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Abstract

I examine the impact of patent term on R&D and innovation in the presence of policy antic-
ipation, common in real-world settings. Using a difference-in-difference design, I exploit quasi-
experimental variation in U.S. patent term across technological fields due to the ratification of
TRIPs agreements in 1995. Despite a general increase in average patent term, in most fields
innovators faced a considerable probability of patent term reduction for future innovations.
Three key findings emerge: (1) R&D and innovation accelerate more in fields with a higher
probability of patent term reduction, i.e., a shorter average patent term extension, before im-
plementation. (2) This heightened activity persists for at least five years post-implementation,
driven by indirect effects where the news-related acceleration fosters further innovation through
technological externalities linked to cumulative knowledge creation. (3) Conversely, the direct
effect of a shorter extension in patent term would stimulate relatively less innovation, absent
the indirect effects of anticipation.
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1 Introduction

Innovation is a key driver of long-term economic growth. For this reason, the economic lit-
erature has traditionally focused on the long-run effects of policies promoting Research and
Development (R&D) and innovation. However, the implementation of such policies can also
produce rich near-term dynamics, especially in the presence of policy anticipation, a pervasive
phenomenon in real-world settings where policy making involves negotiation. Due to the cu-
mulative nature of knowledge creation, these transitional dynamics may impact long-term pro-
ductivity and welfare, as highlighted by a growing body of literature (e.g., Comin and Gertler,
2006; Benigno and Fornaro, 2018; Bianchi, Kung and Morales, 2019; Vinci and Licandro, 2020;
Fornaro and Wolf, 2021)

This paper jointly analyzes the short- and long-term effects of innovation policy shocks.
Specifically, I present new empirical evidence on the impact of an anticipated change in U.S.
patent term—the duration of the legal monopoly granted by patents—on innovation and R&D.

Although patent term has been recognized as a key policy tool since Nordhaus (1967), em-
pirical evidence on its effects remains limited (Budish, Roin and Williams, 2016), and normative
recommendations vary widely.!

Moreover, the short-term effects of policy anticipation on innovation are ex-ante ambiguous.
News of a future patent term reduction may lead to an immediate decline in innovation, as firms
scale back R&D efforts in anticipation of lower future returns. This behavior would align with
the long-run effects of patent protection documented by previous literature. However, perhaps
surprisingly, the same news may also temporarily accelerate R&D on existing projects, as
innovators seek to benefit from the more favorable policy while it remains in effect.

The empirical analysis of the paper exploits anticipated quasi-experimental variation in ef-
fective patent term across technological fields resulting from the U.S. ratification of the Trade-
Related Aspects of Intellectual Property Rights (TRIPs) agreement. TRIPs standardized intel-
lectual property protection across future World Trade Organization (WTO) members, prompt-
ing the U.S. to change the expiry date of patents from 17 years after the grant date to 20 years
after the application date, aligning with other advanced economies. Since legal monopoly is
fully enforceable only after a patent is granted, the effective U.S. patent term changed from 17
years to 20 years minus the pending period, i.e., the time between application and grant, during
which the U.S. Patent and Trademark Office (USPTO) examines and processes applications.?

Identification exploits two sources of variation in a Difference-in-Difference (DiD) framework.

'Normative models prescribe a patent term range that varies from zero (Boldrin and Levine, 2013) to infinite
protection (Gilbert and Shapiro, 1990), and in most jurisdictions, the official patent term is determined by a
rule-of-thumb approach. For example, U.S. patent term was introduced in 1790 and set to 14 years after the
grant date in line with English law, where it was based on the expected training period of two sets of apprentices.

2Firms can, in theory, commercialize innovations before grant, but they can sue for infringement only after
the patent’s publication, which occurred post-grant for patents filed before December 2000.



First, cross-sectional variation in pending period across technological fields. Indeed, U.S. patent
applications classified in different fields are examined by distinct technical units within USPTO,
which differ by technical examination complexity and congestion, resulting in heterogeneous
examination times. Second, time variation stemming from two events related to the policy
change: a news event at the end of 1992, when U.S. innovators learned about the future policy
intervention, and the implementation in June 1995, when the new rules entered into force.

Cross-sectional variation in pending period consists in heterogeneous distributions of patent-
level pending period across fields, which I summarize using two key moments. First, the field-
specific average pending period, which determines the change in the average effective patent
term. Second, the field-specific share of patents with a pending period longer than three years,
which represents the probability that each individual patent in a given field obtains a patent
term reduction due to TRIPs.

On average, most fields benefit from an extension in average patent term, but variation
across fields is significant, approximately ranging between one-year reductions and 2.5-year
extensions. Notably, even in fields with an extension in average patent term longer than one
year, individual applications could face up to 25% probability of getting a patent term reduction.
More broadly, there is a strong negative correlation between the two moments: a 10-percentage-
point increase in the probability of patent term reduction corresponds to an approximately
four-month shorter average patent term extension.

Various complementary analyses suggest that this cross-sectional variation is exogenous to
potential confounders affecting innovation before, contemporaneously, or after the policy shocks.

The empirical analysis reveals three key findings. First, following the policy news and prior
to its implementation, innovation accelerates more in fields with a higher probability of patent
term reduction and, thus, with a shorter average patent term extension (Fact 1). As in most
fields the probability of individual patents experiencing a patent term loss was substantial,
these estimates are consistent with the observed surge in aggregate patent filings during the
anticipation phase, suggesting that innovators primarily responded to the event of a patent
term reduction.

I consider the number of granted patents counted by application date as the main innovation
measure, but all the results hold for alternative quality-adjusted innovation measures, such
as citations or patent value. Additionally, the analysis of firm-level R&D expenditures shows
similar findings: firms more exposed to fields with a higher probability of patent term reduction
increased their R&D spending more during the anticipation phase. This evidence suggests
that the observed rise in patenting reflects actual innovation rather than mere adjustments in
patenting strategies or mismeasurement.

As a second key finding, I show that the acceleration in R&D and innovation determined

by the policy news persists for at least five years after policy implementation (Fact 2). Thus,



R&D and innovation remain relatively higher in fields with a higher fraction of patents with
shorter patent term even after June 1995.

The positive response of innovation to the news of a potential patent term reduction—and
its persistence following implementation—may appear surprising. Prior literature documents
that stronger patent protection tends to stimulate innovation as a direct effect, which might
suggest that news of a reduction in patent term should deter, rather than encourage, innovative
activity. To address this apparent inconsistency, I first conduct a series of robustness checks to
rule out several confounders. These include potential mismeasurement of innovation, unrelated
technological trends, concurrent shifts in international trade and patent policy, and changes in
the rigor of patent examination. Moreover, I validate that the predicted variation in patent
term prior to the policy news closely matches the realized variation across technological fields
after implementation.

I then argue that the observed news effects are in fact consistent with innovators favoring
a longer over a shorter patent term. By accelerating R&D and innovation in the anticipation
phase, inventors more exposed to a patent term reduction can file applications before the
implementation of the new policy, obtaining a longer patent term under the old regime while
it remains in effect. Supporting this interpretation, complementary analyses exploiting within-
field dispersion in pending periods suggest that firms were particularly responsive to scenarios
involving adverse policy changes, consistent with loss aversion.

Moreover, the post-implementation persistence of the effect can be understood through
the lenses of endogenous growth models with knowledge spillovers, where current innovation
depends not only on contemporaneous R&D but also on past discoveries. In this framework,
the initial acceleration in innovation determined by the policy news may propagate over time,
fostering additional inventions. As a result, the post-implementation estimates associated with
Fact 2 capture both the direct effect of the policy change and the indirect effects of knowledge
diffusion induced by the earlier news shock. If the latter channel temporarily outweighs the
former, the reduced-form estimates may display a persistent positive response.

The analysis then distinguishes between direct and indirect effects. Following the approach
of Angrist and Pischke (2009), I adjust the baseline DiD specification to control for field-specific
innovation histories, which capture the indirect effects of news-related changes on subsequent
innovation outcomes. Thus, the new DiD estimates for the policy variable reflect the direct
impact of implementation, accounting for news effects.

As a direct effect, a shorter patent term extension leads to a relatively smaller increase in
innovation (Fact 3), consistent with prior literature. However, the indirect effects related to
anticipation outweigh the direct effects and shape the “overall” positive post-implementation
outcomes (Fact 2).

Estimates of the direct effects indicate a semi-elasticity of innovation to a one-month (one-



year) increase in patent term of 1.7% (20.9%). Thus, longer patent protection effectively stim-
ulates more innovation as a direct effect and the magnitude aligns with previous literature.
Specifically, Budish, Roin and Williams (2015, 2016) find that a one-year extension of patent
monopoly increases R&D by 7% to 22% in the pharmaceutical industry. Additionally, the
model in Hémous et al. (2023) implies that a one-month increase in U.S. patent term would
increase U.S. innovation by 1.2%.

Moreover, DiD estimates for the anticipation phase indicate that a one-percentage-point
higher probability of patent term reduction for future patents corresponds to a 1.4% larger
increase in patents before implementation (2.9% increase for a one-month shorter extension
in average patent term). This semi-elasticity estimate is new to the innovation literature and
suggests that anticipation effects are substantial.

Finally, the paper provides suggestive evidence of technological spillovers driving indirect
post-implementation effects. The analysis exploits heterogeneity in technological dependence
across fields, proxied by patents backward citations intensity. I find that the initial acceleration
in innovation following the policy news leads to a stronger persistence of higher innovation in
fields where new inventions rely more on past innovations from the same field, consistent with
evidence by Hegde, Herkenhoff and Zhu (2023) on technology disclosure externalities. Addition-
ally, an increase in time-varying technological dependence measures indicates that this channel is
the primary driver of indirect post-implementation effects, while alternative mechanisms—such
as changes in technological competition or adjustments in patenting strategies—lack compara-
ble support in the data.

The empirical analysis underscores the importance of considering the intertemporal trade-
offs in R&D and innovation decisions for both endogenous growth theories and real-world
policymaking. Specifically, since incentives to innovate respond to temporary shocks affecting
R&D returns, innovation-policy interventions influence both short- and long-run outcomes.
With policy anticipation, these effects may push in opposite directions and, crucially, near-term
variation in innovative activity may itself drive medium- to long-term effects due to technological
and knowledge externalities (Romer, 1990; Hegde, Herkenhoff and Zhu, 2023). Thus, the rich
dynamics of my empirical estimates provide valuable inputs for normative analysis, as they can
inform the calibration of key parameters of innovation-based growth models used to study the
optimal patent term.

The remainder of the paper is organized as follows. Section 1.1 discusses the contributions
to the literature. Section 2 presents the institutional setting of the policy. Sections 3 and 4
discuss the data and preliminary descriptive evidence, respectively. Section 5 outlines a simple
conceptual framework for the empirical analysis. Section 6 presents the main empirical evidence.
Section 7 investigates the mechanisms and connects the empirical results to endogenous growth

theory. Section 8 concludes.



1.1 Related Literature

This paper contributes to several strands of the literature. First, a growing body of work
studies persistent transitional dynamics of temporary shocks in macroeconomic models with
endogenous innovation (e.g., Comin and Gertler, 2006; Benigno and Fornaro, 2018; Anzoategui
et al., 2019; Bianchi, Kung and Morales, 2019; Vinci and Licandro, 2020; Fornaro and Wolf,
2021; Bertolotti and Lanteri, 2024). Other papers provide empirical evidence on the pro-cyclical
behavior of R&D and innovation (Barlevy, 2007; Argente, Lee and Moreira, 2018; Bertolotti,
Gavazza and Lanteri, 2023) or link it to monetary policy shocks (Ma and Zimmermann, 2023). 1
contribute to this literature by providing novel evidence on the rich dynamics induced by policy
shocks aimed at stimulating innovation in the long run. With anticipation, short-run effects
may have opposite sign than long-term ones. Moreover, they are large because, differently from
other types of shocks, these policies are specifically targeted to impact R&D and innovation.

