o = [s,t] where s = (3,3) and ¢ = ). Then d(s) = (,1) and d(f) = e, so that in

(55
/5

state 1 we have t* := d(s)*'d(t)" = ((3)"/%,1). Since ¢} < t5, beliefs converge to state 2.

4 The Value of Information

Assessing the value of information is a fundamental part of decision making in many economic
models. In this section, I study the Coarse Bayesian value of information, including its
relationship to the Bayesian value of information, the Blackwell (1951) ordering, and notions
of cognitive sophistication and bias.

Throughout this section, p denotes an updating rule with Coarse Bayesian Representation
(P, u”). Let A denote the set of all nonempty, compact subsets of R%. Each A € A is a
menu and elements © = (z,,).cq € A represent feasible actions the agent may take. Action
x € A yields payoff z,, in state w. For each A € Aand s € 5, let ¢*(A) := argmax, .4 © - °

denote the actions in A that maximize expected utility at beliefs p°.

Definition 5. Let A € A.

(i) The value of information at A is given by the function V4 : £ — R where

VA>o) = maXZuZ Z swT,, subject to z° € ¢’(A). (3)
w s€o
(ii) The Bayesian value of information at A is given by the function V. £ = R where

s’

(4)

—A
V(o) := max € s,x> subject to z° € argmaxx - )
(0) ;uwz W, subj gmaxe -

se€o

Equation (3) expresses ex-ante expected utility for a Coarse Bayesian agent. Faced with
a menu A and experiment o, the agent calculates expected utility by applying weight u¢
to the average payoff in state w given that signals are generated by o. Consistent with the

Cognizance axiom, the agent correctly forecasts his own signal-contingent beliefs and, hence,
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signal-contingent choices. Equation (4) expresses a similar formula for a Bayesian agent:
signal-contingent choices maximize expected utility at beliefs B(u¢|s) instead of beliefs p°.

It will be convenient to express V4 in a slightly different form. For any i € A and
A€ A, let

(A) := argmax x - u” subject to i € P and vA(f1) == max z - fi.
zeA zech(A)

That is, ¢*(A) consists of the actions in A that maximize expected utility for the Coarse

Bayesian if the Bayesian posterior is fi. Similarly, v4(j1) represents expected utility at A

conditional on Bayesian posterior ji. These mappings are well-defined because P partitions

A and each cell P € P has a unique representative pf. For a standard Bayesian, analogous

mappings are given by

"(A) := argmaxz - i and 7)) == max z- .

€A x€ch(A)
If o€ &and o€ A, let 779(1) := ZSQU:B(ME|S):ﬂS - 1% this is the total probability of
generating Bayesian posterior 4 under information ¢ and prior pu¢. That is, given u¢, o

generates a distribution of Bayesian posteriors where 77(fi) is the probability of posterior fi.
Proposition 5. For all A€ A and o € £, V(o) = > iea 77 () v (f1).

Proposition 5 states that V4 can be written in posterior-separable form. In particular, it
is as if the agent associates value v4(j1) to Bayesian posterior /i, so that the distribution of
Bayesian posteriors can be used to calculate expected utility. This also facilitates compar-
isons between Bayesian and Coarse Bayesian payoffs (see Figure 5); clearly, v (1) < v(j2)
for all i and, hence, V4 (o) < VA(U) for all c—the Bayesian always does better. Intuitively,
Proposition 5 holds because a Coarse Bayesian updating rule is Homogeneous and, hence, a

function of the Bayesian posterior;!? I omit the straightforward proof.

4.1 The Blackwell Ordering

This section examines whether and when Coarse Bayesians benefit from improvements to
information. For experiments o, ¢’, the relation o J ¢’ indicates that ¢ is more informative
than o’ in the sense of Blackwell (1951). An experiment ¢’ is a garbling of o if there is a

matrix M with entries in [0, 1] such that every row is a probability distribution and ¢’ = oM.

9This is the fundamental assumption of de Clippel and Zhang (2022), who study persuasion with non-
Bayesian agents. A similar result appears in Galperti (2019).
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(a) T4(f2)

Figure 5: Bayesian vs. Coarse Bayesian value of information for A = {x,y, z}.

For the purposes of this paper, 1 is defined by: o 3 ¢’ if and only if ¢’ is a garbling of o.

The function V4 satisfies the Blackwell ordering if o 3 ¢’ implies VA(0) > VA(o'); if
there exists ¢ J o’ such that V4(o) < V4(¢’), then V4 violates the Blackwell ordering.
An important part of Blackwell’s characterization is that a Bayesian’s value of information
satisfies the Blackwell ordering in all menus A—in fact, o J o’ if and only if VA<0') > VA(O" )
for all A € A. For Coarse Bayesians, this need not be the case.

For every menu A and signal s, let b°(A) C A denote the Bayesian-optimal actions
in A conditional on s. Formally, b*(A) := {r € A : = - ;*;Z >y - ss‘:; Vy € X}. Let
c(A) = U,eg ¢’ (A) and b(A) = J,.q0°(A). That is, c(A) is the set of actions in A that are
chosen by the Coarse Bayesian—and b(A) the set of actions chosen by the Bayesian—for at
least one s. Observe that, by Confirmation, ¢(A) C b(A).

Proposition 6. Let (P, u”) be a reqular Coarse Bayesian Representation and A € A. The

following are equivalent:
(i) VA satisfies the Blackwell ordering.
(ii) v* is convex.

