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Abstract

We propose an approach for Bayesian inference in time-varying structural vector

autoregressions (SVARs) identified with sign restrictions. The linchpin of our approach

is a class of rotation-invariant time-varying SVARs in which the prior and posterior

densities of any sequence of structural parameters belonging to the class are invariant to

orthogonal transformations of the sequence. Our methodology is new to the literature.

In contrast to existing algorithms for inference based on sign restrictions, our algorithm

is the first to draw from a uniform distribution over the sequences of orthogonal matri-

ces given the reduced-form parameters. We illustrate our procedure for inference by

analyzing the role played by monetary policy during the latest inflation surge.

JEL classification: C11, C51, E52, E58

Keywords: time-varying parameters, structural vector autoregressions, identification.

The views expressed in this paper are solely those of the authors and do not necessarily reflect the views
of the Federal Reserve Bank of Atlanta, the Federal Reserve Bank of Philadelphia, or the Federal Reserve
System. Any errors or omissions are the responsibility of the authors.

∗Corresponding author: Juan F. Rubio-Ramı́rez <juan.rubio-ramirez@emory.edu>, Economics Department,
Emory University, Rich Memorial Building, Room 306, Atlanta, Georgia 30322-2240. We thank Mark
Bognanni, Frank Schorfheide, Christian Wolf, and Jonathan Wright for their helpful comments.

1

mailto:Juan_Rubio_Ramirez


1 Introduction

Structural vector autoregressions (SVARs) featuring time-varying parameters are widely used

in empirical macroeconomics to explore a variety of questions, such as the economic impacts

of policy shocks, oil price shocks, the interaction between financial markets and economic

activity, and the role of monetary policy during the Great Inflation.1 This paper makes two

main contributions to the Bayesian approach for inference based on time-varying SVARs

using the class of rotation-invariant models introduced by Bognanni (2018) as a foundation.

Members of this class are defined by a measurement equation linking observed variables

to a sequence of time-varying structural parameters and a rotation-invariant prior that

remains unchanged under orthogonal transformations of these sequences. A rotation-invariant

prior is both a necessary and sufficient condition for ensuring that the posterior over the

sequences of time-varying structural parameters is identical across observationally equivalent

sequences, thereby necessitating identifying restrictions for causal inference. To address this

identification problem, we employ traditional sign restrictions, typically derived from economic

theory and institutional knowledge. Our methods also allow us to consider time-varying sign

restrictions, i.e., identification restrictions that vary across the sample. Importantly, working

with rotation-invariant priors ensures that only the sign restrictions influence the posterior

distribution over observationally equivalent sequences of time-varying structural parameters.

Consequently, within this framework, researchers can separate reduced-form estimation from

causal inference, thereby preserving the benefits that have made sign restrictions popular in

SVARs with constant parameters.

The first contribution of this paper is to characterize the class of rotation-invariant

time-varying SVARs models in terms of priors over sequences of time-varying orthogonal

reduced-form parameters. Specifically, expanding the work of Uhlig (2005) and Rubio-Ramı́rez

et al. (2010), we define an invertible mapping between the sequences of time-varying structural

parameters and sequences of time-varying orthogonal reduced-form parameters. With this

mapping, we demonstrate that any prior over the sequences of time-varying reduced-form

1See, for example, Primiceri (2005); Sims and Zha (2006b); Baumeister and Peersman (2013); Gaĺı and
Gambetti (2015); Amir-Ahmadi et al. (2016); Brunnermeier et al. (2021); Hubrich and Waggoner (2022);
Aastveit et al. (2023).
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parameters, combined with an independent uniform prior over the sequences of orthogonal

matrices, defines an element of the class of rotation-invariant time-varying SVARs models.