Second, I contribute to a vast literature on the effects of patent policy on R&D and inno-
vation (e.g., Sakakibara and Branstetter, 2001; Moser, 2005; Lerner, 2009; Kyle and McGahan,
2012; Moser and Voena, 2012; Galasso and Schankerman, 2015; Schankerman and Schuett,
2021; Moscona, 2021; Acikalin et al., 2022) by focusing on a specific aspect, the patent term,
which, since Nordhaus (1967), is commonly considered key for innovation but has received lit-
tle empirical attention (Budish, Roin and Williams, 2016). Budish, Roin and Williams (2015)
document that in the U.S. pharmaceutical sector R&D is disproportionately directed towards
treatments with shorter clinical trials, which implicitly offer longer effective protection. While
their estimates capture both the impact of patent term as well as firms’ preference for projects
with faster return from investment, TRIPs variation allows me to isolate the effect of the policy.
Abrams (2009) uses the same quasi-experimental strategy as this paper but assumes that the
policy intervention was unanticipated, which leads to different econometric specifications and
divergent reduced-form results. In contrast, I gather documental evidence from several sources
that U.S. firms anticipated the TRIPs and show the short- and medium-term importance of
news effects. In Section 4.2 and Appendix B I detail the differences between the two analyses
in light of policy anticipation.?

Third, several papers examine the effects of TRIPs on various outcomes related to U.S. and
international patenting. Kyle and McGahan (2012) and Delgado, Kyle and McGahan (2013)
analyze TRIPs” impact on patenting in developing countries, particularly in the pharmaceutical
sector, while Bloomfield et al. (2022) investigate the diffusion of scientific knowledge. Lemus

and Marshall (2018) explore how applicants are incentivized to respond more quickly to patent

3In summary, Abrams (2009) estimates a two-period DiD specification comparing patenting before and after
the implementation shock of June 1995. Disregarding potential news effects may lead to an imprecise interpre-
tation of implementation effects because the pre-implementation baseline considered for the DiD comparison is
itself affected by the policy change due to news, thus violating DiD assumptions.



office inquiries. Hémous et al. (2023) assess the aggregate welfare effects of TRIPs in a model
of international trade with endogenous innovation, technology diffusion, and patent protection.
Caicedo and Pearce (2024) study how incentives to accelerate patent applications affect patent
quality. My contribution focuses on a key aspect of patent policy—the patent term—and
highlights the implications of policy anticipation.

Finally, the paper connects to the large empirical and theoretical literature on innovation-
related spillovers, including: knowledge accumulation spillovers, at the core of Romer (1990),
and recently re-examined by Aghion and Jaravel (2015) and Bloom et al. (2020); spillovers from
basic to applied research (Akcigit, Hanley and Serrano-Velarde, 2020); geographic spillovers
(Lychagin et al., 2016; Moretti, 2020; Lanahan and Myers, 2022); externalities at the inventor
level (Bell et al., 2019; Akcigit et al., 2018); and spillovers in the technological space (Bloom,
Schankerman and Van Reenen, 2013; Moretti, Steinwender and Van Reenen, 2019). I provide
evidence of a technology disclosure externality acting through the diffusion of novel knowledge,
which can be seen as a “standing on the shoulders of young giants” effect. This finding closely
relates to Hegde, Herkenhoff and Zhu (2023), who document that a stable increase in the speed
of knowledge diffusion permanently increases the rate of follow-up innovation. My setting
features transitory effects from the same mechanism as knowledge diffusion accelerates only
temporarily during the news phase. Additionally, I estimate the elasticity of future to current

innovation and collect suggestive evidence on the half-life of this externality.

2 Nature and Timing of the TRIPs Policy Change

2.1 Content of the Policy Change

The empirical analysis exploits quasi-experimental variation in the U.S. effective patent term
following the adoption of the Agreement on Trade-Related Aspects of Intellectual Property Rights
(TRIPs) in the US. TRIPs standardized intellectual property protection across trading partners
as part of the Uruguay Round agreements that established the World Trade Organization
(WTO). The main impact on the U.S. patent system was a shift in patent expiry from 17 years
after the grant date to 20 years after the application date.*

During the “pending period”—the time between application and grant, when the patent

office examines applications—monopoly power is fully not enforceable.” As a result, the policy

4The Uruguay Round Agreements Act, which ratified TRIPs in the U.S., introduced four major changes to
U.S. patent law. First, the change in patent term, analyzed in this paper. Second, a non-discrimination rule
for foreign inventors. Third, provisional applications were introduced, requiring conversion into formal filings
within one year to avoid abandonment. Fourth, TRIPs expanded the scope of patentable subject matter in
developing countries. Section 6.5 addresses possible confounding effects from these changes and supports the
validity of the results.

5Firms can sell or use their innovations before grant, but they can sue for infringement only after the patent’s
publication. Before December 2000 publication coincided with grant.



effectively changed the patent term from 17 years to 20 years minus the pending period. The
identification strategy uses the interaction between policy timing and differences in pending
periods across technological fields. Before discussing this heterogeneity in Section 2.3, T will
argue that U.S. innovators anticipated the TRIPs patent term change, leading to two policy

phases: news (anticipation) and post-implementation.

2.2 Timing: News and Post-Implementation Phases

The Uruguay Round Agreements Act (URAA), enacted on December 8, 1994, officially ratified
the TRIPs provisions in the US, with full implementation on June 8, 1995. Evidence from
official documents and articles suggests that U.S. firms were aware of the impending policy
change well before its formal adoption.b

First, U.S. businesses were directly involved in the TRIPs negotiations from the start of
the Uruguay Round in 1986. According to Morgese (2009) and Matthews (2002), the U.S.
Advisory Committee on Trade Policy and Negotiations, which included executives from, e.g.,
IBM and Pfizer, significantly shaped the stance of the U.S. delegation. Second, the adjustment
of the U.S. patent term was mentioned in a draft circulated by the GATT Director-General in
late 1991.7 Third, as Montalvo (1996) notes, the Advisory Committee on Patent Law Reform
took the first step toward this change in August 1992 by recommending a twenty-year patent

term from the filing date.®

This report, co-signed by representatives from IBM, 3M, P&G,
Motorola, and others, explicitly referred to the 1991 TRIPs draft. Fourth, early legal articles,
such as those by Reichman (1993), Martin and Amster (1994), and Doane (1994), discussed the
TRIPs draft. Finally, a New York Times article from September 1992 also noted the proposed
changes.” Therefore, U.S. innovators were aware of the negotiations and could anticipate the
policy change.

Historical records show that the signing of the Blair House Accord in November 1992 signif-

icantly reduced uncertainty about the agreements adoption.'® Therefore, the paper considers

6The URAA included a clause extending patent term for active patents filed before June 8, 1995, if the new
rules implied a later expiry date. However, this detail was likely unanticipated. Historical records of U.S. policy
debate—e.g., hearings of the Senate Advisory Committee on Patent Law Reform—mnever mention it, and it was
absent from TRIPs implementation in other countries, like Canada. Moreover, even if anticipated, it would not
affect the main findings. In fact, the clause applied only to patents benefiting from a longer term under the new
policy, while, as discussed in Section 4.1, U.S. innovators primarily reacted to the probability of a reduction in
patent term. I further discuss the role of possible anticipation of this clause in Section 7.1.

TGATT doc. MTN.TNC/W/FA, Draft Final Act Embodying the Results of the Uruguay Round of Multilat-
eral Trade Negotiations, 20/12/91

8 The Implementation of the Uruguay Round Agreement on Trade-Related Aspects of Intellectual Property—
the TRIPs Agreement: Hearings on S.2368 and H.R. 489/ before the Subcomm. on Patents, Copyrights and
Trademarks of the Senate Judiciary Comm. and the Subcomm. on Intellectual Property and Judicial Adminis-
tration of the House Judiciary Comm., 103rd Cong., 2d Sess.

9 Panel Proposes Patent Changes, New York Times, Late Edition (East Coast); New York, 15 Sep 1992.

0This is reported by Morgese (2009) and at https://en.wikipedia.org/wiki/Uruguay_Round, where it


https://en.wikipedia.org/wiki/Uruguay_Round

two distinct policy phases marked by a “news” event in November 1992 and an implementation
event in June 1995.

Although some uncertainty remained after the Blair House Accord (Abrams, 2009), U.S.
innovators were aware of the potential policy change and could respond to the information. The
flexible DiD specification in Section 5 captures potential anticipation effects without imposing
ex-ante assumptions. Section 6.1 discusses the timing of news effects, their robustness to earlier
dates, and their interpretation in light of remaining uncertainty. Section 4.2 and Appendix B
further explore the consequences of neglecting news effects for the parallel trends assumption

in DiD analysis and relate this paper to Abrams (2009).

2.3 Variation in Patent Term across Technical Fields

As TRIPs changed the effective patent term from T7"¢ = 17 years to T?°*" = 20 years minus the
pending period, the length of the pending period became crucial in determining the magnitude
and direction of the policy impact. A pending period shorter than three years resulted in a
term extension, while a longer period led to a reduction.

To identify the effects of the TRIPs policy change, I exploit the interaction between the
policy shock and pre-existing cross-sectional differences in pending periods across technical
fields. This variation arises because U.S. patent applications in different fields are reviewed by
distinct USPTO technical units, which vary in complexity and backlog due to staffing or foreign
filing intensity.!

Since historical data on pending periods by technical unit are unavailable, I use technical
fields as proxies, defining fields as one of 621 4-digit patent classes under the International
Patent Classification (IPC) scheme. I experiment with narrower field definitions in Section 6.5.

Because examination is patent-specific, cross-field heterogeneity consists in variation in the
field-specific distributions of patent-level pending periods. I summarize this variation with
two statistics from these distributions: the average pending period—which determines the
change in the average patent term—and the share of patents with a pending period exceeding
three years—indicating the probability that a patent obtains a reduction in patent term. The
analysis primarily focuses on patent term reduction probability, as descriptive evidence and
complementary analyses in Sections 4.1 and 7.1, respectively, suggest that it is the main driver

of DiD estimates.

reads: “The round was supposed to end in December 1990, but the U.S. and EU disagreed on how to reform
agricultural trade and decided to extend the talks. Finally, In November 1992, the U.S. and EU settled most of
their differences in a deal known informally as the “Blair House accord” [...]”

1 Applicants propose relevant patent classes following detailed pre-filing guidelines and the USPTO verifies
them to assign the application to the appropriate examination unit. This verification suggests that there is
limited scope for strategic choice of patent classes by applicants. Moreover, since pending periods also depend
on applicants’ responsiveness (Lemus and Marshall, 2018), Section 6.5 shows no correlation between applicant
responsiveness and pre-existing heterogeneity in average pending periods across fields.



Therefore, the patent term “loss” (reduction) probability and the change in average effective

patent term in field j are:

PL; = N; '3 I(PP; ;/365 > 3 years) (1)
AT; = 20 years x 365 — PP; — 17 years x 365 (2)

where PL; is the fraction of patents classified in field j and granted before the TRIPs news
with a pending period longer than three years, and ﬁj is the average pending period, in
number of days, for such patents. N; denotes the number of relevant patents and I(-) is an
indicator function equal to one if the pending period PP;;/365 of patent i exceeds 3 years.'?
The interactions of PL; or AT; with quarterly fixed effects constitute the treatment variables
in the field-level DiD empirical analysis of Section 6.