(1i1) (A)Nb*(c(A)) # D for all s.

Proposition 6 characterizes, for regular Coarse Bayesians, the class of menus A such
that V4 satisfies the Blackwell ordering.?’ The key property is (iii), asserting that Coarse

Bayesian choices from A agree with Bayesian choices from the menu ¢(A) C A (the submenu

20The regularity requirement only serves to establish (i) = (iii). In particular, the implication (iii) = (i)
holds for all Coarse Bayesian Representations, as does the equivalence of (i) and (ii). The implication
(ii) = (i) is part of Blackwell’s characterization, but the converse implication is not, and relies on the
assumption that ¢ has full support (see Lemma 1 in the appendix).
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of actions that are actually chosen at some signal realization). When (iii) is satisfied, Coarse

7e(A)

Bayesian behavior at A coincides with Bayesian behavior at ¢(A), making v = convex

and VA = 7Y satisfy the Blackwell ordering. Since (iii) is a rather strong requirement,

Blackwell violations are a common occurrence.?!

Example 2. Some non-Bayesians satisfy the Blackwell ordering in all menus. Suppose
N = 2, so that A is represented by the interval [0, 1] of values fi;. First, consider (P, u”)
where P contains two cells: P = {0} and P' = (0,1]. Assume p/" < 1. Then, for every A,
v is convex; this implies V4 satisfies the Blackwell ordering, even though choices generated
by (P, u”) violate condition (iii) of Proposition 6 in some menus. Next, let (Q, u<) consist
of a cell @ = [0, u*] where 0 < p* < 1 and, for every i > u*, a singleton cell {fi}. Let
u® = p*. Choices generated by (Q, u<) satisfy condition (iii) of Proposition 6 for all A; this
implies the corresponding value of information function satisfies the Blackwell ordering in

all menus, even though (Q, u?) violates the regularity assumption (see footnote 20).

Example 2 shows it is possible for non-Bayesian representations to generate functions
V4 satisfying the Blackwell ordering for all A with or without condition (iii) of Proposition
6. Such representations are quite rare, however, in that small perturbations of the cells or
representative points guarantee that V4 violates both the Blackwell ordering and condition
(iii) for some A. Intuitively, violations of the Blackwell ordering arise through discontinuities
in v4 because such discontinuities, except possibly on the boundary of A, make v* non-
convex. Most non-Bayesian representations have the property that any violation of (iii)
introduces a non-convexity in v4 for some A because the gap between Bayesian and non-
Bayesian choices creates points of discontinuity. For regular representations, violations of
(iii) are both necessary and sufficient for the existence of such discontinuities.

While it is perhaps not too surprising that non-Bayesian updating can generate violations
of the Blackwell ordering, it turns out that, for Coarse Bayesians, the connection to the

Blackwell ordering runs much deeper:

Proposition 7. Suppose (P, u”) and (Q, i°) are reqular Coarse Bayesian Representations
of i and i, respectively, such that u® = p°. The following are equivalent:

(i) (P.pu") =(Q.j1%).

(ii) For allo Jo' and A e A, VA(o) > VA(o') = VA(o) > VA(d').

21Gee Whitmeyer (2023) for a recent characterization of updating rules for which the associated value
functions satisfy the Blackwell ordering in all menus.
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Proposition 7 states that, for a regular Coarse Bayesian, the parameters (P, u”) are
pinned down by the agent’s ranking of Blackwell-comparable experiments. Thus, by observ-
ing when the agent benefits (or expects to benefit) from a Blackwell improvement, one can
uniquely identify the parameters of the representation. A key takeaway, then, is not just
that Coarse Bayesians exhibit violations of the Blackwell ordering, but that they do so in a

way that fully reveals their individual updating behavior.

4.2 Measures of Sophistication and Bias

In this section, I explore different notions of cognitive ability and how they relate to a Coarse
Bayesian’s value of information. In addition to providing basic comparative static results
for the model, the findings are potentially relevant for endogenizing non-Bayesian updating
rules and, hence, developing theories of where they “come from” (see the discussion at the

end of the section). For any updating rule p and signal s € S, let
Sue MS
o=l
g [spell |

This is the Euclidean distance between p® and the Bayesian posterior Si%e after normalizing
each vector to length 1. Thus, D,(s) provides a measure of how distorted the agent’s beliefs

are at signal s.

Definition 6. Suppose p and g have full-support priors p¢ = ¢ and Coarse Bayesian
Representations (P, u¥) and (Q, 12), respectively. Then:

(i) f is more sophisticated than p if every P € P is a union of cells in Q.

(ii) s is less biased than yu if D;(s) < D,(s) for all s € S.

Definition 6 provides two comparative notions of cognitive ability. Part (i) states that a
Coarse Bayesian is more sophisticated if he employs a finer partition, while part (ii) states
the agent is less biased if, for every signal, posterior beliefs are closer to the Bayesian pos-
terior. Each ordering captures some aspect of what it means to be “more Bayesian,” but
the two concepts are quite different: higher sophistication entails higher responsiveness to
information, while lower bias entails less skewness in the updating rule (see Figure 6).