This result is a crucial if-and-only-if condition that delineates the scope of our methodology:

any of the commonly used priors for the time-varying reduced-form parameters—e.g., Primiceri

(2005); Cogley and Sargent (2005) and the dynamic linear models with discounted Wishart

stochastic volatility inspired by Uhlig (1994, 1997) and documented in Bognanni (2018)—can

be adapted for structural analysis when combined with an independent uniform prior over the

sequences of orthogonal matrices. This underscores that the class of rotation-invariant time-

varying SVARs models is extensive, enhancing its practical utility. However, as emphasized by

Baumeister and Hamilton (2015); Giacomini and Kitagawa (2021), it is crucial to recognize

that sign restrictions yield identified sets, and the outcomes are influenced not only by these

restrictions but also by the uniform prior imposed on the sequence of orthogonal rotation

matrices.

The second contribution is to introduce a Gibbs Sampler algorithm that can be used

to draw from the posterior distribution of any element of the class of rotation-invariant

time-varying SVARs models conditional on the time-varying sign restrictions. The algorithm

exploits the slice elliptical sampling developed by Murray et al. (2010) and is the first to

draw from the class of rotation-invariant time-varying SVARs. Previous attempts to draw

from the posterior of particular elements of the class (e.g., Baumeister and Peersman, 2013;

Bognanni, 2018; Debortoli et al., 2020) consider a uniform distribution over the sequences of

orthogonal matrices conditional on the reduced-form parameters and the sign restrictions.

Although this approach simplifies posterior sampling, once a prior over the sequences of

time-varying reduced-form parameters is specified, this prior and the prior over the sequences

of orthogonal matrices are not independent. Consequently, the draws are from a model that

does not belong to the class of rotation-invariant time-varying SVARs, and the posterior

distribution over observationally equivalent sequences of time-varying structural parameters

is not solely determined by the sign restrictions. When describing the algorithm, we use a

specific prior over the time-varying reduced-form parameters that relies on Archakov and

Hansen’s (2021) novel parameterization of correlation matrices. Hence, we refer to it as

the Random Correlations prior, and we demonstrate that it defines an element of the class
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that we will call the Random Correlations SVAR (RC-SVAR). Our rationale for using the

RC-SVAR is motivated by the insights in Giannone et al. (2015), which highlight that

a natural way to assess the impact of priors is by evaluating their implied out-of-sample

forecasting performance. Arias et al. (2023) show that for the empirical applications typically

considered, the Random Correlations prior generally implies a higher log-predictive score

than most alternative models. While the algorithm will be described in terms of RC-SVARs,

it can be used for any element in the class of rotation-invariant time-varying SVARs induced

by any of the alternative priors over the time-varying reduced-form parameters mentioned

above.

We illustrate our methods by analyzing the monetary policy tightening cycle that began

on March 16, 2022. Since lift-off, policy discussions have revolved around the effects of

interest rate increases on economic activity and inflation. In particular, there has been

ongoing debate regarding how much interest rates must increase to achieve this objective. As

Powell (2023) recently noted, doing too little or too much could cause unnecessary harm to

the economy. Motivated by this discussion, we use our methodology to tackle three questions:

(i) How did the Federal Reserve respond to the state of the economy during the current policy

tightening cycle? (ii) How does the Federal Reserve’s performance during the tightening cycle

compare with more dovish or hawkish monetary policy stances? and (iii) Was the Federal

Reserve behind the curve? And, if so, at what cost? Allowing for time variation in both the

structural parameters and the sign restrictions is important for several reasons. Not only

has the Federal Reserve adopted different operating procedures such as interest rates and

non-borrowed reserves targeting, but also the reaction function may have differed over time

within operating procedures (see, e.g., Clarida et al., 2000). In addition, certain structural

relations in the economy may have changed. Our econometric approach provides a helpful

setting to discipline inference about the reaction function with a relatively small number

of novel time-varying sign restrictions. This setup allows us to change the identification

restrictions across the sample.

To answer the first question, we use our estimates to decompose the quarterly average level

of the federal funds rate for each quarter from 2022Q2 until 2023Q2 into three components: the

predictable component; the unpredictable component that can be attributed to non-monetary
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policy shocks (such as demand or supply shocks) hitting the economy; and the unpredictable

component that can be attributed to monetary policy shocks. Our estimates suggest that

about two-thirds of the unpredictable component was a response to non-monetary policy

shocks. The response to non-monetary policy shocks is due to the systematic part of monetary

policy. Both systematic monetary policy and monetary policy shocks increased the fed funds

rate above the predicted rate in 2022Q2.

