

Do The Effects of Nudges Persist? Theory and Evidence from 38 Natural Field Experiments

Alec Brandon*

Johns Hopkins University

Paul J. Ferraro

Johns Hopkins University

John A. List

University of Chicago, ANU, & NBER

Robert D. Metcalfe

Columbia University & NBER

Michael K. Price

University of Alabama, ANU, RWI-Essen, & NBER

Florian Rundhamer

Georgia State University

January 14, 2026

Abstract

We formalize a research design to uncover the mechanisms underlying long-term reductions in energy consumption caused by a widely implemented nudge. We consider two channels: technology adoption and habit formation. Using data from 38 natural field experiments, we isolate the role of technology adoption by comparing treatment and control homes after the initial resident moves, which discontinues the treatment for a home. We find that fully half of energy reductions persist in the home after treatment ends and show this persistence is consonant with a technology adoption channel. The role of technology in creating persistent behavior change has important implications for designing behavioral interventions and evaluating their long-term social impacts.

*We thank Arhan Gunel and Nancy Hersch for sharing the data. Hunt Allcott, Jonathan Davis, Michael Greenstone, Justin Holz, Jim Kapsis, Marc Laitin, Jeff Livingston, David Novgorodsky, Steve Puller, David Rapson, Sally Sadoff, Jeroen van de Ven, and Meng Zhu offered helpful comments. Michael Cuna and Ariel Listo provided excellent research assistance. We would also like to thank participants of the American Economic Association annual conference, the Muenster Energy Conference, the Association of Environmental and Resource Economists annual conference, Camp Resources XXII, POWER Conference 2018, the Grantham Institute at the London School of Economics, the University of Chicago, Marquette University, ZEW, RWI-Essen, and Georgia State University.

1. Introduction

A growing literature has established that nudges (Thaler and Sunstein, 2008) are a highly cost-effective approach to changing an array of behaviors in the short-term (Allcott and Mullainathan, 2010; Benartzi et al., 2017; Hummel and Maedche, 2019; DellaVigna and Linos, 2022).¹ Less, however, is known about the long-term effectiveness of nudges. In many of the contexts in which nudges are applied, such as education, health or the environment, success requires persistent behavior change.

We study the mechanisms underlying persistent energy reductions produced by one of the most widely studied nudges: the Home Energy Report (HER). The HER provides a social comparison that contrasts the recipient's energy consumption to the energy consumption of their neighbors. The HER has been evaluated in dozens of randomized trials conducted by residential energy providers across the United States (U.S.).

Studies of randomized trials find the HER is highly cost-effective. Although energy consumption is notoriously price inelastic, Allcott (2011); Ayres et al. (2013); Costa and Kahn (2013); Allcott (2015) report that average energy consumption declined by one to two percent among households who received HERs over a period of a year. The evidence for HER effectiveness has led energy providers in the U.S. to widely adopt the HER and policymakers to herald the HER as an important tool to fight against climate change (IEA, 2021). As a further testament to the success the HER, the company that developed it, Opower, was acquired by Oracle for more than \$500 million.

Follow-up studies report that the HER effect on energy consumption persists beyond a single year. After five years of exposure to HERs, a

¹Thaler and Sunstein (2008, pp. 6) defines a nudge as an intervention designed to alter, "...behavior in a predictable way without forbidding any options or significantly changing their economic incentives."

difference in energy use between households in the treatment group (HER recipients) and the control group (untouched) can still be detected (Bell et al., 2020, and the citations therein). Furthermore, the majority of the short-run effect persists two years after HERs are discontinued (Allcott and Rogers, 2014).

The persistence of the HER effect stands in marked contrast to the persistence of the effects of analogous social comparison nudges in other contexts (see Online Appendix Figure 1). In the short term, these nudges increase charitable giving, financial savings, tax and other types of compliance, water conservation, and voter turnout. However, only the effects on water conservation persist after the nudges are discontinued (Shang and Croson, 2009; Apesteguia et al., 2013; Ferraro and Miranda, 2013; Bernedo et al., 2014; Hallsworth et al., 2017; Coppock and Green, 2016; Rogers et al., 2017; Kast et al., 2018).

The challenge of designing nudges that produce persistent effects can be seen in a recent meta-analysis. DellaVigna and Linos (2022) find that the estimated effect of the nudge and the time horizon over which a nudge is evaluated are negatively correlated. After controlling for a variety of observable features, they find that each additional day over which a nudge is evaluated correlates with a 0.7 percent reduction in the average effect of the nudge. While this estimated effect is statistically imprecise (standard error = 0.4), it suggests that the average short-term effect of nudges would disappear after an additional year or two.²

Academics and policymakers who wish to induce persistent behavioral change would thus benefit from understanding the mechanisms that underlie the persistent effects of HERs on energy consumption. Yet the evidence about the channels through which HERs affect long-run patterns of energy

²See also Choukhmane (2021) for evidence on long-term effects of savings defaults that dwarf short-term effects.

consumption is limited. In two HER experiments, [Allcott and Rogers \(2014\)](#) found that no more than 2 percent of the HER's long-term effectiveness can be explained by participation in utility run energy efficiency programs. Under the assumption that adopters of energy efficient technologies would use these programs to facilitate adoption, the finding suggests that technology adoption is unlikely to be one of the channels driving the persistence of the HER effect.

Likewise, evaluations of an HER-like intervention for water conservation also fail to provide any evidence of technology adoption driving the persistence of the effect. [Ferraro and Miranda \(2013\)](#) and [Bernedo et al. \(2014\)](#) report that the estimated effect is no longer statistically significant in the subgroup of homes in which the initial treated resident had moved. They conclude that a change in habits is the most plausible channel for the persistence of the intervention's effect.

These analyses suggest that the long-term effectiveness of the HER reflects changes to something in the people residing in a home, such as their habits or skills, as opposed to something in the home, such as more efficient technologies. However, these results are only suggestive. The research designs are informal, and the identifying assumptions are not clearly defined or tested. Moreover, in the analyses of movers in [Ferraro and Miranda \(2013\)](#) and [Bernedo et al. \(2014\)](#), the samples are small and thus potentially under-powered.

We formalize a research design that decomposes the long-run effect of the HER into components attributable to technology adoption and habit formation. This decomposition is accomplished by exploiting a feature of how HERs were administered in the experiments. If the initial resident in an HER experiment moved to a new home, then the HER was immediately discontinued. Moving, however, did not discontinue observations of energy consumption in the home. We show that, under certain conditions, the post-

move HER effect identifies the fraction of the treatment effect attributable to technology adoption. The fraction attributable to habit formation is then the fraction of the HER’s long-term impact that is not explained by technology adoption.

Our decomposition of the HER’s long-term effectiveness depends on the validity of three assumptions. First, treatment assignment did not influence residents’ decisions to move from a home in the experimental sample. Second, treatment assignment did not influence the types of residents that moved *into* a home in the experimental sample. Third, the technology adopted in response to the HER remained in a home after the initial resident moved. We argue that these assumptions are plausible for a “light touch” nudge like the HER and several types of energy efficient technology that it may have encouraged residents to adopt, such as more energy efficient light-bulbs, door sweeps, and weather stripping windows. We also consider the plausibility of the identifying assumptions with data from our experiments and find evidence that is broadly consistent with the assumptions.

Using data on nearly 140,000 movers observed across 38 HER experiments, we apply our research design and decompose the long-term effectiveness of the HER. We find that, over the long-term, movers respond to receipt of the HER by reducing their energy consumption by 2.1 percent. Moreover, we find that fifty-two percent of this reduction remains in the home after a move, and we show this result is robust to a battery of alternative specifications. Under our decomposition assumptions, these results imply that technology adoption was responsible for fully half of the long-term energy reductions produced by the HER. Extending our analysis to consider heterogeneity, we find that technology adoption is responsible for the majority of the HER’s long-term effectiveness on homes with electric heating, whereas habit formation is responsible for the majority of the effectiveness on rental homes and homes that initially consume more than their neighbors

(i.e., compare unfavorably to the neighbors on the first HER).

Our study makes three contributions. First, it provides a simple explanation for the variation in the persistence of social comparison effects in the literature: variation in the availability of technologies across contexts. In the contexts of energy and water conservation, households can respond to the nudge by adopting long-lived technologies that have long-term impacts by reducing the marginal cost of conservation. Such technologies, however, are scarce for households that wish to donate more to charitable organizations, evade their taxes, contribute to their financial savings, and vote in an election. The contrast between the rapid fade-out of effects produced by nudges that target these behaviors and the persistence of effects produced by nudges that target energy and water conservation can thus be explained by the variation in availability of enabling technologies.

Second, the identification of technology adoption as a critical channel for persistent behavioral change provides policymakers with an insight that can be leveraged to induce more persistent effects from nudges (or avoid such persistence when the goal is only temporary behavior change). Policymakers can target nudges towards behaviors that can be changed with the adoption of technologies. For example, we conjecture that the effect of voter turnout efforts will persist longer when a municipality allows households to default into easier modes of voting in future elections, such as mail-in or on-line ballots. When such technologies do not already exist, policymakers can encourage the development of new technologies that can be paired with nudges. For example, a social nudge promoting charitable giving or financial savings could be combined with an option to set a default donation or contribution rate in the future ([Madrian and Shea, 2001](#); [Thaler and Benartzi, 2004](#); [Goswami and Urminsky, 2016](#); [Altmann et al., 2019](#)).

Third, our study illustrates an application of a new approach to decompose the mechanisms of policy effectiveness. Prior studies advocate for ex-

perimental designs that directly test for a hypothesized mechanism (Ludwig et al., 2011) or econometric analyses that rely on the collection of data that proxy for hypothesized mechanisms (Heckman and Pinto, 2015). Our approach complements these recommended designs and analyses, particularly when there is uncertainty about whether changes in human or physical forms of capital are driving an intervention’s effect and when the intervention is a relatively light touch, such as a nudge, and thus will satisfy the three identifying assumptions of our design.