The goal of this section is to characterize these orderings in terms of the welfare of the
agent. A natural conjecture, for example, is that a more sophisticated agent always enjoys
a higher expected utility than a less sophisticated agent, or benefits from more information

whenever a less sophisticated agent does. As the next example shows, this conjecture is false.
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(a) More biased (b) Less biased

Figure 6: An illustration of the bias ordering. The two updating rules employ the same pair
feasible beliefs, but rule (b) is less biased than rule (a) because it exhibits smaller distortions
away from Bayesian posteriors; this makes the cutoff between cells more “centered.”

Example 3. Consider a two-state setting, so that A = [0,1]. Let P = {P, P’} where
P = {0} and P' = (0,1] and Q = {Q,Q’,Q"} where Q = {0}, @' = [3,1], and Q" = (0, 3).
1

Finally, let p” = 4@ =0, p¢ = pP = 2 = 49 = ¢, and 49" = 1. Clearly, 4 is more

sophisticated than u. Let A = {z,y} where z = (1,0) and y = (0,1). Then

R 1 ifa =0 ) 1—jpp ifjy <2
UA(Ml) = and 07 () = ! )
j17  otherwise fi1 otherwise

so that 04(fn) < v*(fn) for 1 < iy < 3. Thus, VA(g) < VA(o) for some o (for example,
any o such that 77(3) = 2 and 77(1) = 2). Moreover, v* is convex but 0* is not; thus, V4
satisfies the Blackwell ordering but V4 does not.

In general, greater sophistication need not improve welfare because it does not rule out
the possibility of wider gaps between Bayesian and Coarse Bayesian choices at some menu-
signal pairs. Similarly, lower bias need not imply welfare improvements. At the end of
this section, I return to this question and examine the conditions under which one Coarse
Bayesian is better off than another in all decision problems (Proposition 10).

To characterize the sophistication ordering, an additional definition is required. Given
(P, u?), a pair (A,o) is u”-decisive if ¢*(A) is a singleton for all s € o; that is, if every
posterior uf induced by o yields a unique optimal action in A. For any 0,0’ € £, V(o) =
V(o') uP-decisively if VA (o) = V4(o') for all A such that (A, o) and (4, 0’) are uP-decisive.

Proposition 8. Suppose (P, u”) and (Q, i°) are reqular Coarse Bayesian Representations
of i and i, respectively, and that pu¢ = . The following are equivalent:

(i) [ is more sophisticated than .

(i) If 0,0 € € and V(o) = V(o') [i8-decisively, then V(o) = V(¢') u”-decisively.

This result states that for regular Coarse Bayesians, greater sophistication means welfare

is more responsive to information: as sophistication increases, fewer pairs o, o’ yield identical
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ex-ante expected utility for (almost) all menus A. The proof of Proposition 8 shows that the
characterization holds even if one restricts attention to experiments o, o’ that are Blackwell
comparable. Thus, higher sophistication means greater responsiveness to improvements to
information. More-responsive welfare, of course, does not imply greater welfare.

The characterization of the bias ordering does not involve the responsiveness of welfare,
but rather a comparison to that of a Bayesian. For each s € S and A € A, let VA(S) =
v4(B(pf|s)) and VA(s) := vA(B(uf|s)) denote the Bayesian and Coarse Bayesian payoffs at

menu A conditional on signal s. Let

L,(s) := sup VA(S) —VA(s)
AcA*

where A* denotes the set of menus A such that |[z| < 1 for all z € A. Intuitively, L,(s)
is the maximum loss, relative to a Bayesian, that the Coarse Bayesian can incur under any
decision problem A.?2 Alternatively, L,(s) may be interpreted as the maximum rate at which
a Bayesian agent can “money pump” the Coarse Bayesian agent under public information
s. So, if actions x represent bets or gambles, and a Bayesian agent is free to specify a set
A € A* after both agents have observed s, then L,(s) is the amount of money the Bayesian
can extract from the Coarse Bayesian.?

Proposition 9. Suppose p and i are Coarse Bayesian and ji° = ji°. Then L;(s) < Ly(s)
if and only if D;(s) < D,(s). Thus, fi is less biased than p if and only if L;(s) < L,(s) for
all s € §.

Proposition 9 establishes that j is less biased than p if and only if £ is less exploitable
than u: worst-case losses for i, relative to a Bayesian, are smaller than those for p.

As indicated above, neither greater sophistication nor lower bias guarantee higher payoffs
in all decision problems. The next result establishes that, under mild regularity conditions, a

particular refinement of these orderings is needed to improve payoffs in all decision problems.

Proposition 10. Suppose (P, u”) and (Q, 1°) are Coarse Bayesian Representations of

and [1 such that u® = ¢ and non-singleton cells are reqular. The following are equivalent:
(i) 04 () > vA(f1) for all A€ A and i € A.

(ii) fu is less biased, more sophisticated and, for every i@ € p<\u”, the cell Q is a singleton.

22The restriction to normalized menus A € A* is needed because V* = A\V4 for all A > 0.

ZIndeed, as shown in the appendix, one may restrict attention to menus of the form A = {0,x} where,
conditional on s, the Bayesian prefers the safe option 0 but the Coarse Bayesian strictly prefers x. On
average, the Bayesian profits by |z - B(u®|s)|.
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Proposition 10 states that payoffs increase at all menu-signal pairs if and only if the agent
becomes more sophisticated and all “new” feasible posteriors ;19 represent singleton cells Q.
This means the agent becomes perfectly Bayesian on a subset of A, blocking new or different
distortions that yield lower payoffs in some menu-signal pair. It follows immediately that
the agent is less biased and that V4(¢) > V4(0) for all A and o.