Figure 1a illustrates the distribution of patent term reduction probability, PL;, across tech-
nical fields. Many fields featured a significant probability that individual patents obtained a
pending period longer than three years: Approximately 45% (15%) of fields faced a reduction
probability larger than 5% (10%). Even fields with a positive average change in patent term
had loss probabilities as high as 40%.

In fact, most fields were expected to obtain an anticipated increase in average effective
patent term, whereas few fields faced a projected reduction. Figure 1b depicts the distribution
of the average change, AT}, across technical fields. The mean of this distribution is 4473 days,
or about 15.5 months, with a standard deviation of 118 days.

Finally, Figure 1c highlights the strong negative correlation between the expected average
patent term change (x-axis) and the loss probability PL; (y-axis), as a higher fraction of patents
with pending periods over three years leads to a smaller ATj.

Section 6.5 explains that this cross-sectional variation is not correlated with observable or
unobservable factors that could affect innovation differently across fields before and after the

policy shock.

2.4 Relation between Expected and Realized Patent Term Changes
The two proposed measures of TRIPs effect on patent term are based on pre-news variation in
pending periods across fields. In this subsection, I show that this ex ante variation consistently
predicts realized heterogeneity in patent term across fields after the policy shocks.

To this end, I estimate the relationship between the ex ante treatment variable X; and its

realized quarterly counterpart X;;—where j indexes fields and ¢ quarters—through the following

12T use PATSTAT (EPO, 2017) to compute PP; and PL; based on all granted U.S. patent applications that
(i) belong to technical field j; (ii) whose earliest application is filed at the USPTO; and (iii) whose grant date
is between January 1%, 1990 and May 315, 1992.



Figure 1: TRIPs-Related Change in Patent Term
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Notes: Panels (a) and (b) illustrate the distribution of the TRIPs-induced patent term reduction probability
and the change in average effective patent term across technical fields, respectively. In panel (b), fields with
an average pending period shorter than 3 years, denoted by positive values on the x-axis, faced an extension
in patent term, on average. Panel (c) illustrates the correlation between the average change in effective patent
term (x-axis) and the fraction of patents with a pending period longer than 3 years (y-axis) across technical
fields. Each dot represents a 4-digit IPC technical field.

regression:
X = dy + pX; + uj (3)

where X, is either: (i) the share of patents filed in quarter ¢ and field j with a realized pending
period longer than three years (PLj;) or (ii) the difference (in days) between the realized field-
specific average pending period and three years (ATj;). The term d; denotes quarter fixed
effects capturing common shifts in the relationship between X;; and X, and u;; is an error
term. I estimate this specification over two periods: the post-news sample (1992Q4-2000Q4)
and the post-implementation sample (1995Q3-2000Q4).

The coefficient of interest, p, captures how variation in the ex ante proxy X; maps into its

realized counterpart X, over time. A coefficient of one implies that field-level differences in

10



Table 1: Relation Between Pre- and Post-News Patent Term Variables

PLj PLj ATy ATy
Post 92Q3 Post 95Q2 Post 92Q3 Post 95Q2
Pre-News PL; 0.957 1.002
(0.070) (0.080)
[0.819,1.094] [0.846,1.159]
Pre-News ATj 1.053 1.104
(0.059) (0.069)
[0.938,1.169] [0.969,1.239]
Average of d; 0.140 0.164 -269.681 -337.969
(0.005) (0.006) (30.170) (35.441)
[0.131,0.150] [0.152,0.175] [-328.931,-210.431] [-407.570,-268.368|
Observations 18084 12029 18084 12029

Notes: The table reports point-estimates, standard errors (in parentheses), and 95% confidence intervals (in
square brackets) of p and averages of quarterly dummies d; in specification (3) for patent term reduction
probability X; = PL; (columns 1 and 2) and the average patent term change X; = AT} (columns 3 and
4). Regression (3) is estimated on a sample of field-quarter observations with more than one granted patent
application, to reduce noise in estimates of realized X;;, and on post-news quarters 19924 — 20004 (columns
1 and 3) or post-implementation quarters 1995Q3 — 2000Q4 (columns 2 and 4). Results are robust to including
all fields. Standard errors are clustered by 4-digit technical field.

the ex ante variable translate one-for-one into realized variation after the shocks, apart from
quarter-specific uniform level shifts captured by time dummies.

Table 1 reports point estimates, standard errors (in parentheses), and 95% confidence in-
tervals (in square brackets) for p and the average of quarterly dummies (d;), using X; = PL;
(columns 1 and 2) and X; = AT} (columns 3 and 4). Across both patent term measures and
sample periods, the estimates imply that predicted variation in patent term changes translates
almost one-for-one into realized variation across fields.

The average of quarterly dummies indicates a general increase in examination time, with
the probability of a pending period exceeding three years rising by about 14 percentage points
after the policy news. This change reflects a broad upward trend in examination duration, but
importantly, one that appears uncorrelated with pre-news pending periods across fields.

Appendix C.1 provides a graphical representation of the uniform increase in realized pending
periods across levels of PL; or AT}. Furthermore, Section 6.5 discusses that examination time
did not endogenously respond to the policy and that DiD estimates are unaffected when using

realized rather than expected measures of patent term change.

3 Data

The empirical analysis is conducted at three levels: (i) technological field, (ii) firm, and (iii)
NAICS 6-digit industry. Patent data is primarily sourced from PATSTAT (EPO, 2017), com-

plemented with patent generality and originality measures from Hall, Jaffe and Trajtenberg
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Table 2: Summary Statistics by Technical Field x Quarter

Variable Mean S.D. 10th Perc. 90th Perc.
Number of Patents 37.73  139.20 0.00 81.00
5-Year Citation-Weighted Patents 205.58 1097.17 0.00 378.00
Patent Value (Million Dollars) 366.96 3416.24 0.00 435.56
Patent Term Reduction Prob. PL; 0.06 0.08 0.00 0.12
Change in Avg. Patent Term ATj (Days) 472.66  117.42 343.55 590.79
Within-Field S.D. of AT} (days) 37.13 38.93 11.53 72.55
Share of Patents Renewed to Max. Term 0.29 0.26 0.00 0.63
Sh. Patents w. Within-Field Backwd. Cit.s  0.19 0.28 0.00 0.58

Notes: The table reports sample summary statistics at the 4-digit IPC field x quarter level.

(2001), patent quality and scope metrics from Marco, Sarnoff and deGrazia (2016), text-based
novelty measures from Arts, Hou and Gomez (2021), and private economic value estimates
from Kogan et al. (2017).'® Data on disambiguated inventors and applicants are obtained from
PatentsView (USPTO, 2023).

The quarterly panel spans the universe of 621 4-digit International Patent Classes (IPC),
defining technical fields in this paper, from 1985Q1 to 2000Q4, covering the period around the
TRIPs shocks. The sample ends in 2000 due to the introduction of the American Inventors
Protection Act (AIPA), which further modified U.S. patent law.* The average number of
quarterly patents and 5-year forward citations-weighted patents are 38 and 206, respectively,
with standard deviations of 139 and 1,097. Table 2 provides field-level summary statistics.

The firm-level dataset is a yearly panel of 2,410 listed U.S. firms from the NBER-Compustat
matched dataset by Hall, Jaffe and Trajtenberg (2001) covering the period 1985-2000, with
balance sheet data sourced from Compustat (Standard&Poor’s, 2022). On average, firms file
13 (granted) patents per year, and the average annual R&D expenditure is $85 million, with
standard deviations of 88 and $424 million, respectively. Approximately 70% of firm-year
observations display non-missing R&D, with less than 3% of them being zero, and 44% have
zero granted applications. Table 3 presents summary statistics for the firm-level sample.

Sectoral analyses use data on Total Factor Productivity (TFP), producer prices, and other
aggregates from the NBER CES manufacturing database (Becker, Gray and Marvakov, 2021)
for 428 6-digit NAICS industries from 1985-2000. Patent data are aggregated from the technical-
field level using the “Algorithmic Links with Probabilities” crosswalks by Goldschlag, Lybbert
and Zolas (2019), which map technological fields to industrial sectors. Table Al provides

summary statistics for the sectoral variables.

3Higham, de Rassenfosse and Jaffe (2021) surveys alternative patent quality measures, and Kelly et al.
(2021) compares economic value and text-based quality measures over the long run.

14 ATPA mandated the publication of patent applications 18 months after filing, effective for patents filed after
11/29/2000. Analysis by Hegde, Herkenhoff and Zhu (2023) suggests the policy had no impact on patenting
prior to its implementation, which I confirm in complementary analyses available upon request.
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Table 3: Summary Statistics by Compustat Firm x Year

Variable Mean S.D. 10th Perc. 90th Perc.
Number of Patents 12.61 88.08 0.00 11.00
5-Year Citation-Weighted Patents 182.35  1468.60 0.00 162.56
Patent Value (Million Dollars) 247.53  3136.16 0.00 62.33
R&D (Million Dollars) 85.13 424.24 0.23 103.00
Sales (Million Dollars) 2312.02  10094.70 2.87 4304.07
Age 14.76 13.63 1.00 36.00
Patent Term Reduction Prob. 0.08 0.06 0.03 0.14
Average Patent Term Change (Days)  449.56 93.73 343.95 545.64

Notes: The table reports sample summary statistics at the Compustat firm x year level.

4 Descriptive Evidence and the Role of Anticipation

4.1 Descriptive Evidence

In this subsection, I present preliminary descriptive evidence on patenting dynamics around
the TRIPs patent term change to guide the interpretation of DiD estimates of Section 6.

Figure 2a shows the evolution of granted patents by application quarter in three fields with
similar pre-news trends but differing in patent term reduction probability and average patent
term change. The solid line represents field C12P (in chemicals), which has a short average
patent term extension (AT; = 31 days) and a high fraction of patents with a pending period
over three years (PL; = 0.43). The long-dashed line shows G10L (in physics), with a larger
extension (AT; = 132 days) but a still sizable loss probability (PL; = 0.23). The short-dashed
line shows EO5D (in construction), where the average extension is nearly two years (AT; = 599
days) and the loss probability is negligible (PL; = 0.01).

In fields with a significant loss probability (C12P and G10L), later granted patent appli-
cations begin accelerating after the 1992Q4 news date (first vertical line) and peak in the two
quarters before implementation in 1995Q2 (second vertical line). This acceleration is absent in
E05D. These dynamics suggest that innovators expecting a reduction in patent protection—and
thus a shorter average term extension—accelerate patenting before the new policy takes effect.
Specifically, historical records of the U.S. policy debate on TRIPs adoption highlight that the
risk of patent term reductions was salient.

The increase starts small but intensifies as implementation nears, with a peak in 1995Q1
and 1995Q2 due to the URAA implementation details. Between its signing in December 1994
and full implementation in June 1995, applicants could choose the regime with the longest
protection. This option created a strong incentive to file during the transition period, especially

in fields facing potential patent term reductions, explaining the observed bunching in 1995Q2.

15The “Public Comments” subsection of Section IT “Patent Term” (p. 75) of the 1994 Congressional hearings
on S.2368 and H.R.4894 notes: “The following disadvantages [...] were noted: [...] (4) in some cases, the present
term of protection (17 years from grant) can be shorter than a term of 20 years from the filing date.”
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After implementation, patenting remains higher than pre-news trends in the fields with the
largest acceleration at news (C12P and G10L), suggesting persistent effects in fields with a
larger fraction of patents obtaining a patent term reduction. In contrast, patenting remains
stable and slightly above trend in E05D, the field with the lowest reduction probability.

These insights generalize beyond these three fields. Figure 2b shows the average deviation
of patenting from its 1985Q1-1992Q3 trend during the news phase (excluding 1995Q1-Q2)
by quintile of patent term reduction probability PL;. Across all quintiles of PL;, patenting
increases at news, with the largest acceleration in fields with higher patent term reduction
probability. Similar patterns are observed for the post-implementation period and citations-
weighted patents.