Our study also contributes to several other strands of research. First, it contributes to the nascent literature on the determinants of persistent responses to policy interventions (Frey and Rogers, 2014; Rogers and Frey, 2016). Second, by presenting a cost-benefit analysis of the HER that incorporates the indirect cost of the technology adopted, our study contributes to the literature on identifying the full effect of policy interventions (Heckman and Smith, 1997). Third, our study also contributes to the literature on energy efficient technology adoption by highlighting that nudges like the HER can stimulate the take up of such technologies (Jaffe and Stavins, 1994; Allcott and Greenstone, 2012; Gerarden et al., 2017; Gillingham et al., 2018). Finally, our study contributes to the theoretical and empirical literature on habit formation (Pollak, 1970; Becker and Murphy, 1988; Becker, 1992; Char-ness and Gneezy, 2009; John et al., 2011; Acland and Levy, 2015; Royer et al., 2105; Fujiwara et al., 2016; Levitt et al., 2016; Beshears et al., 2021; Vollaard and van Soest, 2024; Allcott et al., 2020; Bursztyn et al., 2021; Allcott et al., 2022). We contribute to the literature on habit formation by developing an approach to decompose the relative importance of changes in human factors, such as habits, and changes in non-human factors, such as technologies, for the long-run effectiveness of a policy intervention.

The remainder of this study proceeds as follows. In Section 2 we formalize our identification strategy. Section 3 describes the HER experiments

and mover sample. We present our empirical findings in Section 4 and discuss their implications in Section 5. Section 6 concludes by considering other contexts in which our identification strategy can be applied.

2. Identification Strategy

In this section, we formalize our strategy for decomposing the long-term effectiveness of the HER into components attributable to habits and technology.

2.1 Setting and Notation

Consider a subsample of homes in an HER experiment from which the initial resident will eventually move. During a baseline period, the electricity consumption of each home is observed. After this period, homes are randomly assigned to remain in the controlled state of the baseline period or enter a treated state, wherein the home receives an HER in the mail. Receipt of the HER continues for homes in the treated state until the initial resident moves, at which point the HER is discontinued.

More formally, let $i \in \{1, 2, \dots, I\}$ index each home. Let $t \in \{-12, -11, \dots, T\}$ index each unit of time over which a home's outcome of interest is observed and suppose this index is measured relative to the end of the baseline period (i.e., $t = 0$ is the time at which the treatment begins to be administered). The outcome of interest in the HER experiments is electricity consumption, which we denote with $Y_{it} \in \mathbb{R}$. Let $D_{it} \in \{0, 1\}$ be a treatment indicator that denotes whether home i has entered the treated state at or before time t . That is, during the baseline period, this treatment indicator equals 0 for every home. It then switches to 1 for the homes that receive the HER and stays at 1, regardless of whether the initial resident eventually

moves. Let $M_{it} \in \{0, 1\}$ indicate whether the initial resident has moved out of home i at time t . It will also prove convenient to define $\tilde{M}_i \in \{1, 2, \dots, T\}$ as the value of the time index at which the initial resident of home i moves. This variable is related to the move indicator according to $M_{it} = 1(t > \tilde{M}_i)$, where $1(\cdot)$ is the indicator function.

The relationship between the outcome of interest, Y_{it} , the treatment indicator, D_{it} , and the move indicator, M_{it} , can be described with potential outcomes notation. Let $Y_{it}(d, m)$ denote the potential outcome of electricity consumption in home i at time t if the treatment indicator is fixed at $d \in \{0, 1\}$ and the move indicator is fixed at $m \in \{0, 1\}$. The observed outcome is thus related to the observed treatment and move indicators according to the following expression,

$$Y_{it} = (1 - M_{it})(D_{it}Y_{it}(1, 0) + (1 - D_{it})Y_{it}(0, 0)) + \\ M_{it}(D_{it}Y_{it}(1, 1) + (1 - D_{it})Y_{it}(0, 1)). \quad (1)$$

2.2 Mechanisms

Our analysis considers two broad classes of mechanisms that could give rise to the long-term effectiveness of the HER. The first mechanism is a change in the stock of habits or skills in the resident of a home. Let $H_{it}(d, m)$ denote a measure of this stock in the resident of home i at time t when the treatment and move indicators are fixed at $d \in \{0, 1\}$ and $m \in \{0, 1\}$. The second mechanism is a change in the stock of energy efficient technology in the home. Let $K_{it}(d, m)$ denote a measure of this stock in the home i at time t when the treatment and move indicators are fixed at $d \in \{0, 1\}$ and $m \in \{0, 1\}$. For simplicity of notation, and without loss of generality, we assume both of these stock variables are measured in units of electricity consumption.

We assume a linear relationship between habits and technology in the

production of the potential outcomes,

$$Y_{it}(d, m) = H_{it}(d, m) + K_{it}(d, m) + V_{it}, \quad (2)$$

where the variable V_{it} captures features that are relevant to electricity consumption but invariant to receipt of the HER and the decision to move, such as the weather. Some of these features may be observable, in which case we can express $V_{it} = \Gamma' \mathbf{X}_{it} + U_{it}$, where \mathbf{X}_{it} is a vector of observables and U_{it} is unobserved. The linear formulation in equation 2 is a plausible approximation of the true relationship given that the HER targets small changes in behavior that would be locally linear under a more general all-causes model of the potential outcomes.

2.3 Parameters of Interest

The objective of our analysis is to decompose the long-term effectiveness of the HER into components that can be attributed to changes in habits and technology. Accordingly, we have three parameters of interest: The long-term average treatment effect, the long-term average treatment effect attributable to changes in habits, and the long-term average treatment effect attributable to changes in technology.

The first parameter describes the effectiveness of the HER after a home and its initial resident have been exposed to the HER for a long period of time. We refer to this parameter as the long-term average treatment effect, or *ATE* for short, and define it as,

$$ATE \equiv E[Y_{it}(1, 0) - Y_{it}(0, 0) | t > l^*], \quad (3)$$

where $E[\cdot]$ is the expectations operator and l^* is a threshold that denotes long-term exposure to the HER. We delay characterizing this threshold until

Section 3.2, as the theory underlying our identification strategy only requires the existence of such a threshold.

The second and third parameters of interest respectively capture the extent to which the effectiveness of the HER was caused by a change in the stock of habits and skills in the residents (H_{it}) or a change in the stock of technologies in the home (K_{it}). The relationship between these parameters and the ATE is obtained by plugging equation 2 into the definition of the ATE ,

$$\begin{aligned} ATE &= E[H_{it}(1,0) - H_{it}(0,0)|t > l^*] + E[K_{it}(1,0) - K_{it}(0,0)|t > l^*] \\ &= ATH + ATK, \end{aligned} \tag{4}$$

where the parameters $ATH \equiv E[H_{it}(1,0) - H_{it}(0,0)|t > l^*]$ and $ATK \equiv E[K_{it}(1,0) - K_{it}(0,0)|t > l^*]$ capture the effect of the HER on electricity consumption that is mediated by habits and technology, respectively.

2.4 Assumptions and Identification

The primary challenge in identifying our parameters of interest is that habits and technology are unobserved. This challenge can be overcome by using the post-move effect of the HER to point identify the effect of the HER on technology (ATK). Netting the ATK out of the pre-move effect allows for the point identification of the effect attributable to habits (ATH).

The validity of this approach depends on three assumptions, which we present below. The first assumption requires that treatment assignment did not influence residents' decisions to move from a home in the experimental sample. More formally, it requires that the potential outcomes are mean independent of the treatment indicator and the time at which the initial resident

moves,

$$E[Y_{it}(d, m)|D_{it}, \tilde{M}_i, \mathbf{X}_{it}] = E[Y_{it}(d, m)|\mathbf{X}_{it}] \text{ for } d, m \in \{0, 1\}, \quad (5)$$

where, henceforth, conditioning on the long-term is left implicit. The assumption in equation 5 has been implicitly invoked in every analysis of HER experiments. It holds if, conditional on the observables in the vector \mathbf{X}_{it} , receipt of the HER was randomized and the decision to move homes was not made with reference to the HER.

The second assumption requires that treatment assignment did not influence the habits of the residents who moved into a home in the experimental sample. In other words, after the initial resident moves, the habits of the subsequent resident are balanced across treated and controlled homes. Because the HER was immediately discontinued after the initial resident moved, this assumption restricts sorting behavior. Formally, it imposes the following restriction,

$$E[H_{it}(1, 1)|\mathbf{X}_{it}] = E[H_{it}(0, 1)|\mathbf{X}_{it}]. \quad (6)$$

If $E[H_{it}(1, 1)|\mathbf{X}_{it}] > E[H_{it}(0, 1)|\mathbf{X}_{it}]$, then high-energy users would be more likely to sort into treated homes and our research design would over-estimate the effect of the HER attributable to habits. If, instead, $E[H_{it}(1, 1)|\mathbf{X}_{it}] < E[H_{it}(0, 1)|\mathbf{X}_{it}]$, then low-energy users would be more likely to sort into treated homes and our research design would over-estimate the effect of the HER attributable to technology.

Before describing an empirical test of this second assumption, or how it may be relaxed, we consider its plausibility. If the HER did not alter pre-move technology adoption, then it is unclear how the subsequent resident of a treated home would have sorted on the basis of the initial resident's treatment status. In the United States, housing transactions are conducted at arm's length (i.e., buyers and sellers do not directly interact) and infor-

mation on electricity consumption is costly to obtain (for more on this, see Section 3.2). Even if such information were freely available, buyers would have to mistakenly infer that it signaled something about the home rather than the departing resident.

If the HER did alter technology adoption, then sorting on the basis of habits would be difficult unless the HER led to significant upgrades that were salient to potential buyers of the home. While the average effect of the HER is small, this could belie significant upgrades that are undertaken by a small proportion of recipients. However, [Allcott and Rogers \(2014\)](#) examine whether the HER altered participation in energy efficient programs run by utilities and find that the HER increased participation by 0.4 percent, which explains only 0.3 to 1.7 percent of the HER's long-term effectiveness. [Allcott and Rogers \(2014\)](#) also argue that, while this participation data likely misses small upgrades because the subsidies are small and the process to receive the subsidies onerous, it is more reliable for more significant investments that receive larger subsidies and that are made by a contractor who handles the process of receiving the subsidy. Therefore, it is unlikely that the HER caused a sufficient number of significant upgrades to facilitate sorting on the basis of habits. Instead, if the HER did induce technology adoption, it likely induced smaller upgrades like installing energy efficient lightbulbs, door sweeps, or weather stripping on windows that would not be salient to potential buyers of the home.