I conclude this section with a brief discussion of how my results might enable various
approaches for selecting or endogenizing Coarse Bayesian updating rules. One approach is to
solve for an optimal updating rule in a given environment—a menu and signaling structure—
under some constraint (for example, a fixed number of cells or a cost per additional cell).
Pioneered by Wilson (2014) and Brunnermeier and Parker (2005), versions of this approach
can provide a theory of where the updating rule “comes from.” A drawback is that an updat-
ing rule adapted to one environment may be ill-suited for another. Only the robust ordering
given by statement (ii) of Proposition 10 ensures weakly greater payoffs at all menu-signal
pairs. So, rather than considering updating rules adapted to specific environments, one
might instead endogenize them by selecting rules that are unimprovable (given costs or con-
straints) under the robust ordering. Alternatively, one might consider the weaker objective
of minimizing worst-case losses (Proposition 9). These approaches are suitable if agents are
unable to form probabilistic beliefs about their environment and, consequently, seek heuris-
tics robust to such uncertainty. Naturally, different criteria yield different predictions about
updating rules; minimization of worst-case losses, for example, leads to representations ex-
hibiting less skewness. Analysis of endogenous updating rules is beyond the scope of this
paper, but—as illustrated by the characterizations in this section—the framework of Coarse

Bayesian updating provides a natural and tractable setting in which to carry it out.

5 Conclusion

In this paper, I have proposed a simple generalization of Bayes’ rule, Coarse Bayesian up-
dating, that can account for a variety of biases and individual heterogeneity in updating
behavior. Three axioms—Homogeneity, Cognizance, and Confirmation—fully characterize
the model and have the property that strengthening any of them to an if-and-only-if form
makes the agent fully Bayesian. Thus, Coarse Bayesian updating may be viewed as a “small”
departure from Bayes’ rule, and there is a clear separation between the properties of Bayes’
rule that are satisfied by proper Coarse Bayesians and those that are necessarily violated.
An advantage of the framework is that it employs standard primitives that frequently
appear in applications. The use of noisy signals over a state space, for example, allows one

to import Coarse Bayesian updating into familiar settings in economics and game theory. I
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illustrate this by embedding the model in a standard setting of decision under risk, leading
to a close relationship with the Blackwell ordering and comparative notions of cognitive

sophistication and bias. I leave further development of such applications to future work.

A Proofs

A.1 Proof of Theorem 2

First, suppose p has a Coarse Bayesian Representation. Note that for every s € S the signal
% is well-defined because p¢ has full support. Define d : S — S by

s if u* = B(ucls
d(s) = 1 (uels)

% otherwise
It is straightforward to verify that pu® = B(uf|d(s)) for all s and that d satisfies properties
(i)—(iii) of Theorem 2.

Conversely, suppose p has a Signal Distortion Representation d. Define a binary relation
~ on S by s ~ t if and only if d(s) ~ d(t). Clearly, ~ is an equivalence relation; thus,
its equivalence classes partition S. By (i) and (ii), each equivalence class is a convex cone.
Thus, as in the proof of Theorem 1, each equivalence class is associated with a convex subset
of A, and these subsets form a partition P of A. For each cell P € P, let u*’ := B(uc|d(s))
such that s belongs to the equivalence class associated with P. By (iii), u” € P.

A.2 Proof of Proposition 1

It is straightforward to verify that Bayesian updating satisfies properties (i)—(iii). So, suppose
p has a Coarse Bayesian Representation (P, u”). We show that each of properties (i)-(iii)
forces each cell of P to be a singleton, making the agent Bayesian.

For (i), suppose p* = p! implies s & t. Let P € P and ji, i/ € P. Choose signals s,t
such that B(u¢|s) = i and B(uc|t) = i’. Then p® = u' = u”, so that s ~ ¢ and, hence,
= B(u|s) = B(pc|t) = /. Thus, every cell P € P is a singleton.

For (ii), suppose p*t* = u® implies p® = p'. Suppose toward a contradiction that P
contains a non-singleton cell P. Since p is non-constant, there exists P’ € P such that
pt # p. Since p° has full support, there exist signals §,% such that B(p¢l3) = p and
B(pe|t) = pt'; thus, p** = ¥ and pf* = p for all a, 8 € (0,1). By equation (1) in the

main text, it follows that if o + ff € S, then B(u¢|a + Bt) = (agof.ﬁg.ue ub + (aﬁ.ﬁ!g.m ut,
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which converges to u? as 8 — 0. By regularity of P, there is an e-ball B* C P around p’.
Thus, for sufficiently small o, 8 € (0,1), we have p®**7 ¢ S and B(u|as + pi) € B%; but

as+ht — P — s while pft = pP # uP, contradicting property (ii).

then p
For (iii), suppose p! = p* implies ¢ & p*/u®. Consider the case t = s. Then u' = p®, so

s =t~ p®/pc. This implies p® ~ su€, so that u® = B(u®|s).