In summary, the raw data suggest an overall increase in innovation, with stronger responses
in fields facing a higher probability of patent term reduction—which appears the main driver
of news effects—and a shorter average extension. This descriptive evidence will guide the

interpretation of the DiD estimates in Section 6.

Figure 2: Descriptive Evidence on Patenting Across Fields
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Notes: Panel (a) illustrates the evolution of the number of granted patent applications by application quarter in
three technical fields: C12P with PL; = 0.435 (black solid line); G10L with PL; = 0.229 (red long-dashed line);
E05D with PL; = 0.011 (gray short-dashed line). The first and second vertical lines mark the news quarter
1992Q4 and the implementation quarter 1995Q2, respectively. Panel (b) illustrates the relation between the
average deviation of the number of granted patents applied for during the news phase 1992Q4-1994Q4 from
its 1985Q1-1992Q3 trend and patent term reduction probability—equal to the share of pre-news patents with
pending period longer than 3 years—by quintile of the latter variable (x-axis).

4.2 The Role of Policy Anticipation

Previous descriptive evidence shows that innovation dynamics markedly changed across fields
in response to policy news. This subsection argues that ignoring these anticipation effects

can lead to an imprecise interpretation of DiD estimates based solely on comparing outcomes
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immediately before and after policy implementation. This distinction is key to understanding
how my approach differs from that of Abrams (2009), who analyzes the same policy episode
under the assumption of no anticipation of TRIPs and, as a result, reaches different conclusions.

First, anticipation violates a core assumption of the DiD identification strategy: that pre-
implementation outcomes serve as an unaffected baseline for the pre-post implementation DiD
comparison. Because at news innovation increases the most in fields facing higher reduction
probability, pre-implementation levels are artificially inflated in these fields and thus do not pro-
vide a reliable reference for the DiD comparison around implementation. For instance, between
April 1994 and March 1995—the pre-implementation window used by Abrams (2009)—the
average monthly number of patents in field C12P was 15.1 units higher than in the quarter
before policy news, compared to just 2.4 units in field EO5D. As a result, post-implementation
innovation appears relatively weaker in fields like C12P compared to EO5D when considering
the inflated pre-implementation baseline, despite still being stronger when considering the un-
affected pre-news innovation level (Figure 2a). Thus, the sign of post-implementation DiD
estimates reverses depending on the considered reference point.'6

Second, Abrams (2009) estimates field-specific linear time trends over narrow windows (6,
12, or 24 months) before and after implementation, excluding a four-month gap around June
1995. These trends are intended to control for underlying innovation dynamics unrelated to the
policy. However, because innovation responds to policy news, the estimated trends are based on
data influenced by the shock. As a result, the constructed counterfactual trajectories diverge
from actual pre-news dynamics, violating the parallel trends assumption. In contrast, with the
DiD specification presented in Section 5 I find no evidence of pre-trends.

Appendix B provides further details and illustrates these differences with an example.

5 Conceptual Framework for the Empirical Analysis

This section introduces a stylized framework to analyze news and implementation effects under
anticipation. I first derive the causal marginal responses of interest, then link them to the

reduced-form DiD specifications of the paper. Section 6.5 discusses identification concerns.

5.1 Effects of Interest with Anticipation

I assume that aggregate innovation at time ¢, denoted by Iy, is a function of (cumulative) past

innovation, Cuml;_q, and current R&D effort R&D;, which is endogenously determined as

From August 1995 to July 1996, average monthly patents in C12P (E05D) were +6.7 (+1.8) units relative
to the news quarter, but -8.3 (-0.6) units compared to the pre-implementation window used by Abrams (2009).
Since C12P features a higher patent term reduction probability than E05D, the DiD estimate for the post-
implementation period would be positive when considering the unaffected pre-news reference point, but negative
when assuming no anticipation and using the endogenous pre-implementation baseline.
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a function of past innovation and a policy vector 7; collecting current and future expected
policies. This reduced-form representation is consistent with most endogenous growth theories.
For the case of patent term T', 7y = [T}, T, ,, ...], where T} denotes the current policy and T},
the expected one at t+ 1. Therefore, aggregate innovation itself is a function of past cumulative

innovation and policy, i.e.,
I, = F(Cumly_y, R&D(Cumli_y, 7)) = G(Cumly_y,T4)

I consider three time periods: (i) t — 1 =pre-news, when no news about future policy changes
occurred; (ii) ¢ =news, when the old policy is in place but news diffuses that a new policy will
apply from ¢+ 1 onward; (iii) and t+ 1 =implementation, when the new policy enters into force.

The empirical analysis aims at estimating three effects of interest. First, the “news effect”,
i.e., the incremental change in innovation (or R&D) at ¢ =news caused by a marginal change

in the policy at t + 1 =implementation. In the simple framework, this is:

dlyews IG(-, ) OCUMLyre—news N oG(-,-)  0G(-,-) (4)
dnmplem B aC’urn]pre—news aT‘implem 87ﬁimplem B aiZﬁ%mplem
=0

The first term denotes the impact of the future policy change on news-period innovation through
changes in pre-news innovation. This term is null by the assumption that innovation is un-
affected before policy news occurs (null pre-trends). The second term represents the direct
impact of the future policy change on current innovation upon news, due to changes in R&D.

The second effect of interest is the “overall” implementation effect, i.e., the incremental
change in innovation at ¢t + 1 =implementation caused by the implementation of an anticipated
marginal change in Tjy,pem. As the following expression highlights, the “overall” effect results
from the combination of an indirect effect, through changes in past innovation due to news
effect (4), and a direct effect, due to changes in R&D caused by the actual implementation of

the policy:
dlimplem _ aG(7) acumlnews + aG(u)

dﬂmplem aC'UJTTLInews ajvimplem aCrimplem
A ~~ > Hﬂ

Indirect Direct

(5)

The third effect of interest is the “direct” impact of policy implementation, i.e., the sec-
ond term of expression (5). It represents the incremental change in innovation caused by a

concomitant marginal change in patent term absent anticipation effects.

5.2 Estimation of News and Overall Implementation Effects

To estimate news and “overall” implementation effects (4) and (5) on aggregate innovation, I

leverage cross-sectional variation in patent term loss probability PL; or average effective patent
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term change ATj across technological fields in the DiD specification:

200004 2000Q4
Yie=a;+ Z i L=k) + Z BrLi=iX; + €)1 (6)
k=1085Q1 k=1985Q1
k£199203 k£199203

where Yj; is technical field-j and application quarter-t dependent variable (in levels), «;
are technical field fixed effects, 1,—) are quarter-specific dummy variables, with ~;, coefficients
capturing the effect of any time-varying unobserved factor whose impact is common across
fields, X; is either PL; or AT}, and ¢, is an idiosyncratic error term.

The ) coefficients denote the quarterly DiD effects of interest. They represent the marginal
effect of an anticipated unit-change in X; on the outcome variable, in level deviation from its
baseline in 1992Q3 (excluded news quarter).

I also analyze the following Poisson specification for positive count variables

2000Q4 2000Q4
Y = exp {Oéj + Z e Ll=k) + Z Brl=mX; + €j,t}, (7)
k=1985Q1 k=1985Q1
k£199203 k£199203

where DiD coefficients represent the marginal effect of X; on the outcome in percent deviation
from the pre-news baseline.!”

The economic interpretation of the [ coefficients varies across the pre-news, news, and
implementation periods, as discussed in Section 5.1. For k& < 199213, i reflects the marginal
effect of PL; or AT} before policy news, which should be zero, indicating the absence of pre-news
differential trends in innovation (i.e., no pre-trends). During the news period (1992Q4-1995Q2),
By represents the effect of news about the future policy on (granted) patent applications, cap-
turing the marginal variation in X; for quarter k. This effect aligns with the news effect in
equation (4). In the post-implementation period (k > 1995Q)3), B captures the quarter-specific
marginal effect of the anticipated patent term change, accounting for both direct and indirect
policy effects, as described in equation (5).

I consider several outcome variables to proxy aggregate innovation and quality at the tech-
nical field level. The “quantity” of innovation is measured by (i) the raw count of granted U.S.
patents by application quarter, (ii) the number of U.S. patents weighted by 5-year forward cita-
tions (a common metric for scientific quality-adjusted innovation), or (iii) the private economic

value of patents, as estimated by Kogan et al. (2017).

1"Mullahy and Norton (2022) examine different models for non-negative and skewed outcome variables with
large probability mass at zero. Differently from linear models with log- or inverse hyperbolic sine-transformation
of the dependent variable, linear regressions or Poisson models with dependent variable in levels estimate correct
marginal effects.
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To proxy average quality, I use text-based measures of patent novelty (Arts, Hou and Gomez,
2021), measures of patent scope based on the type and length of claims (Marco, Sarnoff and de-
Grazia, 2016), average citations or economic value, as well as generality and originality measures
(Hall, Jaffe and Trajtenberg, 2001).

For the analysis of the effect of patent term on R&D expenditures, I focus on firm-level data
in Section 6.2. While patents capture innovation output, patent data alone do not provide a
reliable measure of R&D input by field. In contrast, firm-level balance sheet data offer a more

accurate measure of R&D expenditures.!®

5.3 Recovering the Direct Policy Effect

The empirical analysis proceeds to distinguish between the direct and indirect effects within the
overall implementation effect in equation (5). The direct effect measures how changes in patent
term affect innovation, independent of anticipation and of the specific conditions of TRIPs
implementation. In contrast, the indirect effects arise from how changes in past innovation,
driven by anticipation, influence post-implementation innovation, reflecting the externalities
tied to the cumulative nature of knowledge creation (Romer, 1990).

To isolate the direct policy effect, I modify DiD specification (6) to control for field-specific
innovation histories, following the discussion on DiD with path-dependence in Angrist and
Pischke (2009). Therefore, direct effect estimates leverage variation in innovation that is or-
thogonal to past outcomes across technical fields with heterogeneous patent term changes.
However, controlling for past outcomes requires omitting field fixed effects to avoid inconsistent
DiD estimates (Nickell, 1981). Hence, the modified DiD specification is:

Y= Z Lyre,j L=k + Z Vi Lit=r) + Z kL (1= X+

k£92Q3 k49203 k49203
- = 8
+ E Urli=k) Yjk—a—1k—1 +%o Yji—a1a-1 +0j. (®)
—_——— —_——
k49203 - —
E% I;:Ii—.A—l Yjq Ei ZZ:%—A—l Yjq

To control for field-specific time-invariant characteristics, I replace field fixed effects by a vector
Z,,c j, which includes pre-determined attributes (field size, average forward citations per patent,
and average inventors per patent from 1980-1985) interacted with quarterly fixed effects.!® The
second line of (8) parsimoniously accounts for the quarter-specific impact of a field innovation

history. Specifically, Y; ;_a—1.x—1 represents the average outcome over the A quarters before £,

and 1, captures deviations from its baseline impact 1. I set A equal to 10, corresponding to

18] confirm that all patent-related results extend to a proxy for R&D effort by technical field, based on the
number of unique inventors by technical field and quarter. These results are available upon request.

19Separate analyses confirm that replacing fixed effects with Z,,.. ; controls does not alter the findings com-
pared to the original TWFE DiD specification (6).

18



the TRIPs anticipation period, but confirm robustness with A between 7 and 16 quarters.
The new DiD coefficients ¢, estimate the effect of a marginal change in the probability of a
patent term reduction (or in the average patent term change) on quarter-k innovation outcome,
controlling for the effects of field-specific innovation histories. After policy implementation,
these coefficients reflect the direct effect of equation (5). Before implementation, they coincide
with the news effects, as per equation (4). Consistently, the empirical findings in Section 6.3
show that the direct effect closely aligns with the baseline DiD estimates during the news period.