Despite the plausibility of the second assumption, we cannot rule out the possibility of sorting on habits. Thus, we take two approaches. First, we argue in Section 2.6.2 that a less restrictive version of the balanced habits assumption in equation 6 allows for partial identification of our parameters of interest. Second, in Section 4.4.1 we examine whether heterogeneity in the pre- and post-move effect of the HER are consistent with the balanced habits assumption.

The third assumption requires that the effect of the HER on technology adoption remains, or is stable, after the initial resident moves. Formally, this assumption implies that,

$$E[K_{it}(1, 0) - K_{it}(0, 0) | \mathbf{X}_{it}] = E[K_{it}(1, 1) - K_{it}(0, 1) | \mathbf{X}_{it}]. \quad (7)$$

Intuitively, this assumption requires that a move does not cause the technology adopted in response to the HER to exit the home, depreciate, or spread to control homes. The implications of this assumption are consistent with the HER overcoming persistent frictions in the adoption of long-lived energy efficient technology. Yet, we can also formulate a less restrictive version of the assumption that allows for partial identification of the parameters of interest. We consider this less restrictive assumption in greater detail in Section 2.6.2.

Under these three assumptions, we can use the effect of the HER before and after the initial resident moves to point identify the *ATE*, *ATH*, and *ATK*. The *ATE* is identified with the pre-move effect of the HER,

$$\begin{aligned} \text{Pre-Move Effect} &\equiv E[Y_{it} | D_{it} = 1, M_{it} = 0] - E[Y_{it} | D_{it} = 0, M_{it} = 0] \\ &= \text{ATE}. \end{aligned}$$

The *ATK* is identified with the post-move effect of the HER,

$$\begin{aligned} \text{Post-Move Effect} &\equiv E[Y_{it} | D_{it} = 1, M_{it} = 1] - E[Y_{it} | D_{it} = 0, M_{it} = 1] \\ &= \text{ATK}. \end{aligned}$$

The *ATH* is inferred by netting out the effect attributable to technology (*ATK*) from the total effect (*ATE*). Next we describe our strategy for estimation and inference.

2.5 Estimation

We estimate our parameters of interest with the following linear model,

$$Y_{it} = \beta D_{it}(1 - M_{it}) + \delta D_{it}M_{it} + \Gamma' \mathbf{X}_{it} + U_{it}, \quad (8)$$

where D_{it} is the treatment indicator in the long-term (i.e., $t > l^*$), \mathbf{X}_{it} is a vector of observables, and U_{it} is the unobservable. Linking our parameters of interest to the coefficients in equation 8 is straightforward. The pre-move effect of the HER is β , which corresponds to the *ATE*, and the post-move effect of the HER is δ , which corresponds to the *ATK*. *ATH* is then inferred from $\beta - \delta$. We conduct inference on these estimated parameters with heteroskedasticity-robust standard errors clustered by home.

2.6 Additional Notes

2.6.1 Timing of Moves

Over the course of an HER experiment, moves happen at different times and the timing of a move can influence the weight each home receives in the estimate of pre- and post-move HER effects (see, e.g., [Goodman-Bacon, 2021](#)). To evaluate whether our estimates are influenced by the timing of moves, we re-estimate the coefficients in equation 8 using the stacked difference-in-difference procedure that [Deshpande and Li \(2019\)](#) developed. That is, we estimate equation 8 with panel datasets constructed to observe each home in the baseline, comparison, and move periods for the same amount of time.

2.6.2 Partial Identification

As described in Section 2.4, the validity of our identification strategy relies on three assumptions. Here, we describe how relaxing the second and third

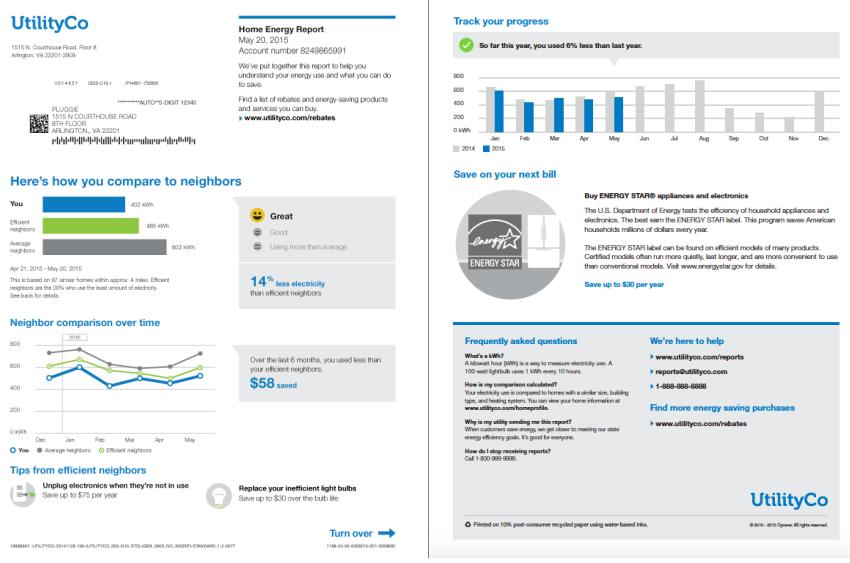
assumptions allows for the partial identification of the *ATH* and *ATK*. Recall that the second assumption requires the expected post-move habits to be equal across treated and control groups (i.e., no sorting based on habits) and the third assumption requires that the effect of the HER on technology adoption remains in the home after the initial resident moves.

As discussed in Section 2.4, the second assumption would likely hold if the HER did not alter pre-move technology adoption. If, however, the HER did alter pre-move technology and, in response, post-move residents sorted into homes based on their habits, then we believe that the most likely pattern would be that residents with a habit for higher levels of electricity consumption would sort away from control homes and towards treated homes because the return on energy efficiency investments is increasing in expected electricity consumption. In this case $E[H_{it}(1,1)|\mathbf{X}_{it}] \geq E[H_{it}(0,1)|\mathbf{X}_{it}]$ and our parameters of interest can be partially identified, with the pre-move effect still point identifying the *ATE*, the post-move effect identifying the lower bound of *ATK*, and the *ATE* net of *ATK* identifying the upper bound on *ATH*.

However, we cannot rule out the possibility that the HER altered pre-move technology in small but salient ways and that these alterations caused a different pattern of sorting on habits. For example, it is possible that environmental preferences are strong enough to cause post-move residents with a habit for lower levels of electricity consumption to sort away from control and towards treated homes. In Section 4.4.1 we consider whether this possibility is consistent with different sources of heterogeneity in the pre- and post-move effects of the HER.

The third assumption would be violated if moving causes the technology adopted in response to the HER to exit the home, depreciate, or spread to control group homes. However, all three of these possibilities suggest $E[K_{it}(1,0) - K_{it}(0,0)|\mathbf{X}_{it}] \geq E[K_{it}(1,1) - K_{it}(0,1)|\mathbf{X}_{it}]$, which allows for the partial identification of *ATH* and *ATK*. In other words, the pre-move effect

Figure 1: Example of Home Energy Report (HER)



Note: The figure presents the front and back of the Home Energy Report (HER). Before moving, treatment households receive HERs regularly (monthly, bi-monthly, or quarterly).

of the HER would still point identify the *ATE*, the post-move effect would identify the lower bound of *ATK*. The *ATE* net of *ATK* yields an upper bound on *ATH*.

3. Background

In this section, we describe the administration of HER experiments and provide a statistical description of our mover sample.

3.1 Administration of Home Energy Report Experiments

Our analysis uses data from 38 natural field experiments administered by a company called Opower. These HER experiments were conducted between

2008 and 2013 with customers of 21 different residential energy providers across the United States. Figure 1 presents an example of an HER, which compared home and neighborhood electricity consumption, described conservation tips, and provided information on energy-efficient technology adoption.

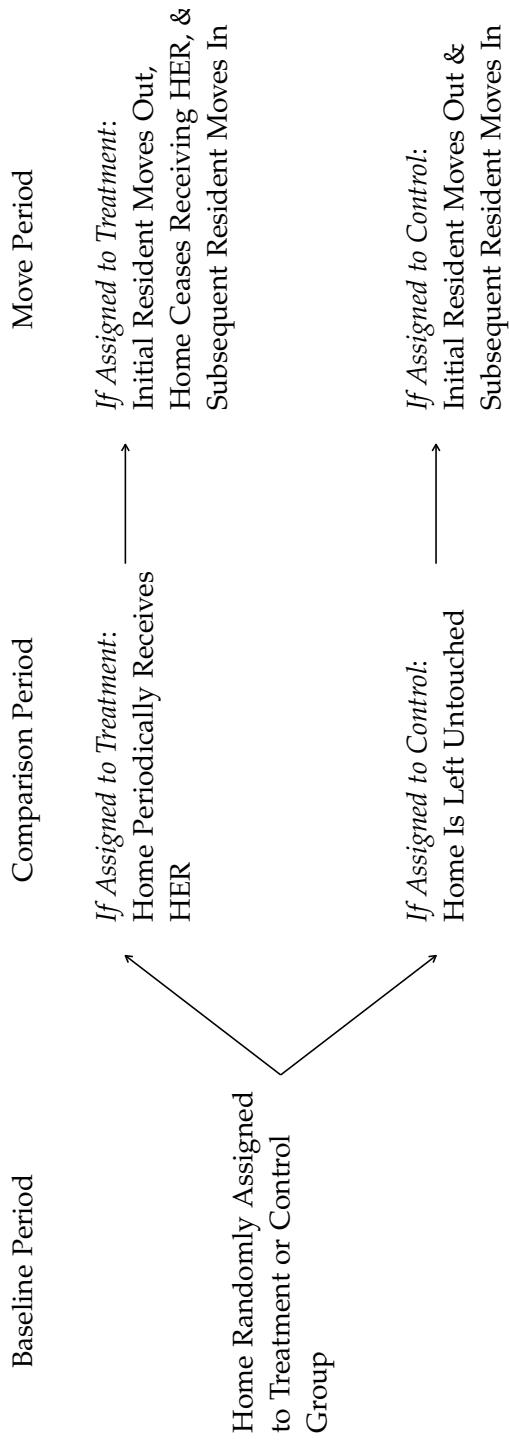
Each of the 38 HER experiments, or waves, used the same design, which is summarized in Figure 2. Homes were observed in the baseline period for twelve billing months and then randomly assigned to a treatment or control group. Homes then entered the comparison period, wherein Opower generated HERs for both groups, but only mailed the HER to treatment group households. Across the 38 waves, the HER was received monthly, bimonthly, or quarterly. We follow [Allcott and Rogers \(2014, pp. 3021\)](#) and pool across the HER frequency margin. Homes exited the comparison period and entered the move period when the initial resident deactivated their electricity service. Upon deactivation, generation of HERs ceased and the home was made ineligible for waves of HER experiments.