A.3 Proof of Proposition 2

Suppose i is a Pooled Coarse Bayesian updating rule induced by a representation (P, u”)
that is stable at w. Let {s"}22, denote a sequence of signal realizations from o such that
B(u|st...s") — &, and { B"}>2, the associated sequence of Pooled Coarse Bayesian beliefs;
formally, B" := u? such that B(u¢|st...s") € P € P. By stability at w, there is an € > 0
and a cell P* € P such that the e-ball in A around ¢, is a subset of P*. Thus, for all n
sufficiently large, B(u|s'...s") € P* and, hence, B" = uf". So, if B(uls'...s") — 4,

(s1,008™)

almost surely, then u = B" — " almost surely.

A.4 Proof of Proposition 3

For (i), let p be a Sequential Signal Distortion rule. Observe that for every signal r, u" =
B(pfld(r)) = d(r)uc. It follows immediately that pu®" ~ d(t)d(s)u¢ ~ u**), so that p
is invariant to signal ordering. However, u need not be invariant to signal ordering. For

example, consider a model with two states and distortion function

a(s) = (1/5,4/5) i 2>2

€ else
Let s = (1/5,4/5) and t = (3/4,1/4). Then st = (3/20,4/20), d(st) = e, d(s) = (1/5,4/5),
and d(t) = e; thus, d(s)d(t) = (1/5,4/5) # e = d(st), so that p # pst.
For (ii), consider a Sequential Coarse Bayesian updating rule satisfying all requirements
in the second part of the statement. Since u® has full support, there is a signal r such that

B(pf|r) = p®. Similarly, there is a signal ¢ such that B(uf|t) = p” because u” has full
support. It follows that p("ts") = P £ P = prs™b,

A.5 Proof of Proposition 4

Given a finite sequence s',...,s" € o = [t!,...,t/] and 1 < j < J, let n; denote the number
of signals s* such that s' = /. Then p®' ") = B(u¢|r") where 1" := d(s')d(s?)...d(s") =

36



d(t')y"d(t*)" ... d(t")". Observe that, in state w, > — ¢/, almost surely. Thus,

()Y = d( )y A () d( ) Ed () d() =

almost surely. Consider the likelihood ratio €7}, ., == %= o If < 1, then £}, ,» — 0 almost
rm, 1/n ", 1/n ,
surely because (7, . = (éﬁ%) and éﬂfﬁ% — ::—” [0, 1) almost surely. So, take any

w* € E*. Then, as n — 0o, we have

1 S
* T"):: oy LB B(p).
tw* :U’e ' s ,Ule : 1[w’€E*]

Bl = B (i

A.6 Proof of Proposition 6

Lemma 1. Let o : A = R and ® : € — R such that ®(0) = >, p(1)77(f1). Suppose P
satisfies the Blackwell ordering: o 1 o' implies (o) > ®(0’). Then ¢ is convex.

Proof. Let i,/ € A, a € (0,1), and g% := app + (1 — a)i/. Since p€ has full support,
there exists * € A and \ € (0 1] such that A\pg* + (1 — \)a® = p°. Let o = [s%s,5] and
o' = [s*, 5 + '] where s* = A et (1—)\)04%, and s’ = (1—/\)(1—a) . Clearly, o J ¢/,

so that ®(o) > ®(o’). Moreover, pe-s = A pf-s=(1-Na, p°- s (1 —A)(1 —a), and
pue-(s+s')=1—X\ while B(u¢|s*) = i*, B(uls) = i1, B(uls’) = i/, and B(pc|s+s") = g~
Thus, ®(0) = @(@")A+@(a)(1=Na+e(i)(1-A)(1-a) and ®(d’) = p(@")A+@(a%)(1=A),
so that (o) > ®(0’) yields ap(fr) + (1 — a)p(i') > (%), as desired. O

To prove Proposition 6, let A € A and observe that (i) = (ii) by Lemma 1 (taking
¢ = v?). The converse implication, (i) = (i), follows from Blackwell’s theorem. To see that
(iii) = (i), observe that if ¢*(A) Nb°(c(A)) # 0 for all s, then every Coarse Bayesian choice
from A is Bayesian-optimal in the menu A" = ¢(A). Since Coarse Bayesian choices from A
are identical to those from A’, it follows that V4(s) = VA (0) = VAI(U) for all o. That is,
VA4 coincides with the Bayesian value of information in some menu, and therefore satisfies
the Blackwell ordering.

Finally, we prove that (i) = (iii). Suppose (iii) is violated; that is, there exists s € S
such that ¢*(A) N b%(c(A)) = 0. Let i = B(u|s). Then there exists x € ¢(A) such that
vA(p) =z - <y-pfor all y € b*(c(A)). Choose any y € b*(c(A)) and P € P such that
y e " (A). Let t € S such that B(u|t) = uP. By regularity, P has full dimension in A

and p” belongs to the interior of P; therefore, we may assume B(uf|s+t) € P (if necessary,
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scale s and t down by some A > 0 sufficiently small). Observe that

S-pS tep P

B(pfls+t) = Gt

In particular, ¢’ maximizes the above expression, so we have v/ - i > y- i and v/ - u*’ = y - u%
because y € ¢* (A). Now let o = [s,t,e —s —t] and o/ = [s + t,e — s — t]. Clearly, o 3 o'
Let VA(e — s —t) := vA(B(pfle — s — t))[(e — s — t) - u¢]. Then

I
<

VA = v (@)[(s + 1) - ]+ VA(e— s — 1)

y i) (s p)+ (- pu)E )+ VAe—s—t)
)(s - 1)+ (y- ") (- p) +VAe -5 — 1)

z-f)(s p)+ (y-ph) (- p) +VAe—s—1t)

V(o).