In contrast, the direct effect has opposite sign than the “overall” effect after implementation.

6 Effects of an anticipated change in patent term

This section presents the empirical findings of the paper. I begin with estimates of the news
and overall implementation effects on patenting and patent quality by technical field. I then
examine the response of R&D, a key input for innovation, using firm-level balance sheet data.
Next, I present the direct implementation effects and compare their magnitude to previous
literature. Finally, I address measurement and identification concerns in detail. Appendices C,

D, and E provide additional results by field, firm, and on sectoral productivity and prices.

6.1 News and overall implementation effects by field

Figure 3 presents the results of DiD specification (6) for the number of granted patents by field
and application quarter as outcome variable. Panel 3a shows the effect of a one-percentage-
point higher patent term reduction probability (X; = PL;), while panel 3b shows the effect of
a one-month shorter extension in average patent term (X; = AT}). Panels 5a and 5b display
the same effects using the Poisson DiD specification (7). Dots represent point estimates, and
the bands show 95% confidence intervals, with standard errors clustered by technical field and

treatment phase. The figures highlight three key findings.

Pre-trends. First, the estimated effects of marginal changes in the regressors are close to
zero before the news shock. Formal tests based on Roth (2022) strongly reject the presence of
economically significant pre-trends.?’ Thus, the change in patent term is not correlated with
unobserved, field-specific innovation patterns that existed prior to the policy news. Section 6.5

will discuss the absence of confounders occurring around or after the policy change

20For X; = PLj, a linear trend with a quarterly slope of 0.056 (equal to the 2000Q4 point estimate divided
by the number of post-news quarters) would be detected with a power of 0.99, while a trend with a slope of 0.028
(equal to half of the 2000Q4 point estimate divided by the number of post-news quarters) would be detected
with a power of 0.51. For X; = AT}, a linear trend with a quarterly slope of 0.15 (equal to the 2000Q4 point
estimate for a one-month shorter extension divided by the number of post-news quarters) would be detected
with a power of 1, while a trend with a slope of 0.075 (equal to half of the 2000Q4 point estimate for a one-month
shorter extension divided by the number of post-news quarters) would be detected with a power of 0.79.
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Figure 3: DiD estimates by technical field — Patents by Application Quarter
(a) Effects of Patent Term Reduction Probability
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Notes: The figure represents the effects of the patent term change on field-level (granted) patent applications
by application quarter from DiD specification (6). In panel (a), the regressor of interest is X; = PL; and the
estimates represent the relative effect of a one-percent higher probability of a patent term reduction on the level
of the outcome variable. In panel (b), the regressor of interest is X; = AT, and the estimates represent the
relative effect of a one-month shorter extension in the average patent term on the level of the outcome variable.
This effect is computed as the DiD coefficients estimates Bk times —30 (days). Bands represent 95% confidence
intervals based on standard errors clustered by field and treatment phase. The first and second vertical lines

mark news and implementation dates, respectively.

News effect. Second, during the news phase (k € [1992Q4; 1995Q2]), the DiD estimates show
a positive and statistically significant impact of both a one-percentage-point higher probability
of patent term reduction (Figure 3a) and a one-month shorter extension in average patent term
(Figure 3b) on patenting. This result aligns with the descriptive evidence in Section 4.1. A
higher probability of patent term reduction—or a shorter extension in average patent term—
for post-implementation filings leads to an increase in (eventually granted) patent applications
during the anticipation phase.

The effect starts small but grows as policy implementation approaches. For instance, one
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year after the news and two years before implementation, a one-percentage-point higher proba-
bility of patent term reduction leads to 0.19 additional (granted) applications per quarter (+0.5
percent in Poisson DiD estimates, Figure 5a). Similarly, in fields with a one-month shorter ex-
tension, patenting increases by 0.35 additional units (4-0.8 percent in Poisson estimates, Figure
5b). These effects nearly triple two years after the news and one year before implementation.

The positive relationship between patenting and news of a higher probability of patent term
reduction may appear surprising given prior evidence that stronger patent protection stimulates
innovation as a direct effect. However, as I discuss in the Introduction, my findings are consistent
with prior literature: innovators who are more exposed to a future patent term reduction and
want to obtain the longest term of protection have stronger incentives to accelerate innovation
and file applications before policy implementation. Descriptive evidence and complementary
analyses of Sections 4.1 and 7.1 support this interpretation.

The dynamics of news effects reflect both the time required for R&D investments to generate
innovation outputs as well as the gradual response of innovators to reduced uncertainty about
the policy as its implementation neared. As to the first factor, R&D expenditures—on which
I present empirical evidence in Section 6.2—have a gradual effect on project completion. The
average R&D gestation lag, estimated by Pakes and Schankerman (1984) at about two years,
aligns with the length of the anticipation phase. Moreover, the early increase in innovation
may result from accelerating R&D on projects that were close to completion at news. As to
the second factor, while the policy was anticipated, Abrams (2009) notes some uncertainty
remained until 1994. Thus the effect may build as this uncertainty gradually resolves after the
Blair House Accord in November 1992.

The DiD estimates show a sharp rise in 1995Q2, the last quarter before implementation. As
discussed in Section 4.1, this spike is due to application bunching caused by URAA provisions,
which allowed applicants to choose the most favorable policy regime for applications filed be-
tween December 1994 and June 1995. Consequently, 1995Q2 was the final quarter to avoid any
potential patent term loss. The incentive to bunch was greater in fields with a higher proba-
bility of term reduction. However, the patenting increases observed in earlier quarters reflect
genuine innovation changes, as supported by the consistent responses in R&D expenditures,
quality-adjusted innovation measures, and productivity (Appendix E).

I preview the effects of patent term on patent quality (Section 6.5) by estimating specifi-
cation (6) using citations-weighted patents—i.e., granted patents applied for in quarter ¢ and
classified in field j weighted by their 5-year forward citations—as the dependent variable. This
is a common proxy for scientific quality. Figure 4 shows the effect of a one-percentage-point
higher probability of patent term reduction on quality-adjusted patents, while Figure 5c¢ pro-
vides similar estimates using the Poisson specification (7). Like in Figure 3b, there are no

significant pre-trends. Positive estimates after the news confirm that fields with higher patent
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Figure 4: DiD estimates by technical field — 5-Year Forward Citations-Adjusted Patents
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Notes: The figure depicts the relative effect of a one-percentage-point higher patent term reduction probability
on the level of 5-year citations-weighted (granted) patents by application quarter, based on estimates of DiD
specification (6) with X; = PL;. Bands represent 95% confidence intervals based on standard errors clustered by

field and treatment phase. The first and second vertical lines mark news and implementation dates, respectively.

term reduction probability see a larger increase in quality-adjusted patenting during the an-
ticipation phase. Section 6.5 provides further evidence on additional average patent quality
measures and links the results to selection into patenting and secrecy.

I summarize previous evidence on news effects as

Fact 1 At news, innovation and R&D increase relatively more in fields with a higher proba-

bility of a patent term reduction and, thus, with an shorter average patent term extension.

Section 6.2 presents the underlying evidence on the response of firm-level R&D expenditures

to the patent term change.

Overall implementation effect. Figures 3 and 5 show the estimated post-implementation
effects (k > 1995@Q)3) of the anticipated policy, combining both direct policy impacts and indirect
effects from anticipation. A higher probability of a patent term reduction and a shorter average
patent term extension are associated with higher innovation after implementation. Two years
after the policy, a one-percentage-point increase in the probability of a patent term reduction
results in 1.44 additional quarterly patents (42.7 percent in Poisson estimates), and a one-
month shorter patent term extension corresponds to 3.3 more patents (+5.9 percent in Poisson
results). Similar results are observed for citations-weighted patents in Figures 4 and 5c.

To determine if these post-implementation effects are temporary and persistent or perma-
nent, I extend the sample to 2010. The main analysis ends in 2000 due to other changes in
U.S. patent policy (Hegde, Herkenhoff and Zhu, 2023). Appendix C.2 shows that the effects
are temporary, as the DiD estimates return to zero after 2000.

Therefore, I summarize evidence on overall post-implementation effect as
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Figure 5: Poisson DiD estimates by field
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(c) 5-Year Forward Citations-Weighted Patents and Patent Term Reduction Probability
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Notes: Panels (a) and (c) of the figure represent the relative effects of a one percentage point higher patent
term reduction probability on log-deviations in (granted) patent applications (panel a) and citations-weighted
patents (panel ¢) by application quarter, based on pseudo-Maximum Likelihood estimates of Poisson DiD
specification (7). Panel (b) represents the relative effects of a one-month shorter extension in average patent
term on log-deviations in (granted) patent applications by application quarter, based on estimates of Poisson
DiD specification (7). Bands represent 95% confidence intervals based on standard errors clustered by field and

treatment phase. The first and second vertical lines mark news and implementation dates, respectively.
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Fact 2 After implementation, the sum of direct and indirect policy effects (overall effect) is
such that innovation and R&D remain relatively higher in fields with a higher probability of

patent term reduction and, thus, with a shorter average patent term extension.

As previously noted, the persistence of a positive relationship between a shorter patent term
and innovation following implementation is surprising. In the framework developed in Section
5, this persistence reflects the interaction between news-driven acceleration and technology
disclosure externalities, for which I provide supporting evidence in Section 7. Importantly,
Section 6.3 shows that the direct post-implementation effect of a higher probability of patent

term reduction on innovation is in fact negative, consistent with prior literature.

Heterogeneity. The sensitivity of patenting to changes in patent term may vary systemati-
cally with observable field characteristics. To explore this heterogeneity, I conduct complemen-
tary triple-difference analyses. Appendix C.3.1 shows that the policy impact is larger in fields
where a higher share of patents are renewed to the maximum term, suggesting greater salience
of this policy tool. Appendix C.3.2 finds stronger DiD estimates in fields with higher patent
litigation rates, indicative of greater reliance on patents to appropriate returns from innovation.
Appendix C.3.3 documents larger effects in fields with lower uncertainty around the average
patent term change. Finally, Section 7 presents additional evidence of heterogeneity based on

field-level differences in technological dependence and technical competition intensity.

6.2 From Patents to Firm-level R&D

Next, I examine the impact of the patent term change on R&D expenditures, a key input
to innovation. This analysis addresses concerns about using patent outcomes as proxies for
innovation. Since some inventions are protected by secrecy rather than patents, changes in
the patent term could influence both actual innovation and patenting decisions. I show that
firm-level R&D expenditures respond to the patent term change in line with its effects on
patent-based innovation outcomes, suggesting that the latter reflect, at least to some extent,
genuine innovation changes.?!

I use a direct measure of R&D expenditures from a yearly panel (1985-2000) of 2,410 listed
U.S. firms, based on the NBER-Compustat dataset compiled by Hall, Jaffe and Trajtenberg
(2001). For each firm ¢, the TRIPs-induced patent term reduction probability, PL;, is calcu-
lated as a weighted average of field-specific probability, PL;, with weights representing firm
1’s technological exposure to field j before TRIPs. This exposure is measured by the share of
the firm’s patents filed in field j from 1971 to 1991.%2 T collect firm-level R&D expenditures

21Section 6.5.1 further addresses issues related to innovation measures and secrecy. Appendix E explores how
patent term changes affect sectoral Total Factor Productivity (TFP) and prices.