To shed light on the second question, we replay history under two counterfactual simula-

tions that we label Dovish Fed and Hawkish Fed. These simulations allow us to determine

what would have happened if the Fed had been more or less aggressive relative to the reaction

function estimated by our model. In the Dovish (Hawkish) Fed counterfactual, we modify the

reaction function so that the response of the federal funds rate to inflation is half (twice) as

large as the one in the estimated reaction function for the first quarter of 2022. Focusing on

the posterior medians, through the lens of our model, under the Dovish Fed counterfactual, the

economy would have marginally overheated, and inflation would have run persistently above

5 percent. Under the Hawkish Fed counterfactual, inflation would have quickly decreased at

a small cost in terms of economic activity: real GDP in the second quarter of 2023 would

have been about 0.5 percent lower than in the data. Even so, when looking at the level of

output at risk, the lower envelope of the 68 percent probability bands shows that the cost in

terms of output could have been as large as 1.7 percent. Turning to the third question, our

model estimates support the view that the Federal Reserve was behind the curve (see, e.g.,

Summers, 2021) in 2021. Nevertheless, we also find that the delay in increasing the federal

funds rate was not the main driver of the surge in inflation during 2021. Non-monetary

shocks explain the unexpected increase in inflation during this time.

Additionally, the Online Appendix presents a series of robustness checks to further validate

our findings. Specifically, we examine the effects of distinguishing between two types of

monetary policy shocks: one that primarily influences the short end of the yield curve and

another that impacts the long end. This distinction allows us to explore the nuanced effects

of monetary policy across different maturities. Furthermore, we assess the sensitivity of our

results to the inclusion of both time-varying sign restrictions and time-varying parameters,

emphasizing that the consideration of both elements is critical in the comprehensive analysis
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of time-varying SVARs models. Our analysis underscores the importance of accounting

for these factors to ensure that our conclusions are robust and reflective of the underlying

economic dynamics.

2 Rotation-Invariant Time-Varying Structural Models

Consider the general class of time-varying SVARs models defined by Bognanni (2018). Two

elements define the class. The first element is a measurement equation:

y′tAt = x
′
tFt +ε

′
t with εt ∼ N (0n, In) for 1 ≤ t ≤ T, (1)

where yt is an n × 1 vector of endogenous variables, xt = [1 y′t−1 ⋯ y′t−p]
′
is an m × 1 vector

featuring a constant and lag endogenous variables with m = np + 1, εt is an n × 1 vector of

orthogonal structural shocks, p is the lag length, T is the sample size, and the initial conditions,

(y0,⋯,y1−p), can have any distribution with full support. The vector εt, conditional on time

t − 1 information, is Gaussian with mean zero and covariance matrix In, the n × n identity

matrix. The n × n matrix At, which must be invertible, and the m × n matrix Ft are the

time-varying structural parameters.

The second element is the law of motion for the time-varying structural parameters:

pS((At,Ft)
T
t=1 ∣ ϕ) =

T

∏
t=1
pS (At,Ft ∣ (Aj,Fj)

t−1
j=1,ϕ) , (2)

where ϕ denotes the constant parameters controlling the evolution of the time-varying

structural parameters.2 We are going to assume that all the elements of the class share the

same measurement equation. Thus, different elements of the class are characterized by a

different law of motion pS((At,Ft)
T
t=1 ∣ ϕ). The theory we develop is valid for the general law

of motion given by Equation (2). To simplify the exposition, all the examples in this paper

will assume that the law of motion is Markov, which means that pS (At,Ft ∣ (Aj,Fj)
t−1
j=1,ϕ) =

pS (At,Ft ∣At−1,Ft−1,ϕ). Importantly, we assume that the law of motion satisfies:

pS((At,Ft)
T
t=1 ∣ ϕ) = pS((AtQt,FtQt)

T
t=1 ∣ ϕ), (3)

2We follow the convention that p (A1,F1 ∣ (Aj ,Fj)0j=1,ϕ) = p (A1,F1 ∣ ϕ).
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for every sequence of orthogonal matrices (Qt)
T
t=1 ∈ O

T
n .