>

y .

VoIV
>

A.7 Proof of Proposition 7

The implication (i) = (ii) is clear; the converse follows immediately from the next lemma.

Lemma 2. Suppose (P, u”) and (Q, 12) are reqular representations of p and fi, respectively,
such that u¢ = [1¢. Furthermore, suppose that for allc J o' and A € A, VA(U) > VA(U’) =
VA(a) > VA(o'). Then Q is finer than P and u* C <.

Proof of Lemma 2. The proof is divided into three steps.

Step 1: for every Q € Q, there is a unique P € P such that int(Q) C int(P).

First, observe that for every @) € Q there is at least one P € P such that int(Q)Nint(P) #
(); this holds because at least one P intersects the (nonempty, by regularity) set int(Q), which
implies int(Q) Nint(P) # @ by regularity of @ and P.

So, suppose toward a contradiction that there exist () € Q and distinct P, P’ € P such
that int(Q) Nint(P) # O and int(Q) Nint(P’) # . Then there exist [, i/ € int(Q) such
that 4 € int(P) and ' € int(P’). Note that i # i’ since P N P = (). Moreover, we may
assume u” ¢ co{ji, ji'} since, by regularity, we can replace fi with a point in the interior of

co{u, i’} N P if u € co{fi, i/}, Similarly, we may assume p”” ¢ co{fi, i'}.
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Next, we argue that it is without loss to assume that either p” ¢ co{p, i/, u”'} or
" ¢ co{p, ii', u}. First, consider the case N = 2 (2 states). Since u” ¢ co{j, i’}
and p” ¢ co{fi, i'}, it follows immediately that u” ¢ co{fi, i/, "'} because otherwise
pr € co{pt” /Y € P'. Similarly, u* ¢ co{pi, i, u"}. Now consider the case N > 3.
By regularity, we may assume that the points i, ', u*, and p are distinct and not
collinear (regularity allows us to perturb the points if necessary). It follows immediately
that u” ¢ co{f, i/, p™'} or u" ¢ co{n, i/, u"}.

Suppose p ¢ co{f, fi', p¥'} (the argument for the other case is similar). Then we may
strictly separate u” and co{i, i/, u* /}; in particular, there exists x such that z - u* < 0 and
x-fi>0for i € {f1, i/, ¥}, If necessary, perturb x so that = - u® # 0. Let A = {x,0} and
s,t € S such that B(uf|s) = 1 and B(u|t) = i'. For sufficiently small a, 5 > 0, we have
as + [t € S; moreover, by equation (1) in the main text, B(uf|las + t) — [/ as a — 0.
Thus, we assume without loss of generality (replacing s and ¢ with appropriate as and (t)
that B(u¢|s + t) € int(P'). It follows that ¢*(A) = ¢*" (A) = 0 while ¢/(A) = ¢#H(A) =
c”P/(A) = z. Finally, let 0 = [s,t,e —s —t] and ¢/ = [s +t,e —s —t]. Clearly, o J ¢’
and VA(c) = VA(¢') since i, i, and B(pf|s + t) belong to the same cell Q € Q. However,
VA(o') > VA(0) because VA(s +t) > VA(s) + VA(t), where VA(3) := vA(B(uf]3))(5 - pe).
This contradicts the second assumption of the lemma.

We have shown that for every @ € Q, there is a unique P € P such that int(Q)Nint(P) #
(). Since P partitions A and cells are regular, it follows that, in fact, int(Q) C int(P).

Step 2: uF C [1<.

Suppose toward a contradiction that there is a cell P € P such that uf # (9 for all
Q € Q. Let Q denote the (unique) cell in Q such that u” € Q. By regularity, there is
a neighborhood of u® contained in int(P); since u” € @Q, such a neighborhood intersects
int(Q). Thus, by Step 1, int(Q) C int(P). Moreover, since pu¢ = (¢, we have P # P¢ and
Q # Q°, where u® € P° € P, 1 € Q° € Q, and int(Q°) C int(P¢). There are two cases:
either puf ¢ co{p@, u¢} or u? € co{n®, pc}.

If u? ¢ co{j®?, u°}, there exists x such that - u” < 0 and z - i > 0 for i € co{p?, u¢}.
Let A = {x,0} and s,t € S such that B(u°ls) = (% and B(ult) = p°. As in Step 1,
we may choose s and ¢ so that s+t € S and B(pls +¢) € int(Q°) C int(P¢). Thus,
(A) = " (A) = 0 and (A) = ¢H(A) = ¢ (A) = z. Letting 0 = [s,t,e — s — ] and
o' = [s+te—s—t, it follows that ¢ J o, VA(c) = VA(0!), and VA(o!) > VA(0),
contradicting the second assumption of the lemma.

If instead pu? € co{?, u°}, we may strictly separate u¢ from co{n?, uf’}: there exists =
such that = - p® < 0 and o - i > 0 for i € co{1?, u¥’}. Moreover, we may choose x so that
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the line x - i = 0 passes through int(P) and, therefore, so that there exists i € P so that
x-f1 < 0. Let s,t € S sothat s+t €S, B(u|s) = f1, B(u|t), and B(u|s+1t) € int(Q°). Let
A= {z,0}. Then ¢*(4) = ¢*" (A) = z and ¢!(A) = ¢**(A) = 0. Letting 0 = [s,t,e — s — {]
and o’ = [s +t,e — s — 1], it follows that o J o', VA(c) = VA(¢'), and VA(d') > VA(0),

contradicting the second assumption of the lemma.