3.2 Description of Mover Sample

Our data were obtained via a data sharing agreement with Opower. These data allow us to observe: (i) the electricity bills of homes in each wave, (ii) treatment and control group assignment, (iii) the timeline of HER administration in each wave, (iv) the date on which a household deactivated their electricity service, and (v) household characteristics such as whether the home was a rental.

These data consist of 58,733,360 electricity bills for 1,810,096 homes. Each electricity bill includes the total consumption of electricity in kilowatt hours (kWh) and the length of the billing cycle. On average, an electricity bill covers 30 days, but this coverage varies. Our outcome measure adjusts for

Figure 2: Timeline of Homes in Mover Sample of HER Experiment



Note: This figure describes the three periods of an HER experiment for the mover sample. In the baseline period, homes are randomly assigned to a treatment or control group. In the comparison period, treatment group homes periodically receive the HER mailer and control group homes are left untouched. In the move period, the receipt of the HER is ceased for treatment group homes once the initial resident moves out and then the subsequent resident moves into the home. Control group homes in the move period see the initial resident move out and then have the subsequent resident moves into the home.

Table 1: Summary Statistics of Mover Sample

	Prob. in Mover Sample (pp)	Baseline		Prob. Home is Rental (pp)		Prob. Heat is Elec. (pp)		Months in Comparison Period		Months in Move Period		Comparison on 1st HER (% Diff.)
		(1)	(2)	(3)	(4)	(5)	(6)	(7)				
Control	7.72 (0.03)***	38.10 (0.07)***	13.81 (0.14)***	13.66 (0.14)***	16.16 (0.04)***	12.78 (0.04)***	24.91 (0.28)***					
Treatment – Control	0.01 (0.04)	0.11 (0.09)	-0.06 (0.18)	0.26 (0.18)	0.07 (0.05)	-0.08 (0.05)*	-0.08 (0.36)					
Sample Homes	Full 1,810,096	Mover 139,908	Mover 139,908	Mover 139,908	Mover 139,908	Mover 139,908	Mover 139,908	Mover 139,908	Mover 139,908	Mover 139,908	Mover 139,908	

Note: This table summarizes the characteristics of the mover sample. The first row reports the average value of each characteristic for homes assigned to the control group and the second row reports treatment group differences from the control group. Estimates regression-adjust for each HER wave. The first column reports the rate at which the full sample enters the mover sample. The subsequent columns report characteristics of the mover sample. Heteroskedasticity-robust standard errors clustered by home are reported in parentheses below each estimate. *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.10.

this variation by normalizing the electricity consumption by the length of the billing cycle, making average daily consumption over the course of a billing cycle our observed outcome.

To study the effect of the HER that remains in the home after the initial resident moves, we construct a sample of movers from this data. This sample is comprised of homes that had a deactivation of the initial resident's account with their energy provider. Working with Opower, we eliminated homes where the deactivation was prompted by a name change or other changes unlikely to reflect a move by the initial resident.

We further restrict the mover sample to homes where deactivations occurred at or after the fourth HER had been received.³ We base this restriction on results in [Allcott and Rogers \(2014\)](#), which indicate that the effect of the HER plateaus around the receipt of the fourth HER. On average, the fourth report was generated 145 days, or approximately five months, after the start of the comparison period. We denote this subsample the "mover sample", which includes 5,768,148 electricity bills for 139,908 homes.

Table 1 provides a statistical summary of the mover sample. This summary presents averages of different features of the sample after regression adjusting with a dummy for each wave of an HER experiment. The first column shows that the mover sample is comprised of approximately 8 percent of the treatment and control group homes from the full sample. Subsequent columns show that, on average, mover sample homes consume about 38 kWh/day in the baseline period, nearly 14 percent of the mover sample homes are rental properties, and nearly 14 percent use electricity for heating. The average time spent in the comparison period by the mover sample is 16 months and nearly 13 months is spent on average in the move period. The

³This restriction can be applied to both treatment and control group homes, because, as noted above, Opower created HERs for both groups, but only sent out the mailers to treatment group homes.

first HER generated has the mover sample consuming an average of nearly 25 percent more energy than their neighbors (“Average neighbors” in Figure 1), likely because high-consumption homes were oversampled in early HER experiments (Allcott, 2015).

Table 1 also provides evidence that supports the first assumption of our identification strategy. Treatment and control group homes select into the mover sample at statistically indistinguishable rates and these homes consume similar quantities of electricity in the baseline period. Furthermore, the two groups have a similar prevalence of rental arrangements and electric heating, spend similar amounts of time in the comparison and move periods, and on their first HER differ from the average electricity consumed by neighbors at similar levels (recall that treatment and control group HERs can be compared because they were generated for all homes, but only sent to treatment group homes).

We conclude this subsection by considering the extent to which informational frictions inhibited sorting into homes on the basis of whether a home once received the HER. The prevalence of these frictions lends credibility to the second assumption of our identification strategy. While mandates increasingly try to overcome informational frictions on energy consumption by requiring sellers to disclose energy bills to potential buyers (Palmer and Walls, 2017), only one mandate affected our experimental sample. Using Table 1 in Palmer and Walls (2017) and zip codes shared with us by Opower, we find that only 274 homes, or 0.02 percent of our mover sample, were affected by such a mandate. As a result, we conclude that movers were unlikely to have one important source of information that would have facilitated the type of sorting that would violate the second assumption of our identification strategy.

4. Results

This section presents estimates of the effects that decompose the long-term effectiveness of the HER into components attributable to habits and technology.

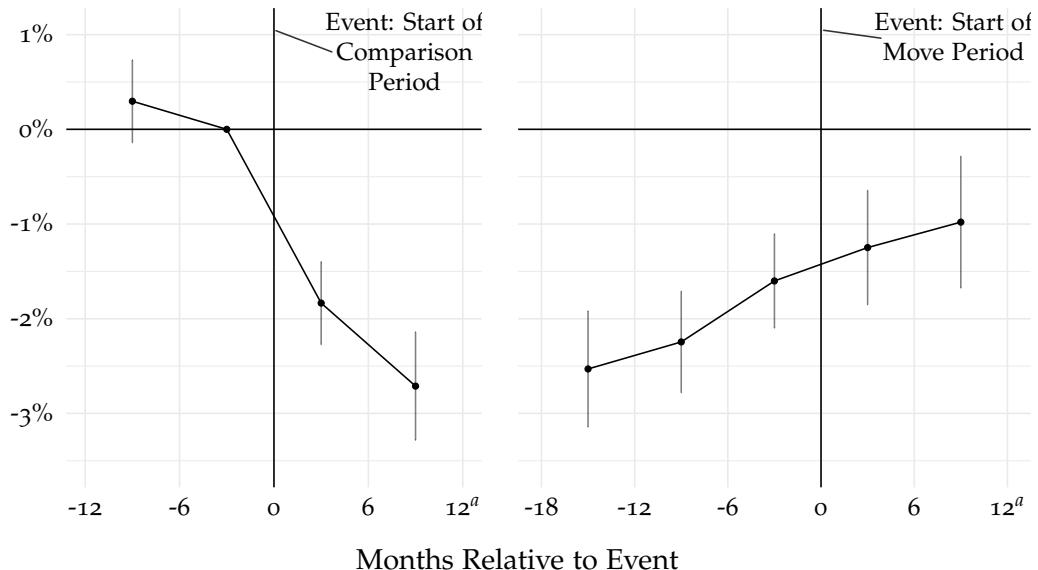
4.1 Event Study

Before we present estimates of the effects that decompose the long-term effectiveness of the HER, we investigate the underlying dynamics with an event study analysis of the mover sample. Our analysis divides time into six-month intervals in the baseline, comparison, and move periods. Each estimate is normalized by the level of control group electricity consumption in the baseline period (see column 2 in Table 1) and 95 percent confidence intervals are constructed with heteroskedasticity-robust standard errors clustered by home.

Figure 3 presents the results. Starting from the left of the figure we see an average difference between treatment and control group homes of approximately 0.3 percent in the baseline period. Scaling this difference by 38.1 kWh/day converts it to an estimated effect of 0.1 kWh/day. Such an effect is small: Approximately equivalent to treatment group homes using a 60-watt incandescent lightbulb for an extra two hours each day. Moreover, the confidence interval on this estimate shows it is statistically indistinguishable from an effect of zero. This balance in baseline period electricity consumption provides further support for the mean independence assumption discussed in Section 2.4.