22To account for potential changes in firms’ technological focus over time, I verify that all DiD results are
robust to computing technological exposure based on a shorter time window, e.g., 1986-1991.
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(xrd), sales, and other variables from COMPUSTAT (Standard&Poor’s, 2022). The firm-level

analysis uses the following Poisson DiD specification:

2000 2000
| zexp{ai + Y Wleen + Y Bile=nPLi+ 60X + Ei,t} (9)
k=1987 k=1987
k#1991 k#1991

The regression compares R&D investment and patent outcomes across firms with varying
exposure to the TRIPs-induced patent term change, both before and after the policy shocks.
Identification assumes that, conditional on controls, the “shift” in patent term across technolo-
gies is quasi-random, despite the potential endogeneity of firms’ technological exposure. This
assumption is supported by several analyses in Section 6.5. Equation (9) includes firm fixed
effects («;), year fixed effects, a vector of controls (X;;) that incorporates firm age fixed ef-
fects, 3-digit SIC industry-year fixed effects, and a 3-digit SIC-specific quadratic trend in firm
age. The error term is ¢;;. Each DiD coefficient S captures the effect of an expected unit
change in PL; on the log deviation (or approximate percentage change) of R&D expenditures
or innovation. I estimate the regression using pseudo-Maximum Likelihood.

Figures 6a and 6b illustrate the impact of a one-percentage-point higher probability of a
patent term reduction on R&D expenditures and citations-weighted patents, respectively. The
bands represent 95% confidence intervals, with standard errors clustered at the firm level.

The results align with the field-level findings from Section 6.1. During the news phase, a one-
percentage-point higher probability of a patent term reduction is associated with 1.9% increase
in yearly firm-level R&D (1993 estimate), equivalent to approximately $1.7 million. Similarly,
news of a one-percentage-point higher probability of a patent term reduction corresponds to
3.3% larger increase in citations-weighted patents at the firm level. The timing of these effects
is also consistent with Section 6.1, as the change in citations-weighted patents is more gradual
than the R&D response. These dynamics suggests that the quicker adjustment in R&D inputs
leads to a slower change in innovation output.

Furthermore, for both R&D and innovation, the post-implementation effects maintain the
same direction as the news phase, consistent with Fact 2. Firms with shorter patent term
extensions experience relatively higher R&D and innovation not only during the news phase
but also after implementation.

Appendix D.1 reports consistent results for firm-level patenting and patent value, and
placebo analyses of firm-level variable costs, capital expenditures, and sales. Moreover, for
the universe of U.S. applicants, Appendix D.2 shows evidence of within-firm reallocation of

patenting and inventors across technical fields that is consistent with field-level findings.
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Figure 6: Poisson DiD estimates for firm-level R&D and innovation
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Notes: The figure depicts the effect of a one-percentage-point higher patent term reduction probability at the
firm level—based on the Poisson DiD specification (9)—on yearly R&D expenditures (panel a) and citations-
weighted (granted) patents by application year (panel b). Point estimates represent the effect of the policy
change on percent deviations of the outcome variable from its baseline value in 1991, i.e. $78.9 million for R&D
and 288.9 for citations. Standard errors are clustered at the firm level and bands represent 95% confidence

intervals. The first and second vertical lines mark news and implementation events, respectively.

6.3 Direct Implementation Effect

I now present evidence on the direct effect of patent term changes on innovation. As shown in
expression (5), the post-implementation DiD estimates from Sections 6.1 and 6.2 reflect both
indirect effects from policy anticipation and direct effects from the actual implementation of the
new patent term. The augmented DiD specification (8) isolates the direct effects by controlling
for the influence of the news shock through field-specific innovation histories.

Figure 7 shows the direct effect of a one-percentage-point higher probability of patent term
reduction on the number of granted patents by field and application quarter, based on DiD
estimates (¢) from specification (8).

The figure highlights two main findings. First, the direct effect estimates remain positive
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before implementation, consistent with expression (4) stating that the news effect is mostly
driven by the policy’s direct impact. Thus, in fields with a higher probability of a patent term
reduction—and thus a relatively shorter patent term extension—innovation accelerates more
during the news phase (Fact 1).

Second, the direct effect estimates turn negative and stable after policy implementation.
A higher fraction of patents obtaining a patent term reduction leads to a relative decline in
innovation, once controlling for innovation dynamics during the news phase. On average, a
one-percentage-point higher probability of patent term reduction results in 0.5 fewer patents
per quarter, or about a 1.1% reduction in the average quarterly number of patents in the
post-implementation period.

Using the field-specific change in average patent term as the main regressor yields similar
results: a one-month shorter extension in average patent term results in 1.7% lower number of
patents per quarter in the post-implementation period.

Appendix C.11.1 provides consistent evidence for quality-adjusted innovation (citations-
weighted patents) by field. Furthermore, Appendix C.11.2 shows that controlling for innovation
histories in related fields has a negligible impact on the results.

Therefore, absent anticipation effects, a shorter (longer) patent term hinders (stimulates)

innovation as a direct effect, which I summarize as:

Fact 3 A higher probability of patent term reduction—i.e., a relatively shorter patent term—

determines relatively less innovation after policy implementation as a direct effect.

This result aligns with previous empirical studies on the effects of patent protection on

innovation, which I will relate to the magnitude of my estimates next.

Figure 7: DiD estimates of direct effect controlling for anticipation
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Notes: The figure depicts the relative direct effect of a one-percentage-point higher patent term reduction
probability on the level of (granted) patents by application quarter, based on estimates of DiD specification
(8) with X; = PL;. Bands represent 95% confidence intervals based on standard errors clustered by field and

treatment phase. The first and second vertical lines mark news and implementation dates, respectively.

27



6.4 Elasticity and Comparison with Previous Literature

Estimates of the direct post-implementation effect indicate that a one-month longer patent
term increases innovation by 1.7%, implying a semi-elasticity of 20.9% for a one-year extension.
This magnitude aligns with findings from Budish, Roin and Williams (2015) and Budish, Roin
and Williams (2016), who estimate that a one-year extension in patent monopoly boosts R&D
by 7% to 22% in the pharmaceutical industry. My estimates are at the upper end of this range.
Similarly, the model of Hémous et al. (2023) predicts that a one-month increase in U.S. patent
terms would raise U.S. innovation by 1.2%, close to my estimate of 1.7%.

The elasticity of innovation to patent term may vary across technologies. While a full
analysis of this heterogeneity is not feasible in the current setting, I assess robustness by re-
estimating the semi-elasticity after excluding fields likely to be particularly responsive to patent
protection. First, based on fields with below-median patent renewal rates to maximum term—
thus less sensitive to the policy—the estimated semi-elasticity remains positive and significant at
1.1%. Second, excluding fields related to chemistry—known to be especially patent-sensitive—
yields a semi-elasticity of 1.4%, also positive and significant.?3

These results are also consistent with the elasticity of TFP to market size estimated by
Beerli et al. (2020), who find that a 1% increase in market size raises firm-level productivity
by 0.46% using Chinese manufacturing data. Since a longer patent term expands the market
size for innovations, I can map the results from Section 6.3 to their findings. In Appendix E, I
relate patenting variation due to the patent term change to sectoral TFP dynamics. From the
direct post-implementation effects on patenting, I estimate an elasticity of aggregate TFP to
patent term of around 0.3%, close to the estimate of Beerli et al. (2020).

To summarize, I finally compute the elasticity of innovation to patent term based on direct
post-implementation effects and news effects. A 1% longer extension in average patent term
leads to a 3.6% increase in innovation post-implementation. In contrast, news of a 1% shorter
anticipated extension for future inventions correlates with a 2.4% increase in patenting during
the anticipation phase.?* These findings on anticipation effects are novel to the literature and

highlight the relevance of intertemporal trade-offs.

6.5 Identification and Measurement Concerns

I conclude this section by addressing key identification and measurement concerns, focusing on

the main DiD specification (6). This specification provides unbiased estimates of the news and

231 exclude 21 4-digit fields included in 3-digit classes “Inorganic Chemistry” (C01), “Organic Chemistry”
(C07), and “Organic Macromolecular Compounds” (CO08).

24These estimates are derived from the average DiD estimates in the anticipation period (excluding 1995Q2,
the pre-implementation quarter) divided by the average quarterly number of patents. The resulting figure
gives a semi-elasticity for a one-day change in patent term, which is then scaled by the number of days in the
pre-TRIPs 17-year patent term.
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implementation effects (4) and (5) under two conditions: accurate measurement of innovation
and R&D, and the assumption that the policy-induced change in patent term across techno-
logical fields is as good as random. Specifically, the pre-news pending period across technical
units must be unrelated, conditional on controls, to factors—observable or unobservable—that
influence innovation across fields. To address potential violations of these conditions, I present

complementary analyses.

6.5.1 Measurement of Innovation, Patent Quality, and Secrecy

Patent-based measures of innovation have known limitations: not all inventions are patented,
and changes in patent term can affect both innovation incentives and the choice between patent-
ing and secrecy. Section 6.2 addressed this concern by showing that changes in patent term
also influenced firm-level R&D expenditures—an essential input to innovation—mirroring the
observed effects on patenting. Appendix E further links these patent-based measures to changes
in sectoral productivity and prices.

This subsection examines whether the policy affected average patent quality, which could
shift due to changes in selection into patenting. The expected direction of quality changes is
ambiguous and depends on the treatment phase. At news, innovators in fields expecting a
patent term reduction might choose to reduce quality to accelerate filings, an effect that may
be persistent. After implementation, a longer patent term could encourage patenting of higher-
value inventions that are harder to imitate, increasing observed quality and novelty.?> However,
if only a few inventions hover around the patenting threshold, selection effects may be minor.

To test these hypotheses, I analyze the impact of the policy on three dimensions: (1) scien-
tific and economic quality, proxied by average citations, generality, originality, and estimated
economic value (Hall, Jaffe and Trajtenberg, 2001; Kogan et al., 2017); (2) novelty, based on
new words or text similarity with prior and subsequent art (Arts, Hou and Gomez, 2021; Kelly
et al., 2021); and (3) scope, measured by claim characteristics such as length and number of
independent claims (Marco, Sarnoff and deGrazia, 2016). Results are presented in Appendix
C.4 (quality and novelty) and C.5 (scope).

During the news phase, the policy has no significant impact on average quality, novelty,
or scope. This finding suggests that firms did not file lower-quality patents when accelerating
innovation in anticipation of term reductions.

After implementation, quality and novelty indicators move in different directions. Fields fac-
ing a higher probability of patent term reduction show weak increases in citations and economic

value, but declines in novelty. This result suggests that innovators may have responded to a

25Harder-to-imitate inventions tend to be of higher quality and more novel, and face lower risk of imitation,
making secrecy a more viable alternative. A longer patent term can shift this trade-off, leading innovators to
patent more valuable inventions.
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relatively shorter patent term by boosting quality while avoiding riskier, more novel projects.
Patent scope remains unchanged, indicating no systematic shift in patenting strategy, such as
narrowing claims to form patent thickets in response to weaker patent protection (Shapiro,
2001). Taken together, these results seem inconsistent with strong selection effects, which

should similarly affect quality, novelty, and scope.

6.5.2 Technology Shocks and Definition of Fields

Field- and quarterly fixed effects cannot fully account for field-specific technological trends or
technology demand shocks that are independent of the policy but correlated with the pre-news
average pending period. These trends could be influenced by macroeconomic factors, such as
reduced defense spending after the Cold War, or technological shifts, like the rise of Information
Technologies in the 1990s (Hall, 2004), or the emergence of complex technologies associated with
longer average pending periods. I address this concern in several ways.