Step 3: for every QQ € Q, there exists P € P such that Q) C P.

Let @ € Q. By Step 1, there is a unique P € P such that int(Q) C int(P). Suppose
toward a contradiction that there exists i € @) such that i ¢ P; such a i must be on the
boundary of Q, so fi # 9 by regularity. Since int(Q) C int(P), we also have that /i is on
the boundary of P (otherwise there is a neighborhood of /i contained in the complement of
P; but every such neighborhood intersects int(Q), contradicting int(Q) C int(P)).

Since P partitions A and i ¢ P, there is a cell P’ € P (P’ # P) such that g € P'.
By regularity, u” € int(P’). Moreover, since /i is on the boundary of P, i is also on the
boundary of P’. Thus, we may strictly separate u” from the closure of P; in particular,
there exists « such that = - u”" < 0 and z - i > 0 for i € co{fi, i?}. Choose s,t € S so
that B(uls) = o, B(pclt) = 9, and B(uc|s +t) € int(Q). Letting o = [s,t,e — s — {]
and o’ = [s+t,e — s — t], it follows that 0 3 o/, VA(0) = VA(¢’), and VA(d') > VA(0),

contradicting the second assumption of the lemma. O]

A.8 Proof of Proposition 8

For any (P,u”) and P € P, let S := {s € S : B(u°|s) € P}. For any o, let s :=

Y sconsr 5- Experiments o and ¢’ are P-equivalent if sPo = P for all P € P.

Lemma 3. Suppose (P, u”) is reqular and let 0,0’ € £. Then o and o’ are P-equivalent if
and only if VA(o) = VA(a') for every A such that (A, o) and (A,0’) are u”-decisive.

Proof. Suppose o and ¢’ are P-equivalent. Observe that for every u”-decisive pair (A, ),
VAG) = 3 pep(us™®) - ¢ (A) because decisiveness implies ¢ (A) is a singleton for all
P € P where 577 # 0. Thus, V(o) = V4(¢’') because s7 = s for all P € P.

For the converse, suppose o and ¢’ are not P-equivalent. We construct a menu A such that

/

(A,0) and (A, ') are uP-decisive but V4A(a) # VA(o’). For each P € P, let 67 := sPo— s
Since experiments consist of finitely many signals, there are finitely many (but at least two)
cells P such that 6 # 0. Let p := {u” : §¥ # 0} and let " be an extreme point of the
convex hull of x°. Since p? is finite, u”” can be strictly separated from the convex hull of
pO\{u""}; that is, there exists = such that z - " > 0 > 2 - u” for all u* € p\{u""}.

By regularity, we may assume that x is such that the menu A = {x,0} makes (A, o) and

40



(A, 0") pP-decisive (if necessary, perturb x so that ¢*(A) is a singleton for all s € o U ¢”).
Then VA(g) — VA(0!) = S pep(p®d”) - ¢ (A) = (u077) - = because c¢*” (A) = 0 for all
pt e P \{u"}. Thus, VA(o) # VA(o') provided (u¢d*") -z # 0. Since the separation is

strict and (P, u”) is regular, we may perturb z if necessary to ensure (u¢6”") - x # 0. O

Proof that (i) implies (ii). Let 0,0’ € € and suppose VA(g) = VA(c) for all A such that
(A,0) and (A, 0’) are fi%-decisive. By Lemma 3, o and ¢’ are Q-equivalent. Since Q is finer
than P, it follows that o and ¢’ are P-equivalent. Thus, by Lemma 3, V4(o) = VA(o’) for
all /19-decisive A.

Proof that (ii) implies (i). Let Q € Q and suppose s,t € S?. Let 0 = [s,t,e — s — 1]
(if necessary, scale s and t down by a factor A > 0 to make o well-defined), and let ¢’ =
[s+t,e—s—t]. By Convexity, s+t € S and, thus, o and o’ are Q-equivalent. By Lemma 3
and the hypothesis of (ii), this implies o and ¢’ are u”-equivalent. Thus, there exists P € P
such that s,t € ST (otherwise, there are distinct cells P/, P” € P such that s € P’ and
t € P”; but then ¢ and ¢’ are not P-equivalent, as s + ¢t belongs to a single cell). We have
shown that any two signals belonging to a common S? (Q € Q) belong to a common ST
(P € P). Thus, Q is finer than P.