Moving to the right of the first vertical line, which denotes the end of the baseline period and the start of the comparison period, the average effect starts by falling significantly, plateauing, and then rising modestly as the

Figure 3: Event Study of Average HER Effect on Mover Sample



Note: This figure reports estimated treatment effects on the mover sample. Each estimated effect is the average effect of treatment assignment at a given point in time. Each effect is presented in terms of percent changes relative to control group electricity consumption in the baseline period. Time is divided into six-month intervals. Observations that fall outside of the plotted intervals are assigned to an absorbing interval indicated on the figure with the superscript a . The omitted time period is the last six months of the baseline period. Brackets denote the 95 percent confidence interval. Estimates are obtained by weighting by the duration of each electricity bill and are regression-adjusted with fixed effects for each six-month interval of event time, home, and year-by-season-by-wave. 95 percent confidence intervals are constructed with heteroskedasticity-robust standard errors clustered by home.

move period approaches. The negative sign on these estimates indicates the HER causes a reduction in household electricity consumption. Figure 3 reports an average effect that starts at -1.8 percent over the first six months of the comparison period, which then falls and plateaus at -2.5 to -2.7 over the subsequent year. This dynamic of an initial fall and subsequent plateau is consistent with the pattern documented in [Allcott and Rogers \(2014\)](#), where the average effect grows until the fourth HER and then plateaus. On average, our sample receives their fourth HER around the fifth month of the comparison period. Moving to the final year of the comparison period, the average effect of the HER starts to rise modestly, increasing to -2.2 and then -1.6 percent.

The average effects in the comparison period are -1.6 to -2.8 percent, which corresponds to approximately -0.6 to -1.0 kWh/day in levels. To put the magnitude of these estimates into perspective, such an effect is equivalent to treatment group homes using a 60-watt incandescent lightbulb for 10 to 17 fewer hours per day or replacing 2 to 4 60-watt incandescent lightbulbs that are used 5 hours per day with the equivalent compact fluorescent lamp (CFL) lightbulb. The statistical significance of these effects can be seen by noting that the 95 percent confidence intervals do not overlap with zero in the comparison period. Economically, the average comparison period effects are also significant. Estimates of the price elasticity of electricity range from -0.07 to -0.30 ([IEA, 2012](#)), suggesting that utilities would have to increase the price of electricity by 5 to 39 percent to obtain the same effects reported over the comparison period in Figure 3.

Moving to the right of the second vertical line on Figure 3, we see that much of the average effect of the HER found in the comparison period persists in the move period. Over the first six months of the move period the HER continues to produce reductions in electricity consumption of -1.2 percent. The final estimate of Figure 3 shows that more than six months after

moving, the estimated average effect is a -1.0 percent reduction in average electricity consumption.

The average effects in the move period are -1.0 to -1.2 percent, which equate to effects of approximately -0.4 to -0.5 kWh/day in levels. The 95 percent confidence intervals on these estimates show that the null hypothesis of no effect during the move period is rejected. Using estimates of the price elasticity of demand from [IEA \(2012\)](#), utilities would have to increase the price of electricity by 3 to 17 percent to produce the same effects reported after the move period starts in [Figure 3](#). The average effects in the move period are also significant when compared to the average effects in the comparison period, with 36 to 75 percent of the HER's average effect persisting in the home after the initial resident moves.

4.2 Parameters of Interest

[Table 2](#) presents the estimates of the effects that decompose the long-term effectiveness of the HER. The first column presents the estimated pre-move effect of the HER for the full sample of homes. The second column presents the estimated pre- and post-move effects for the mover sample and the third column investigates heterogeneity in the pre- and post-move effects for the mover sample.

The estimated effects in the first two columns of [Table 2](#) indicate that fully half of the HER's long-term effectiveness can be attributed to increases in technology adoption, with the remainder attributable to the formation of habits. To see how we reach this conclusion, recall that the pre-move effect of -2.1 percent in the first and second column of [Table 2](#) identifies the long-term average treatment effect of the HER, i.e., the *ATE*.⁴ The post-

⁴Furthermore, the similarity of these estimates when estimated with the full and mover sample provides support for a stronger version of the mean independence assumption discussed in [Section 2.4](#) that extends to selection into the mover sample.

Table 2: Average Effect of HER

	Electricity Cons. (% of Control in Baseline)		
	(1)	(2)	(3)
Pre-Move Effect	−2.14 (0.04)***	−2.14 (0.18)***	−2.55 (0.26)***
Post-Move Effect		−1.11 (0.29)***	−1.01 (0.40)**
Pre × Elec. Heat			−3.04 (0.64)***
Post × Elec. Heat			−2.35 (0.97)**
Pre × Rental			0.29 (0.51)
Post × Rental			1.38 (0.77)*
Pre × 1st Comp.			1.59 (0.34)***
Post × 1st Comp.			0.50 (0.54)
Sample	Full	Mover	Mover
Bills	58,733,360	5,768,148	5,768,148
Homes	1,810,096	139,908	139,908
R^2	0.63	0.54	0.59

Note: This table reports coefficients estimated with variants of equation 8. The coefficients respectively measure the average effect of treatment assignment after the fourth HER in the comparison period (pre-move effect) and in the move period (post-move effect). Each coefficient is presented in terms of percent changes relative to control group electricity consumption in the baseline period. Column 1 is estimated on the full sample and columns 2-3 on the mover sample. Column 3 interacts the pre- and post-move treatment indicators with whether a home has electric heating (elec. heat), whether a home is a rental (rental), and whether the first HER indicates that the home used less electricity than its neighborhood average (1st comp.). Estimates are obtained by weighting by the duration of each electricity bill and are regression-adjusted with fixed effects for each period of time, home, and year-by-season-by-wave. Heteroskedasticity-robust standard errors clustered by home are reported in parentheses below each estimate. *** p -value < 0.01, ** p -value < 0.05, * p -value < 0.10.

move effect of -1.1 percent in the second column of Table 2 identifies the component of the long-term effect attributable to technology adoption, i.e., the *ATK*. Netting out the component attributable to technology identifies the component attributable to habits, which we call the *ATH*. For the mover sample the estimated component attributable to habits is -1.0 percent.

Normalizing these components by the *ATE* implies that 51.9 percent (*s.e.* = 13.1) of the long-term effectiveness is attributable to technology and 48.1 percent (*s.e.* = 13.1) is attributable to habits.

4.3 Heterogeneity

In this subsection we investigate heterogeneity in the components attributable to the long-term effectiveness of the HER. This investigation serves two goals. First, prior research finds significant heterogeneity in the effectiveness of the HER and applying our decomposition can help characterize the underlying causes of this heterogeneity. Second, under the identifying assumptions of our research design, some sources of heterogeneity should have predictable effects on our estimates. Finding these predicted effects would lend credibility to the identifying assumptions of our research design. In the remainder of this subsection, we focus on the first of these goals and discuss the second in the subsection that follows.

We investigate heterogeneity by estimating a variant of equation 8 that adds interactions between several covariates, the pre- and post-move treatment indicators, and the vector of observables that act as controls (i.e., we estimate a saturated regression model). The covariates we interact measure whether a home uses electricity for heating, whether a home is a rental, and whether the first HER presents a favorable comparison of a home's electricity consumption to the neighborhood average. That is, whether the first HER reports that the home consumed less electricity than the neighborhood av-

erage. Prior research finds that electric heating increases the magnitude of the HER's effect, the effect is unaltered by the rental status of a home, and a favorable comparison on the first HER reduces the magnitude of the effect of the HER (Allcott, 2015). Unfortunately, our data do not allow us to address heterogeneity driven by whether a home has a pool, the square footage of the home, and the political ideology of the home's initial resident (Ayres et al., 2013; Costa and Kahn, 2013; Allcott, 2015).⁵

Column 3 of Table 2 presents the estimates of the coefficients. The first two respectively indicate average pre- and post-move effects of -2.6 and -1.0 percent for the omitted category, which is owner occupied homes with gas heating that used more electricity than the neighborhood average on the first HER. The subsequent coefficients report the extent to which the pre- and post-move effects change when each covariate changes. Online Appendix Table 1 presents estimates obtained with each mover subsample separately.

The coefficients on the interaction terms with the electric heat covariate suggest that the greater effectiveness of the HER on homes with electric heating is attributable to technology adoption. As prior research has found, the magnitude of the pre-move effect on homes with electric heating is larger than the pre-move effect on homes in the omitted category, which use natural gas for heating. Column 3 of Table 2 shows that in homes with electric heating the magnitude of the pre-move effect increases by a statistically sig-

⁵ In a separate analysis, we consider heterogeneity related to the total number of HERs generated before the initial resident moves. Online Appendix Figure 2 plots the average effect of the HER by quartile of HERs generated. The top panel plots the effect of the first 4 HERs, the next panel plots the pre-move effect, and the middle panel plots the post-move effect. The post-move effect in this figure is limited to the six months after the initial resident moves so that similar lengths of time in the move period can be compared across the quartiles. The final two panels respectively plot the post-move effect divided by the effect of the first 4 HERs and the pre-move effect effect. Two sets of results stand out. First, the pre-move effect of the HER is statistically significantly larger for the second quartile of HERs generated than the other quartiles, as the 95 percent confidence intervals do not overlap. Second, the point estimate of the post-move effect for the first quartile is 0.06 percent, suggesting that technology was not adopted in response to the HER among the homes in the sample that received a total of 3 or fewer HERs.

nificant 3.0 percent. Column 3 also shows that most of the pre-move increase persists after the initial resident moves, with the magnitude of the post-move effect increasing by a statistically significant 2.4 percent. Taken together, these estimates indicate that the greater effectiveness of the HER on homes with electric heating is attributable to technology adoption, not habit formation.

Interacting the rental status of a home with the pre- and post-move treatment indicators suggests that the effectiveness of the HER on rental properties is attributable to habit formation. Consistent with prior research, column 3 of Table 2 shows that the magnitude of the pre-move effect on rental homes is a statistically null 0.3 percent smaller than the pre-move effect on the omitted category of homes, which are owner-occupied. However, after the initial renter moves, the magnitude of the post-move effect is a marginally statistically significant 1.4 percent (p -value = 0.07) smaller than the post-move effect on the omitted category. This interactive coefficient is so large that it indicates a post-move effect on rentals that is statistically indistinguishable from zero. Collectively, these estimates suggest that the effectiveness of the HER on rental homes is attributable to habit formation, not technology adoption.