First, I test for the absence of significant pre-trends in the DiD estimates using the approach
of Roth (2022). Second, I enrich specification (6) by adding quarter-by-3-digit IPC fixed effects,
controlling for technology demand shocks or trends across over 100 3-digit technical areas. These
controls ensure that the DiD estimates reflect only the variation in patent term and innovation
outcomes across 4-digit fields within the same 3-digit category.? Appendix C.6 shows that
the DiD estimates are unaffected by this adjustment. Third, I verify in Appendix C.6 that
the results remain robust when using 8-digit IPC subclasses as cross-sectional units of analysis
while controlling for trends by 4-digit field. Lastly, I control for quarter-specific effects of
technological complexity across fields, based on the classification by Galasso and Schankerman

(2015). The results remain consistent with the baseline specification (6).

6.5.3 Heterogeneous Effects and Selection on Doses

In DiD settings with continuous treatments (dose), such as PL; or AT}, Callaway, Goodman-
Bacon and Sant’Anna (2021) show that heterogeneous treatment effects across units, combined
with selection on doses and the weighting scheme of the Two-Way Fixed Effects (TWFE)
estimator, can distort the magnitude of TWFE DiD estimates for average causal responses
(4) and (5). Appendix C.7 elaborates on this issue, using Callaway, Goodman-Bacon and
Sant’Anna (2021) decomposition of TWFE to show that the DiD estimates in Figure 3 are
constant across doses and generally stable. This result indicates that fields more sensitive to
patent term changes do not systematically experience longer or shorter patent term shifts,

making the estimated effects likely representative of the average field.

26For example, the 3-digit IPC C21, “Metallurgy of Iron,” includes several 4-digit IPCs, such as C21B “Man-
ufacture of Iron or Steel,” C21C “Processing of Pig-Iron (...),” and C21D “Modifying the Physical Structure of
Ferrous Metals (...).” Other examples include C25 “Electrolytic or Electrophoretic Processes,” A43 “Footwear,”
and D03 “Weaving.”
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6.5.4 Endogenous Changes in Examination

While the TRIPs provisions did not formally modify the examination process at the USPTO,
they may have influenced the rigor of examiners. If these changes correlate with the pre-TRIPs
pending periods across technical units—potentially due to differential congestion—the DiD
coefficients in (6) could be biased for the marginal responses (4) and (5).

Since ungranted U.S. patent applications were not published before 2001, assessing the im-
pact of the patent term change on grant rates across fields is not feasible. However, Appendix
C.8 complements the evidence of Section 2.4 showing that pre-news patent term reduction prob-
ability does not correlate with systematic changes and trends in pending period across fields,
partly due to a reallocation of examiners to technical units where the number of applications
increased the most due to TRIPs.?” Finally, I verify that DiD estimates are unaffected when
using quarter-specific realized patent term reduction probability as treatment in (6) instead of

its pre-news counterpart.

6.5.5 Changes in Trade Regulation Concomitant to TRIPs

The Uruguay Round of Agreements included not only the adoption of TRIPs but also changes
to maximum tariffs for countries joining the WTO. Coelli, Moxnes and Ulltveit-Moe (2022)
demonstrate that tariff reductions positively influenced innovation in several countries. There-
fore, specification (6) accurately estimates the news and implementation effects only if the
field-specific impacts of tariff and trade regulation changes do not correlate with variations in
patent term across technologies.
In Appendix C.9, I show that DiD estimates remain consistent when controlling for technology-

specific changes in import tariff intensity in the US, European countries, and China during the
period from 1996 to 2001. This consistency is due to the negligible correlation between tariff

changes and the TRIPs-induced changes in patent term across fields.

6.5.6 Delayed and Uncertain Adoption of TRIPs in Developing Countries

The TRIPs agreement required many Low- and Middle-Income Countries (LMICs) joining the
WTO to adopt stronger patent protection, though delays were granted based on each country’s
economic development. These changes likely had opposing effects on U.S. patenting during
the study period. While stronger protection may have benefited U.S. innovators by improving
market access in LMICs, uncertainty surrounding adoption may have deterred firms from in-

vesting in innovations targeting those markets.?® If the U.S. patent term change correlates with

2"TMoreover, the policy increased applicants’ incentives to respond more swiftly to USPTO inquiries, as
documented by Lemus and Marshall (2018) for the pharmaceutical sector.

28Kyle and McGahan (2012) find that U.S. pharmaceutical firms increased innovation investments following
TRIPS, benefiting from enforceable patents in new markets. Additional analyses, available upon request, yield
similar results when excluding pharmaceutical and biotechnology-related fields.
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these factors across fields, specification (6) may be biased. To address this concern, Appendix
C.10 shows that the U.S. patent term change did not influence the intensity with which U.S.

innovators sought patent protection in these LMICs across fields.

7 Interpretation and Transmission of News Shock

In this section I interpret the documented news and post-implementation effects in light of
existing theories and complementary analyses. Then, I present empirical evidence on the trans-

mission mechanism of the news shock to post-implementation innovation.

7.1 Interpretation of News Effects

Following policy news, innovation and R&D accelerate more in fields with higher probability
of patent term reduction and shorter average extensions. In this subsection, I explore various
mechanisms related to innovators attitudes toward risk that could account for these effects.

I begin by framing innovators decision during the anticipation phase as a choice between a
certain outcome—the 17-year patent term guaranteed under the old regime—and a “lottery”
under the new policy, where the term depends on the uncertain duration of the pending period.
The risk associated with this lottery is captured by the variance of the field-specific distribution
of pending periods. A stronger acceleration in innovation during this phase indicates a stronger
preference for the pre-TRIPs patent term over the uncertain post-implementation outcome.

This behavior aligns with several theories of preferences under uncertainty. Under risk
aversion, innovators prefer a certain patent term to a lottery with equal or even higher expected
value. To secure the 17-year term under the old regime, they accelerate R&D and patenting
before implementation, incurring two costs: higher R&D expenditures and, in most fields, an
expected loss in patent term. The incentive to accelerate weakens as the expected gains from
the new policy grow. Hence, innovation would accelerate more in fields with shorter expected
extensions—consistent with the empirical findings.

An alternative explanation is loss aversion, whereby agents experience greater disutility
from losses than utility from equivalent gains. Specifically, theoretical and empirical work on
loss aversion suggests that agents exhibit a kink in their utility function around zero and convex
utility over losses (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992). Under loss
aversion, innovators may over-weight the risk of a patent term reduction and thus accelerate
innovation following policy news to secure the longer term under the old regime. Descriptive
evidence presented in Section 4.1 and historical records of the TRIPs policy debate support
this interpretation.

A third mechanism is ambiguity aversion. Following the news shock, ambiguity may arise

because the post-implementation distribution of pending periods is itself uncertain due to pos-
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sible future events whose probability is hard to assess. Ambiguity-averse innovators are usually
modeled as min-max decision makers, who only consider the worst-case scenario when making
optimal decisions.

Crucially, these three mechanisms have distinct implications for how risk, i.e., the dispersion
in pending periods, affects innovation dynamics during the news phase. Under risk aversion,
greater variance in the pending period distribution (conditional on the mean) should strengthen
the incentive to accelerate, as the certainty of the old regime becomes more appealing relative to
a riskier lottery. In contrast, loss aversion with convex utility over losses implies that innovators
may be risk-seeking in losses. In this case, higher variance might dampen the acceleration of
innovation, since agents prefer more risky outcomes under a loss domain. Finally, under min-
max behavior, higher downside risk should make the worst-case outcome worse, thus reinforcing
the incentive to accelerate innovation.

To empirically assess these mechanisms, I enrich the main DiD specification (6) to estimate
the period-specific effects of the variance of the pre-shock field-specific distribution of pending
periods. Specifically, I interact the treatment variable—either patent term reduction probability
or the mean of the pending periods distribution, which determines the average expected change
in patent term—and the variance with dummies for each treatment period (pre-news, news, and
post-implementation). This specification mirrors the main DiD specification (6) but focuses on
estimating average quarterly effects within each period.

Table 4 presents the results, omitting post-implementation coefficients for brevity. The
positive coefficient on patent term reduction probability during the news period (dews X ﬁj,
column 1) confirms Fact 1: higher patent term reduction probability relates to a stronger
acceleration of innovation upon news. Similarly, the positive effect of PP; in the news period
(column 2) implies that a longer average pending period—i.e., a shorter average patent term
extension—induces a stronger acceleration of innovation at news.

Critically, in both columns, the negative effect of the variance (dpews X 0% p;) implies that,
conditional on the mean, greater dispersion in the pending period distribution—i.e., a riskier
lottery—dampens the acceleration in innovation during the news period.

This finding provides suggestive evidence in support of loss aversion with convex utility over
losses. In contrast, risk aversion would predict the opposite sign. Because the certain option
becomes more attractive when the lottery is riskier, risk-averse innovators should accelerate

more during the anticipation phase.
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Table 4: DiD Effects of Different Moments of the Pending Period Distribution

(1) 2) (3) (4)
Patents Patents Patents Patents
dpre X PL;j -0.249 -0.259
(0.448) (0.479)
dnews X PL; 1.113** 1.205***
(0.323) (0.347)
dpre X PP; -0.552 -0.544
(0.871) (0.914)
dnews X PP; 2.010*** 2.092***
(0.614) (0.651)
dpre X 0pp 0.002 0.003
(0.004)  (0.005)
dnews X Opp -0.006***  -0.007**
(0.002)  (0.003)
dpre X 0pp |AT; <0 0.000 0.000
(0.001)  (0.001)
dnews X 0pp i |AT; <0 -0.001**  -0.001*
(0.001)  (0.001)
dpre X 0pp |ATj >0 -0.025  -0.007
(0.074)  (0.082)
dnews X 0pp|AT; >0 0.053 0.014
(0.047)  (0.054)
Observations 39168 39168 35648 35648

Notes: The table reports the effect of key moments of the within-field pending period distribution on quarterly
(granted) patent application by treatment period, based on DiD specification (6) estimated on a quarterly
sample 1985Q1-2000Q4. Column (1) shows the effects of patent term reduction probability PL; and the
variance 0 p ;. Column (2) reports the effects of the mean PP; and the variance o3 p ;. Columns (3) and
(4) separately estimate the effect of the variance conditional on a positive and a negative patent term change
(O%P’leTj > 0 and U%,P)j\ATj > 0, respectively). Coefficients for the post-implementation period are not
reported due to space constraints. The specification always includes field and quarter fixed effects. Standard
errors are clustered by 4-digit technical field and treatment period. Statistical significance levels: * (p < 0.1),
“* (p < 0.05), *** (p < 0.01).

To further explore the possible presence of loss aversion, I separately estimate the effects of
downside and upside risk. Columns (3) and (4) of Table 4 replace the overall variance with two
conditional variances: one for the part of the pending period distribution implying a patent
term reduction (03p;|AT; < 0), the other for extensions (03p;|AT; > 0). The former proxies
downside risk, the latter upside risk.

Only downside risk has a statistically significant negative effect, again consistent with loss
aversion and convex utility over losses. In contrast, ambiguity aversion with min-max behavior
lacks comparable support in the data, because it would predict that higher downside risk fosters
the pre-implementation acceleration of innovation. Moreover, the effect of upside risk is not
significant, aligning with the standard assumption of risk neutrality of firms over gains.

Lastly, the salience of patent term reduction probability and downside risk may have been
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reinforced by the potential anticipation of a clause in the URAA granting term extensions to
patents still in force at TRIPs implementation, if the new rules implied a later expiry date.
With anticipation of such provision, delaying patent applications after implementation would
entail negative outcomes only, enhancing the incentives to accelerate innovation. Nonetheless,
historical sources suggest that this detail was not anticipated.?

Beyond behavioral drivers, these findings on news effects contribute to a broader literature
on the responsiveness of R&D and innovation to temporary shifts in innovation value. Theoret-
ical work shows that R&D investment is procyclical, responding to fluctuations in the market
value of innovation. Empirical studies similarly document procyclical R&D and patenting be-
havior. In this context, TRIPs policy news acted as a temporary shock, shifting the relative
value of innovation across time, and inducing the observed short-run increase in R&D and

patenting activity.