A.9 Proof of Proposition 9

Fix s € S and let u* = B(uf|s) and puf” = p® where u* € P € P. If A € A*, then there exist
x*,y* € A such that VA(S) =z p* and VA(s) = y* - pf. In particular, 2* - u* > x - p*
and y* - puf >y pf for all z,y € A. Let A* = {z* — z*,y* — 2*} = {0,y* — 2*}. Then
VA(S) —VA(s) = v (s) — VA (s). Hence, to compute L,(s), it is without loss of generality

to consider menus of the form {0, y} where ||y|| < 1. We therefore rewrite the L, (s) as

Lu(s)= sup 0-p* —y-pu* subject to: 0-p* >y-p* and y-p” >0-pu”
llyll<1

= H;ﬂlily - u* subject to: 0>y - p* and y-pu” > 0.
The first constraint ensures the Bayesian prefers action 0 over y at signal s while the second
ensures the Coarse Bayesian prefers y over 0 at s. Hence, we seek the infimum of y - u* over
all y on the unit (hyper)sphere bounded by the planes y - u* < 0 and y - u” > 0. Clearly, the
infimum is characterized by a point 3* on the plane y - 4 = 0. Thus, we seek a point on the
disc {y : y - u” = 0 and ||y|| < 1} tangent to a plane y - u* = ¢ with normal p*. There are

two such points; one maximizes y - ;*, the other minimizes it.
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Restricting attention to the case u* # u®’, the first constraint does not bind. Thus, the
Lagrangian is
L=y My 1)+ ey oy - 1)

Setting % =0 gives 2\oy = p* — \p”. Then y - u = 0 implies 0 = p* - u¥ — A\ ||u”]|? and

“*.“P
P2 SO that

y-y = 1implies 2\y = p* -y — M\t -y = p* - y. Thus, \; =

* P
o * /’L /J’ P
2hay = "(WH?)“ |

* P

Since 2Ay = p* - y, this implies (p* - y)y = p* — (%) u?. Thus, any solution y satisfies

; a2 (e ph)? ez e Pl "] cos® 0 o
(1w - 9)? = ) = IR = lu** = EE = ||p*|* sin® 0

where 6§ € (0,Z] is the angle (in radians) between p* and p”. Thus, L,(s) = |y - u*| =

’2
|| *|| sin @, which is increasing in §. Observe that D, (s) = ‘ is the length of the

e p
el el
* P
chord connecting the points HZ_H and ﬁ on the unit circle. The length of a chord with
0

central angle 6 is 2sin (%), which is strictly increasing on [0,%]. Thus, D,(s) = 2sin (%)

increases if and only if ¢ increases, so that D, (s) increases if and only if L, (s) increases.

A.10 Proof of Proposition 10

To see that (ii) implies (i), observe that 0(i1) # v*(j1) only if i belongs to a cell Q such
that 49 ¢ p”. Every such Q is a singleton because fi is less biased than g, which implies
uF C 2 and, hence, that Q is a “new” cell. Thus, 04(i1) = v4() > vA(f).

To prove that (i) implies (ii), first apply Proposition 9 to get that /i is less biased than
. Therefore, ¥ C €. We need to show that Q is finer than P and that every cell @ such
that 19 € 19\u” is a singleton.

First, we verify that Q is finer than P. Suppose toward a contradication that there is a
cell @ € Q that intersects two or more distinct cells of P. There is a unique P € P such
that 19 € P. Let P’ # P be another cell of P such that Q N P’ # (). Clearly, 1% ¢ P'. Let

OP' denote the boundary of P’. There are two cases.

Case 1: 19 ¢ OP' . Then, since P’ is convex, there exists z € RY that strictly separates
9 and P 249 >0 > a-aforall o € P. Let A= {x,0}. Then v*(3/) = 0 for all
[/ € QNP because 0 > - . However, ’I'JA(/;/) =x-f for all i/ € QNP because z- 19 > 0.
Since 0 > x-ji’ for all i/ € QN P, it follows that v4(i') < vA(fi’) for such 7', a contradiction.
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Case 2: 19 € OP'. Then P’ is not a singleton (otherwise u” = % ¢ P'), forcing P’ to
be regular. Moreover, @ is regular because it intersects the (disjoint) sets P and P’. Thus,
there are disjoint open neighborhoods Ng C @ and Npr C P’ of 19 and ur’. Since Ng
and Nps are convex, there exists x € RY that strictly separates them: z - > 0 > x - ji/
for all i € Ng and i € Npr. Moreover, 49 € Q NP implies Ng N P’ # (), where OP’;
by regularity, No N P’ is a full-dimensional subset of () N P’. Perturb = so that the plane
x - i = 0 passes through the interior of Ng N P’ (but not the point £i?); this can be done by
shifting the plane toward the point 4?. Then x no longer separates Ng and Np/, but the set
C:={i€ NgNP :0>x-j} is nonempty, and we still have z - 49 > 0 and 0 > z - i/ for
all i’ € Npr. Letting A = {z,0}, it follows that v4(1) =0 > x- i = 04() for all i € C, a

contradiction.

Next, we verify that every cell @ such that 4@ € <\u” is a singleton. Suppose toward
a contradiction that there exists 9 € 9\u” such that @ is not a singleton. Since /i
is more sophisticated than p, there is a unique P € P such that  C P. Note that
u = AP € 4P, Since u® belongs to the relative interior of @, there exists y* € @ such that
19 ¢ {ap*+ (1 —a)uf : a € [0,1]} := L. The set L is closed and convex, and therefore can
be strictly separated from [1¥: there exists z € RY such that z- 49 > 0> z-fi for all i € L.
In particular, both z - u* < 0 and x - u¥ < 0. Let A = {0,x}. Then, at (Bayesian) posterior
€ Q C P, the (P, u”) representation selects 0 from A: v#(y*) = 0. Under representation
(Q, u?), however, z is selected from A at posterior u* because u* € Q and x - 19 > 0. Thus,
0 () = x - p* <0, so that 04 (u*) < vA(u*).
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