The estimates on the interaction terms with the first comparison suggests that the diminished effectiveness of the HER on homes that initially compare favorably to neighboring homes is attributable to habit formation. Column 3 of Table 2 shows that, consistent with prior research, the magnitude of the pre-move effect on homes that initially compare favorably to neighboring homes is a statistically significant 1.6 percent smaller than the pre-move effect on the omitted category of homes, which initially compare unfavorably. However, the magnitude of the post-move effect on homes that initially compare favorably is a statistically null 0.5 percent smaller than the omitted category. Overall, these interactive coefficients suggest that the diminished effectiveness of the HER on homes that initially compare favorably to neighboring homes is caused by less habit formation in the residents of

these homes.

Beyond offering an explanation for the underlying causes of heterogeneity in the effectiveness of the HER, our investigation of heterogeneity also lends credibility to our research design. We discuss this, as well as the robustness of our estimates more generally, in the next subsection.

4.4 Robustness

4.4.1 Identifying Assumptions

The validity of our decomposition depends on three assumptions that we presented in Section 2.4: (1) mean independence between the potential outcomes, moving, and receipt of the HER; (2) treatment assignment did not influence the habits of the residents who moved into a home (“balanced habits”); and (3) technology adoption in response to the HER was stable (i.e., remains in the home) after the initial resident moved (“technology stability”). In Section 3.2, we presented data consistent with the mean independence assumption. In Section 2.6.2, we argued that violations of the balanced habits and technology stability assumptions likely imply that our estimated effects identify a lower bound of the *ATK* and an upper bound of the *ATH*. In other words, by assuming that habits are balanced and technology adoption is stable, we likely obtain a conservative estimate of the contribution from technology adoption to the HER’s long-term effectiveness, which reinforces our conclusion that fully half of the long-term effectiveness of the HER is due to technology.

Here, we argue that the results of our heterogeneity analysis in the third column of Table 2 are easily explained if the balanced habits and stable technology assumptions hold. Under these assumptions, our heterogeneity analysis finds that a larger proportion of the HER’s long-term effectiveness is attributable to technology adoption in homes with electric heating than in

homes with natural gas heating. This is predictable because homes with electric heating can conserve electricity by adopting technologies, like a door sweep on the home’s front door or weather stripping on a home’s windows, that would have a negligible effect on electricity consumption for homes with natural gas heating. Our heterogeneity analysis also finds that the HER’s long-term effectiveness is entirely attributable to habit formation for rental properties. This makes sense because rental arrangements constrain the technology that residents can install and their limited duration diminishes the likelihood that residents will accumulate the energy bill savings needed to cover the cost of technologies they are allowed to install (e.g., [Davis, 2012](#)).

The results of our heterogeneity analysis are also difficult to explain with alternatives to our identifying assumptions. The most concerning alternative would have the HER cause post-move residents with a habit for lower levels of electricity consumption to sort away from control homes and towards treated homes. This alternative is concerning because it would cause our identification strategy to overstate the role of technology and understate the role of habits in the HER’s long-term effectiveness. However, under this alternative assumption, it is not clear why larger pre-move effects persist after the initial resident moves out of a home with electric heating, but not out of a home that has an unfavorable comparison generated on their first HER.

Collectively, we interpret the results of our heterogeneity analysis as broadly consistent with the assumptions underlying our identification strategy. However, this consistency does not imply that the identifying assumptions necessarily hold. We conjecture that comparing the pre-move electricity consumption of the residents who move into treatment and control homes would help evaluate the possibility of sorting on habits, but our data does not allow us to make this comparison because it only identifies homes, not residents too.

4.4.2 Alternative Specifications of Controls

A basic concern with the estimates reported in Table 2 is that instead of capturing the effect of the HER, they reflect our decision to use fixed effects for each period of time, home, and year-by-season-by-wave as controls. Across a series of appendix tables we address this concern by showing that our results are robust to alternative control variable specifications. Online Appendix Table 4 demonstrates that the robustness of the results in the second column of Table 2. With respect to the results in the third column of Table 2, Online Appendix Tables 5, 6, and 7 report the same robustness for the subsamples of homes with electric heating, rentals, and homes where the comparison on the first HER was unfavorable. While different specifications of controls alter the level of the pre- and post-move effects, the same pattern of results reported in Table 2 are supported.

4.4.3 Timing of Moves

Another concern with the results in Table 2, which we touched on in Section 2.6.1 above, is that over the course of an HER experiment moves occur at different points in time and this can influence the weight that each home receives in the estimates of the pre- and post-move HER effects. To determine whether these weights influence our results, we estimate our parameters of interest with a stacked difference-in-difference approach (Deshpande and Li, 2019). That is, we estimate our parameters of interest with datasets that we construct where homes are observed for the same amount of time in the baseline, comparison, and move periods. Online Appendix Table 11 reports the pre- and post-move effects with samples where each home is observed for 365 days in the baseline period and 91, 192, 273, or 365 days in the comparison and move periods. Online Appendix Table 12 reports estimates with the same samples using the weighting procedure for stacked difference-in-

difference models proposed by [Wing et al. \(2024\)](#). Across both tables, the same pattern of results found in Table 2 are obtained.

4.4.4 Mover Sample Construction

Yet another concern with the results in Table 2 is that instead of capturing our parameters of interest, they reflect our decision to limit the mover sample to homes where the initial resident moved after at least four HERs had been generated. Online Appendix Table 13 shows that alternative cutoff rules produce similar results. A related concern is that homes may sit idle at the start of the move period and if there happened to be slight imbalance in the likelihood of homes sitting idle, are results would be confounded. Online Appendix Table 14 shows that we still estimate statistically significant pre- and post-move effects when we drop homes that experience a 1, 2, or 3 standard deviation decrease in their move period electricity consumption.

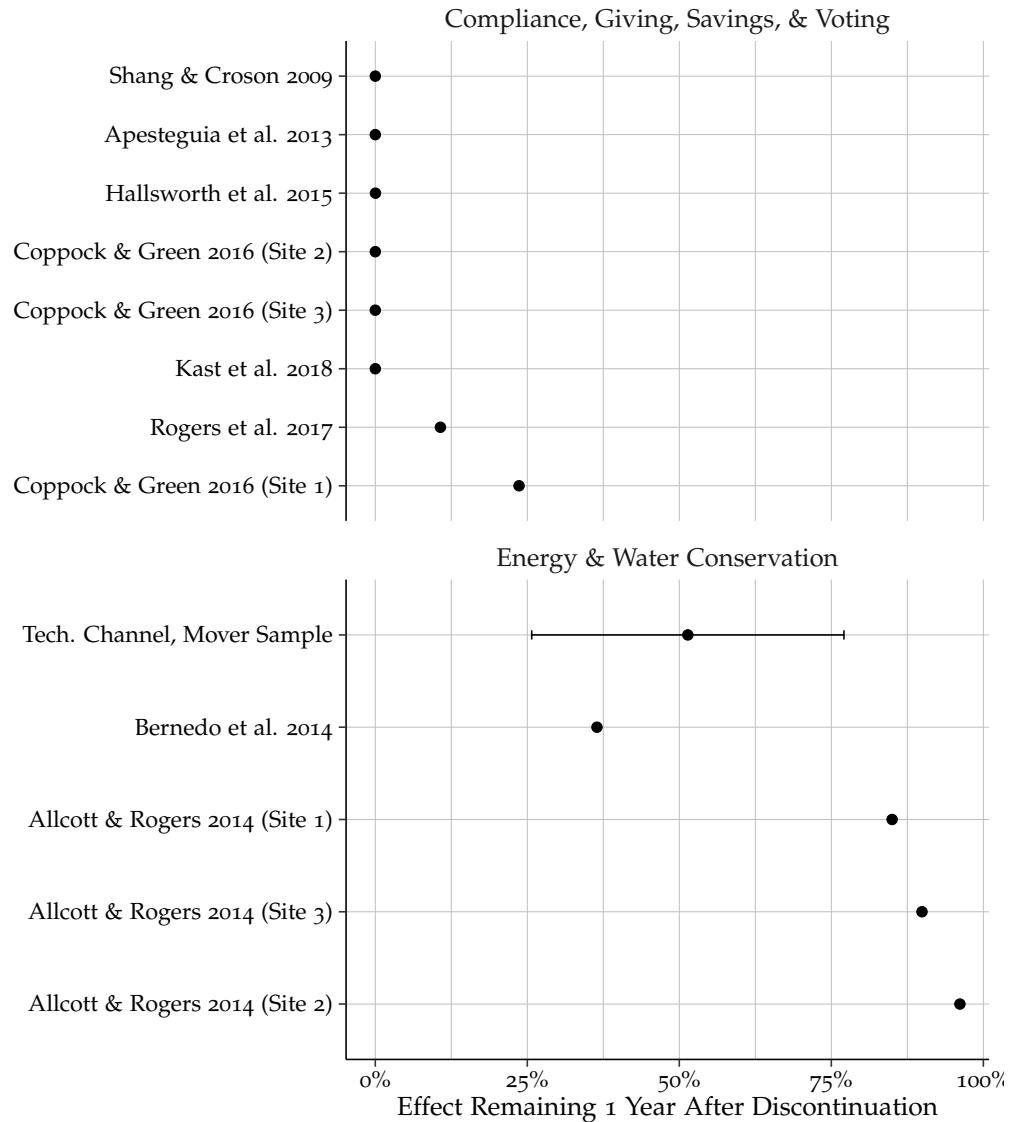
5. Implications

Having presented our decomposition of the channels underlying the long-term effectiveness of the HER, we next consider broader implications of our findings for nudges.