7.2 Transmission Channels

The empirical analysis also shows that news effects persist after implementation (Fact 2). Specif-
ically, in fields with higher patent term reduction probability—where innovation accelerated the
most following the news—patenting activity remains sustained for at least five years after im-
plementation. This persistence reflects indirect effects that outweigh the direct impact of the
policy, which would otherwise depress innovation in fields facing shorter patent protection (Fact
3). The result aligns with endogenous growth theory, where knowledge creation is cumulative:
new innovations build on past advances through a “standing on the shoulders of giants” effect
(Romer, 1990). Temporary shocks, like those from TRIPs news, can thus have lasting effects,
consistent with medium-term business cycle models where short-run R&D shocks produce per-
sistent productivity and output effects (e.g., Comin and Gertler, 2006).

In particular, recent discoveries are especially valuable for follow-on innovation. Hegde,
Herkenhoff and Zhu (2023) show that a permanent reduction in patent publication time leads
to stable increase in follow-on innovation, as faster knowledge diffusion improves the efficiency of
subsequent R&D. A similar mechanism may temporarily affect post-implementation innovation
in my setting, because the news shock accelerates diffusion during the anticipation phase.

In this subsection, I empirically examine the drivers of indirect effects—specifically, the
transmission mechanism of the news shock to post-implementation innovation. Building on
the insights of the innovation and endogenous growth literatures, I first focus on knowledge
externalities. I then explore competition in the technology space as an alternative channel in
Appendix F.2.

29Historical records from the U.S. policy debate—e.g., the hearings of the Senate Advisory Committee on
Patent Law Reform—never mention that the new rules would apply retroactively. Moreover, other countries,
such as Canada, did not adopt retroactive provisions, which triggered a WTO dispute with the U.S. in 1999.
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The analysis of knowledge externalities leverages cross-field differences in the degree to which
new inventions build on prior ones, using patent citations to measure technological dependence.
Citations are commonly viewed as indicators of technological links between inventions.?* Since
most knowledge externalities occur within the same technology (Liu and Ma, 2021), I focus
on citations among patents classified in the same field. This approach is also supported by
the analysis of direct effects conditional on cross-field innovation histories (Appendix C.11.2).
Thus, I proxy technological dependence by the average number of backward citations made by
patents in field j to earlier patents in the same field, published within three years of the citing
patent application. This time restriction reflects the length of TRIPs anticipation period. I
denote this measure by BBj;.

I first analyze how the strength of post-implementation effects varies across fields based on
the technological dependence of new innovations on prior ones. In fields with stronger tech-
nological dependence, I expect the acceleration in innovation during the news phase to result
in stronger persistence of higher innovation levels after implementation, holding constant the
probability of patent term reduction. To test this hypothesis, I estimate the triple-difference
specification (10), which interacts within-field technological dependence @jj—measured be-

fore the news shock—with patent term reduction probability PL;.*!

2000Q4 2000Q4
Yii = a; + Z Vi Ll=r) + Z Ml (4=1) Bj;
k=1985Q1 k=1985Q1
k#£19920Q3 k#£1992Q3 1 0)
2000Q4 2000Q4 (
+ Z ﬁkl(t:k)PLj + Z ekl(t:k)PLj X Bjj + Ejt
k=1985Q1 k=1985Q1
k#£1992Q3 k#£1992Q3

Like in previous specifications, «; represents field fixed effects, 14— are quarter-specific
dummy variables, and ¢, is the idiosyncratic error term. In this triple-difference specifica-
tion, the DiD coefficients 3; on the interactions of PL; with quarterly dummies capture the
relative effect of one-percentage-point higher patent term reduction probability on the inno-
vation outcome Yj,, conditional on zero technological dependence (i.e., Bj; = 0). The new
triple-difference coefficients ) indicate how the relative effect of PL; varies with the level of
technological dependence, Ejj.

Figure 8a shows the triple-difference effects of a one-percentage-point higher patent term
reduction probability, conditional on a unit-larger degree of technological dependence (i.e.,

an average increase of one within-field applicant citation, or BBj; = 1). Positive post-

30Not all citations indicate genuine knowledge flows (see, e.g., Kuhn, Younge and Marco, 2020). However,
citation-based tracking of technological dependence should still be reliable for the sample period of this analysis,
despite limitations highlighted for more recent years.

31The variable BBj; is calculated using patents filed between 1980Q1 and 1989Q4.
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implementation effects suggest that stronger technological dependence correlates with a greater
persistence of sustained levels of innovation in fields where innovation increased in the antici-
pation phase, in response to the news of a higher probability of a reduction in patent duration
(Fact 1). This finding aligns with theoretical implications of endogenous growth models.

Furthermore, Figure 8b shows that, in the absence of technological dependence (i.e., condi-
tional on ﬁjj = 0), a one-percentage-point higher patent term reduction probability results
in lower post-implementation innovation. This result is consistent with the sign of the direct
effect of patent term after policy implementation (Fact 3). Indeed, when past innovation has
negligible impact on subsequent research productivity, post-implementation outcomes should
be less affected by anticipation dynamics and thus reflect direct effects, consistent with the
decomposition of equation (4).

In a second analysis, I examine how within-field technological dependence endogenously
responds to the policy change. If post-implementation persistence of high innovation is driven
by stronger knowledge diffusion, patents filed after implementation should increasingly cite
recent inventions. Thus, proxies of technological dependence should rise more in fields with
higher patent term reduction probability, where patents accelerated the most in the news phase.

To test this hypothesis, I estimate DiD specification (6) using two alternative measures of
technological dependence as dependent variables. First, I use the quarterly average number of
backward citations made by applicants to prior patents within the same field, denoted as Ejjyt.
Second, I examine the share of patents filed in quarter ¢ and classified in field j that include at
least one applicant-made backward citation to patents in the same field, denoted as 5j;;.

Panels (a) and (b) of Figure 9 show the DiD estimates for the effect of a one-percentage-
point higher probability of patent term reduction on Bj;; and S;;, respectively. The treatment
leads to an increase in time-varying measures of technological dependence post-implementation,
consistent with theoretical expectations. The sustained high innovation rates following the
implementation shock are largely driven by innovations building on recent discoveries, increas-
ing technological dependence measures in fields with the highest acceleration during the news
phase—i.e., those with higher patent term reduction probability.

The timing of this effect, which peaks around four years after implementation, sheds light
on the half-life of the externality. This four-year lag aligns with knowledge diffusion lags of
approximately two years—the average time between application (invention) and patent publi-
cation around the TRIPs policy change—and an additional R&D gestation lag of roughly two
years, close to estimates of a 1.5-year gestation period by Pakes and Schankerman (1984).

In additional analyses, I document direct citation links from patents applied for in the
post-implementation phase to those filed during the news period. Furthermore, I decompose
post-implementation indirect effects, finding that they mostly occur between different firms as

opposed to within firms. This result supports the interpretation of these effects as the result of
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Figure 8: Heterogeneity analysis based on within-field technological dependence

(a) Triple Difference Effects
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Notes: The figure depicts triple-difference (panel a) and difference-in-difference (panel b) effects of patent term
reduction probability on the number (granted) patent applications by application quarter based on estimates
of triple-difference specification (10). In panel (a), coefficients represents the relative change in the level of the
outcome variable due to a one-percentage-point higher patent term reduction probability conditional on a unit-
larger level of technological dependence, i.e., one more average within-field applicant-made citation (ﬁj ;=1).
In panel (b), coefficients represent the relative change in the level of the outcome variable due to a one-percentage-
point higher patent term reduction probability conditional on the absence of technological dependence—i.e., for
BBj; = 0. Bands represent 95% confidence intervals based on standard errors clustered by field and treatment

phase. The first and second vertical lines mark news and implementation dates, respectively.

an externality. These additional results are available upon request.

Finally, Appendix F.1 provides a synthetic measure of the strength of the observed knowl-
edge externality, derived from an aggregated version of equation (8) across policy phases. The
resulting elasticity of future innovation to a 1% positive shock to current innovation is 2.1,
meaning that a 1% increase in innovation during the news phase is associated with a 2.1% rise
in post-implementation innovation. This magnitude aligns with the indirect effects outweighing

direct effects in the post-implementation period.
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Figure 9: DiD estimates for within-field technological dependence by field
(a) Average Applicant-made Within-field Backward Citations
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Notes: The figure illustrates the relative effect of a one-percentage-point higher patent term reduction proba-
bility on the level of the average number of applicant-made backward citations per patent classified in field j
and applied for in quarter ¢ (panel a) and on the level of the share of patents classified in field j and filed in
quarter ¢ that have at least one applicant-made backward citation to patents also classified in field j (panel b).
Effects are computed based on the estimates of DiD specification (6). Bands represent 95% confidence intervals
based on standard errors clustered by field and treatment phase. The first and second vertical lines mark news

and implementation dates, respectively.

7.3 Alternative Channels

Appendix F.2 further examines alternative transmission mechanisms, specifically competition
in the technological space and strategic patenting by incumbent firms. The findings indicate
that these alternative channels play a minimal role.

Regarding competition in the technological space, the patent term change has a greater
impact in fields where competition in patenting is higher, as measured by the concentration
of patents across applicants or the entry rate of new applicants. When technological competi-
tive pressure is higher, patent protection becomes more valuable and existing knowledge more

accessible to new entrants, making innovators more responsive to changes in patent duration.
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However, the patent term change had no direct effect on technological competition metrics,
suggesting that shifts in the latter are not the primary driver of the indirect effects associated
with Fact 2. Additionally, the average quality of patents from incumbents did not decrease rel-
ative to those from new entrants, indicating that established firms did not alter their patenting

strategies for preemptive reasons in response to a shorter patent term extension.

8 Conclusions

When transitory shocks impact the economy, even temporary changes in R&D can lead to
persistent shifts in innovation and productivity, significantly affecting output and welfare. Such
effects are especially pronounced for innovation-policy shocks, which are specifically designed
to influence R&D and innovation.

This paper provides quasi-experimental evidence on these effects for an anticipated change
in patent term, an essential innovation policy tool on which we had limited empirical evidence.
The role of policy anticipation makes this analysis particularly relevant, as real-world policy
changes often involve prolonged negotiations and thus inevitable news effects.

The findings show that a higher probability of patent term reduction—i.e., a relatively
shorter average patent term—Ileads to relatively less innovation as a direct effect after policy
implementation, with magnitudes consistent with prior literature on the impact of patent pro-
tection on innovation. A key contribution of this paper, however, is to document a significant
acceleration in R&D and innovation during the anticipation phase when there is news of a
higher future probability of patent term reduction. Due to the cumulative nature of innova-
tion, this initial acceleration stimulates further discoveries through technological externalities,
temporarily offsetting the direct negative effect of the policy after implementation.

The external validity of these results depends on whether indirect effects, rooted in the
cumulative nature of innovation, are stronger than the policy-specific direct implementation
effect. Given the sizable direct effect of patent term on innovation relative to other policy tools,
these findings likely extend to alternative policy levers.

Anticipated innovation policy shocks can create short-term dynamics that go in the opposite
direction of long-run effects, with larger magnitudes than other shocks due to their specific
targeting of R&D and innovation. To accurately assess the positive and normative effects of
innovation policies, endogenous growth theories should account for the short-run intertemporal
incentives of R&D decisions, which can also influence medium- and long-term outcomes.

Future research can leverage the empirical estimates presented in this paper to discipline key
parameters of the innovation production function in structural models of endogenous growth.
These models can, in turn, inform normative analyses of optimal patent term in environments

with forward-looking agents and policy anticipation.
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