5.1 Explaining the Persistent Effects of Social Comparison Nudges

The persistence of social comparison nudges in prior studies varies dramatically across contexts. Figure 4 presents the average effectiveness of these nudges one year after their discontinuation, with the estimates normalized by the average effect before discontinuation. The divergence in persistence across contexts can be seen by comparing the top and bottom panels of the

Figure 4: Effectiveness of Social Comparison Nudges After Discontinuation



Note: This figure summarizes the average effect of a social comparison nudge one year after it was discontinued. The estimates used to produce this figure are presented in Online Appendix Figure 1. When a study does not report the effect of a nudge one year after discontinuation, we fit an exponential decay model on the data presented in Online Appendix Figure 1. We then use the effect of the nudge one year after discontinuation that is predicted by the exponential decay model. Each effect is normalized by the average effect before discontinuation. The brackets on the mover sample estimate indicate the 95 percent confidence interval.

figure. The top panel plots the average persistence when a social comparison nudge targets compliance, charitable giving, financial savings, or voter turnout. On average, just 4 percent of the initial effect of these social comparison nudges persists one year after discontinuation. In contrast, when a social comparison nudge targets water or energy conservation, 65 percent of the effectiveness, on average, remains a year after discontinuation.

Our decomposition results suggest a simple explanation for these divergent levels of persistence: The relative abundance of technologies for conserving energy and water. Recall that our decomposition of the HER's long-term effectiveness implies that 51.9 percent was attributable to technology adoption. We plot this estimated effect in Figure 4 and label it Mover Sample. As can be verified in the figure, this channel alone produces a level of persistence that is similar in magnitude to the total persistence arising from nudges to energy and water conservation and is much larger in magnitude to the total persistence produced by nudging behaviors that are not easily modified by technology adoption, such as voting. We interpret this pattern as indicative of a central role for technology adoption in the persistence of treatment effects after the discontinuation of a social comparison nudge.

This interpretation is, on the surface, at odds with prior research. [Allcott and Rogers \(2014\)](#) uses participation in utility sponsored energy efficiency programs as a proxy for technology adoption and find that technology adoption explains no more than 2 percent of the HER's long-term effectiveness. In the same vein, [Bernedo et al. \(2014\)](#) finds that, after the initial resident moves, the effect of a social comparison nudge does not lead to statistically significant savings in water consumption, and the authors conclude that technology adoption is not an important mechanism underlying persistence. We, however, reject these conclusions based on our decomposition results. Using conventional levels of statistical significance, the 51.9 percent that we attribute to technology adoption is estimated precisely enough to reject the 2

percent attributed to technology adoption by [Allcott and Rogers \(2014\)](#) and the null effect reported by [Bernedo et al. \(2014\)](#). We believe that the imperfect proxy for technology adoption used by [Allcott and Rogers \(2014\)](#) and the low statistical power of the analysis by [Bernedo et al. \(2014\)](#) can explain why their findings diverge from the results of our decomposition.

5.2 Net Benefits of Nudges

Our decomposition of the HER's long-term effectiveness also highlights a limitation of past evaluations of nudge-style interventions. These evaluations have compared the effectiveness of a nudge to the cost of their administration ([Allcott and Mullainathan, 2010](#); [Allcott and Rogers, 2014](#); [Benartzi et al., 2017](#)).⁶ This approach to calculating the costs of nudges implicitly assumes that there are no other financial costs created by the intervention. However, evaluations should also account for the indirect costs induced by an intervention ([Heckman and Smith, 1997](#)) and our analysis of the mover sample suggests that the HER induced costly adoption of energy efficient technology. While we have no data that allow us to infer the financial costs of the technology adopted in our mover sample, in Online Appendix Figure 3 we use different measures in the literature to illustrate the potential consequences of including such costs in net benefit calculations. This figure shows that, across the different costs of technology adoption reported in the literature ([Billingsley et al., 2014](#); [Gillingham et al., 2018](#)), the net benefits drop by approximately 14 to 56 percent after accounting for the costs of HER-induced technology adoption.

⁶An additional approach implemented in [Allcott and Kessler \(2019\)](#) and [Butera et al. \(2022\)](#) elicits willingness to pay via incentivized surveys.

6. Conclusion

Why do some nudges produce effects that persist and other nudges do not? This study develops a formal research design that addresses this question by decomposing the long-term effectiveness of a nudge into components attributable to habit formation and technology adoption. We apply our research design to the case of the HER, a nudge that is notable for its long-term effectiveness (see, e.g., Online Appendix Figure 1). We find that fully half of the HER effect stays in a home after the initial resident moves.

After assessing the plausibility of the identifying assumptions in our design and the robustness of our findings, we interpret our results as providing evidence for the significance of technology adoption in the long-term effectiveness of the HER. This finding offers several contributions and points to new directions for future work.

First, our study provides a simple explanation for the divergent levels of persistence in treatment effects after social comparison nudges are discontinued. The effect of a social comparison nudge is more likely to persist when the targeted behavior can be augmented by productive technologies, such as input efficient technologies to conserve energy and water. The effect is unlikely to persist when productive technologies are unavailable, such as in contexts where target behaviors are associated with compliance with rules, charitable giving, financial savings, tax evasion, and voting. Future work should explore the extent to which heterogeneity across experiments reflects differences in the costs or availability of productive technologies. For example, it would be fruitful to explore the extent to which differences in such costs and availability explain differences in persistence in multi-site experiments, such as [Allcott and Rogers \(2014\)](#) and [Coppock and Green \(2016\)](#).

Second, our study suggests that policymakers can replicate the long-term effectiveness of the HER in two ways. First, they can target behaviors that can

be influenced by readily available technologies. For example, in the context of voting, our findings predict that the effects of social comparison nudges are more likely to persist in municipalities that provide an option to default into easier modes of voting in the future, such as mail-in voting. Second, policymakers can combine social comparison nudges with opportunities to adopt new technologies. In the context of givings and savings, policymakers could pair social comparisons with an option for households to default to higher giving or savings rate in the future. Such defaults have been found to increase givings and savings (Madrian and Shea, 2001; Thaler and Benartzi, 2004; Goswami and Urminsky, 2016; Altmann et al., 2019), but our findings suggest combining these defaults with the framing of a social comparison can produce longer lived effects. A final context in which social comparisons and technology adoption could be effectively leveraged is firms. Research on firms suggests they can be motivated by the same psychological impulses that social comparison nudges target (Heidhues and Kőszegi, 2018). The combination of these impulses and the competitive pressures firms face suggest that, for instance, an intervention that combines energy benchmarking against industry peers with subsidized efficiency upgrades could be highly effective.

Third, our study illustrates the importance of accounting for the indirect costs induced by nudges. By isolating the mechanisms underlying the effectiveness of a nudge, we are able to infer one type of indirect cost, technology adoption, that is typically ignored in the evaluation of nudges. Using estimates in the literature of the financial cost of adopting energy efficient technology, we show that accounting for technology adoption attenuates previous estimates of HER net benefits by 14 to 56 percent. While this accounting exercise is highly stylized, it nonetheless illustrates how the application of our research design can isolate mechanisms that, in turn, can inform the economic evaluation of nudge-style interventions.

In addition to these three contributions, our study provides an important methodological contribution. To assess the mechanisms underlying behavioral responses to policies and programs, prior research has relied on measurements that can proxy for potential mechanisms. However, relative to the cost of administering a nudge, obtaining proxy measurements of potential mechanisms would be extraordinarily expensive. Our study thus complements previous work by developing a new research design that is well suited to isolate the mechanisms underlying the effectiveness of nudges. We imagine future research can build on this strategy. Potential applications include using the graduation of students or the separation of employees to understand the extent to which nudges, such as those respectively studied in [Bettinger et al. \(2012\)](#) and [Earnhart and Ferraro \(2021\)](#), produce human capital in the recipients of the nudge and in the organizations in which the recipients are nested.

Data Availability Statement

The code underlying this research is available on Zenodo at <https://doi.org/10.5281/zenodo.16054543>. The data were provided by Opower under a Data Use Agreement that prohibits making the data publicly available. Academic researchers interested in working with Opower (now Oracle) data can contact Russell Meyer (russell.meyer@oracle.com). Requests for data access will be reviewed by Oracle on a case-by-case basis.

References

Acland, Dan and Matthew R. Levy, “Naiveté, Projection Bias, and Habit Formation in Gym Attendance,” *Management Science*, 2015, 61 (1), 146–160.

Allcott, Hunt, "Social norms and energy conservation," *Journal of Public Economics*, 2011, 95 (9-10), 1082–1095.

—, "Site Selection Bias in Program Evaluation," *Quarterly Journal of Economics*, 2015, 130 (3), 1117–1165.

— and **Judd B. Kessler**, "The Welfare Effects of Nudges: A Case Study of Energy Use Social Comparisons," *American Economic Journal: Applied Economics*, 2019, 11 (1), 236–276.

— and **Michael Greenstone**, "Is There an Energy Efficiency Gap?," *Journal of Economic Perspectives*, 2012, 26 (1), 3–28.

— and **Sendhil Mullainathan**, "Behavior and Energy Policy," *Science*, 2010, 327 (5870), 1204–1205.

— and **Todd Rogers**, "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation," *American Economic Review*, 2014, 104 (10), 3003–3037.

—, **Luca Braghieri, Sarah Eichmeyer, and Matthew Gentzkow**, "The Welfare Effects of Social Media," *American Economic Review*, 2020, 110 (3), 629–676.

—, **Matthew Gentzkow, and Lena Song**, "Digital Addiction," *American Economic Review*, 2022, 112 (7), 2424–2463.

Altmann, Steffen, Armin Falk, Paul Heidhues, Rajshri Jayaraman, and Marrit Teirlinck, "Defaults and Donations: Evidence from a Field Experiment," *Review of Economics and Statistics*, 2019, 101 (5), 808–826.

Apesteguia, Jose, Patricia Funk, and Nagore Iribarri, "Promoting rule compliance in daily-life: Evidence from a randomized field experiment in the public libraries of Barcelona," *European Economic Review*, 2013, 64, 266–284.

Ayres, Ian, Sophie Raseman, and Alice Shih, "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage," *The Journal of Law, Economics, and Organization*, 2013, 29 (5), 992–1022.

Becker, Gary S., "Habits, Addictions, and Traditions," *Kyklos*, 1992, 45 (3), 327–345.

— and **Kevin M. Murphy**, "A Theory of Rational Addiction," *Journal of Political Economy*, 1988, 96 (4), 675–700.

Bell, Eric, Aimee Savage, John Ensley, and Robert Gottlieb, "Evaluation of Southern California Edison's HER Persistence Pilot," Technical Report, Southern California Edison Co. 2020.

Benartzi, Shlomo, John Beshears, Katherine L. Milkman, Cass R. Sunstein, Richard H. Thaler, Maya Shankar, Will Tucker-Ray, William J. Congdon, and Steven Galing, "Should Governments Invest More in Nudging?," *Psychological Science*, 2017, 28 (8), 1041–1055.

Bernedo, María, Paul J. Ferraro, and Michael Price, "The Persistent Impacts of Norm-Based Messaging and Their Implications for Water Conservation," *Journal of Consumer Policy*, 2014, 37, 437–452.

Beshears, John, Hae Nim Lee, Katherine L. Milkman, Robert Mislavsky, and Jessica Wisdom, "Creating Exercise Habits Using Incentives: The Trade-off Between Flexibility and Routinization," *Management Science*, 2021, 67 (7), 3985–4642.

Bettinger, Eric P., Bridget Terry Long, Philip Oreopoulos, and Lisa Sanbonmatsu, "The Role of Application Assistance and Information in College Decisions: Results from the H&R Block Fafsa Experiment," *Quarterly Journal of Economics*, 2012, 127 (3), 1205–1242.

Billingsley, Megan A., Ian M. Hoffman, Elizabeth Stuart, Steven R. Schiller, Charles A. Goldman, and Kristina LaCommare, "The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs," Technical Report, Lawrence Berkeley National Lab 2014.

Bursztyn, Leonardo, Davide Cantoni, David Y. Yang, Noam Yuchtman, and Y. Jane Zhang, "Persistent Political Engagement: Social Interactions and the Dynamics of Protests Movements," *American Economic Review: Insights*, 2021, 3 (2), 233–250.

Butera, Luigi, Robert D. Metcalfe, William Morrison, and Dmitry Taubinsky, "Measuring the Welfare Effects of Shame and Pride," *American Economic Review*, 2022, 112 (1), 122–168.

Charness, Gary and Uri Gneezy, "Incentives to Exercise," *Econometrica*, 2009, 77 (3), 909–931.

Choukhmane, Taha, "Default Options and Retirement Savings Dynamics," *Working Paper*, 2021.

Coppock, Alexander and Donald P. Green, "Is Voting Habit Forming? New Evidence from Experiments and Regression Discontinuities," *American Journal of Political Science*, 2016, 60 (4), 1044–1062.

Costa, Dora L. and Matthew E. Kahn, "Energy Conservation "Nudges" and Environmentalist Ideology: Evidence From a Randomized Residential Electricity Field Experiment," *Journal of the European Economic Association*, 2013, 11 (3), 680–702.

Davis, Lucas W., "Evaluating the Slow Adoption of Energy Efficient Investments: Are Renters Less Likely to Have Energy Efficient Appliances?," in

Donn Fullerton and Catherine Wolfram, eds., *The Design and Implementation of U.S. Climate Policy*, University of Chicago Press, 2012, pp. 301–316.

DellaVigna, Stefano and Elizabeth Linos, “RCTs to Scale: Comprehensive Evidence from Two Nudge Units,” *Econometrica*, 2022, 90 (1), 81–116.

Deshpande, Manasi and Yue Li, “Who Is Screened Out? Application Costs and the Targeting of Disability Programs,” *American Economic Journal: Economic Policy*, 2019, 11 (4), 213–248.

Earnhart, Dietrich and Paul J. Ferraro, “The Effect of Peer Comparisons on Polluters: A Randomized Field Experiment among Wastewater Dischargers,” *Environmental and Resource Economics*, 2021, 79, 627–652.

Ferraro, Paul J. and Juan José Miranda, “Heterogeneous treatment effects and mechanisms in information-based environmental policies: Evidence from a large-scale field experiment,” *Resource and Energy Economics*, 2013, 35 (3), 356–379.

Frey, Erin and Todd Rogers, “Persistence: How Treatment Effects Persist After Interventions Stop,” *Policy Insights from the Behavioral and Brain Sciences*, 2014, 1 (1), 172–179.

Fujiwara, Thomas, Kyle Meng, and Tom Vogl, “Habit Formation in Voting: Evidence from Rainy Elections,” *American Economic Journal: Applied Economics*, 2016, 8 (4), 160–188.

Gerarden, Todd D., Richard G. Newell, and Robert N. Stavins, “Assessing the Energy-Efficiency Gap,” *Journal of Economic Literature*, 2017, 55 (4), 1486–1525.

Gillingham, Kenneth, Amelia Keyes, and Karen Palmer, "Advances in Evaluating Energy Efficiency Policies and Programs," *Annual Review of Resource Economics*, 2018, 10, 511–532.

Goodman-Bacon, Andrew, "Difference-in-differences with variation in treatment timing," *Journal of Econometrics*, 2021, 225 (2), 254–277.

Goswami, Indranil and Oleg Urminsky, "When should the Ask be a Nudge? The Effect of Default Amounts on Charitable Donations," *Journal of Marketing Research*, 2016, 53 (5), 829–846.

Hallsworth, Michael, John A. List, Robert D. Metcalfe, and Ivo Vlaev, "The behavioralist as tax collector: Using natural field experiments to enhance tax compliance," *Journal of Public Economics*, 2017, 148, 14–31.

Heckman, James J. and Jeffrey Smith, "Evaluating the Welfare State," in Steinar Strøm, ed., *Econometrics and Economics in the 20th Century: The Ragnar Frisch Centenary*, Cambridge University Press, 1997, pp. 214–318.

— and **Rodrigo Pinto**, "Econometric Mediation Analyses: Identifying the Sources of Treatment Effects from Experimentally Estimated Production Technologies with Unmeasured and Mismeasured Inputs," *Econometric Reviews*, 2015, 34 (1-2), 6–31.

Heidhues, Paul and Botond Kőszegi, "Chapter 6 - Behavioral Industrial Organization," in B. Douglas Bernheim, Stefano DellaVigna, and David Laibson, eds., *Handbook of Behavioral Economics - Foundations and Applications 1*, Vol. 1 of *Handbook of Behavioral Economics: Applications and Foundations 1*, North-Holland, 2018, pp. 517–612.

Hummel, Dennis and Alexander Maedche, "How effective is nudging? A quantitative review on the effect sizes and limits of empirical nudging studies," *Journal of Behavioral and Experimental Economics*, 2019, 80, 47–58.

IEA, "Understanding Electric Utility Consumers - Summary Report: What We Know and What We Need to Know," Technical Report, Electric Power Research Institute 2012.

— , "The Potential of Behavioural Interventions for Optimising Energy Use at Home," Technical Report, International Energy Agency 2021.

Jaffe, Adam B. and Robert N. Stavins, "The energy-efficiency gap: What does it mean?," *Energy Policy*, 1994, 22 (10), 804–810.

John, Leslie K., George Loewenstein, Andrea B. Troxel, Laurie Norton, Jennifer E. Fassbender, and Kevin G. Volpp, "Financial Incentives for Extended Weight Loss: A Randomized, Controlled Trial," *Journal of General Internal Medicine*, 2011, 26, 621–626.

Kast, Felipe, Stephan Meier, and Dina Pomeranz, "Saving more in groups: Field experimental evidence from Chile," *Journal of Development Economics*, 2018, 133, 275–294.

Levitt, Steven D., John A. List, and Sally Sadoff, "The Effect of Performance-Based Incentives on Educational Achievement: Evidence from a Randomized Experiment," *Working Paper*, 2016.

Ludwig, Jens, Jeffrey R. Kling, and Sendhil Mullainathan, "Mechanism Experiments and Policy Evaluations," *Journal of Economic Perspectives*, 2011, 25 (3), 17–38.

Madrian, Brigitte C. and Dennis F. Shea, "The Power of Suggestion: Inertia in 401(k) Participation and Savings Behavior," *Quarterly Journal of Economics*, 2001, 116 (4), 1149–1187.

Palmer, Karen and Margaret Walls, "Using information to close the energy efficiency gap: A review of benchmarking and disclosure ordinances," *Energy Efficiency*, 2017, 10, 673–691.

Pollak, Robert A., "Habit Formation and Dynamic Demand Functions," *Journal of Political Economy*, 1970, 78 (4), 745–763.

Rogers, Todd and Erin Frey, "Changing Behavior Beyond the Here and Now," in Gideon Keren and George Wu, eds., *Wiley Blackwell Handbook of Judgement and Decision Making*, John Wiley and Sons, 2016, pp. 725–748.

—, **Donald P. Green, John Ternovski, and Carolina Ferrerosa Young**, "Social pressure and voting: A field experiment conducted in a high-salience election," *Electoral Studies*, 2017, 46, 87–100.

Royer, Heather, Mark Stehr, and Justin Sydnor, "Incentives, Commitments, and Habit Formation in Exercise: Evidence from a Field Experiment with Workers at a Fortune-500 Company," *American Economic Journal: Applied Economics*, 2105, 7 (3), 51–84.

Shang, Jen and Rachel Croson, "A Field Experiment in Charitable Contribution: The Impact of Social Information on the Voluntary Provision of Public Goods," *Economic Journal*, 2009, 119 (540), 1422–1439.

Thaler, Richard H. and Cass R. Sunstein, *Nudge*, Yale University Press, 2008.

— and **Shlomo Benartzi**, "Save More Tomorrow: Using Behavioral Economics to Increase Employee Saving," *Journal of Political Economy*, 2004, 112 (S1), S164–S187.

Vollaard, Ben and Daan van Soest, "Punishment to promote prosocial behavior: a field experiment," *Journal of Environmental Economics and Management*, 2024, p. 102899.

Wing, Coady, Seth M. Freedman, and Alex Hollingsworth, "Stacked Difference-in-Differences," *NBER Working Paper No. 32054*, 2024.