3 This assumption implies that if

(At,Ft)
T
t=1 is any permissible sequence of time-varying structural parameters and (Qt)

T
t=1

is any sequence of orthogonal matrices, then (AtQt,FtQt)
T
t=1 is a permissible sequence of

time-varying structural parameters such that Equation (3) holds.4,5

The likelihood of the model can be written as:

p((yt)
T
t=1 ∣ (At,Ft)

T
t=1,ϕ) =

T

∏
t=1
p(yt ∣ xt,At,Ft). (4)

Notice that the likelihood does not depend on ϕ. Given our assumption about the shocks,

the distribution of yt, conditional on (xt,At,Ft), is Gaussian with mean x′tFtA
−1
t and

variance (AtA
′
t)
−1. In particular, p(yt ∣ xt,At,Ft) can be easily computed. The parameters

of this class of time-varying SVAR models are ((At,Ft)
T
t=1,ϕ). Hence, the law of motion

given by Equation (2) can be interpreted as the prior over the time-varying structural

parameters, conditional on ϕ.6 The prior can be completed by specifying a marginal prior

over the constant parameters, which we will denote p(ϕ ∣ ψ), where ψ are some fixed

hyperparameters.7 Equation (3) must hold for every ϕ in the support of the marginal prior.

We say that ((At,Ft)
T
t=1,ϕ) and ((Ãt, F̃t)

T
t=1, ϕ̃) will be observationally equivalent if and

only if the likelihoods are equal for almost all (yt)
T
t=1 ∈ RnT . Because the likelihood does not

depend on ϕ, it makes sense to talk about (At,Ft)
T
t=1 and (Ãt, F̃t)

T
t=1 being observationally

equivalent. The following proposition, which is a reminiscence of the constant parameter case,

gives a necessary and sufficient condition for the observational equivalence of (At,Ft)
T
t=1 and

(Ãt, F̃t)
T
t=1.

Proposition 1. The time-varying structural parameters (At,Ft)
T
t=1 and (Ãt, F̃t)

T
t=1 are

observationally equivalent if and only if there exists (Qt)
T
t=1 ∈ O

T
n such that (Ãt, F̃t)

T
t=1 =

(AtQt,FtQt)
T
t=1.

See Appendix A for the proof. A similar (but not identical) proposition can be found

3The notation On denotes the set of all n × n orthogonal matrices and OT
n = ∏T

t=1On the set of all
sequences of n × n orthogonal matrices of length T .

4The sequence (At,Ft)Tt=1 is permissible if and only if pS((At,Ft)Tt=1 ∣ ϕ) > 0.
5When possible, we will avoid the use of the word sequence to economize language.
6The prior over the time-varying structural parameters is always conditional on ϕ, hence we will only

write “the prior over the time-varying structural parameters.”
7At the cost of more complicated notation, we could also consider a prior over ψ.
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in Bognanni (2018). In light of Proposition 1, we can interpret the restriction given by

Equation (3) as the necessary and sufficient condition that forces the prior over the time-

varying structural parameters, to be equal over observationally equivalent time-varying

structural parameters. This restriction ensures that the prior over the time-varying structural

parameters does not affect identification and only the identification restrictions influence

the posterior distribution of observationally equivalent time-varying structural parameters.

For this reason, we use the term rotation-invariant time-varying SVARs models to refer

to any structural model consistent with Equations (1)-(3) and rotation-invariant priors to

those consistent with Equation (3).8 To solve the identification problem, we will impose sign

restrictions on either the sequence of time-varying structural parameters or some function of

them, such as sequences of time-varying IRFs. These will be discussed in Section 5.

2.1 Heteroskedastic Structural Shocks

In this section, we now discuss models in which heteroskedastic structural shocks are the

only source of time variation in the model. In particular, we now show how the condition

in Equation (3) rule out time-varying SVARs with heteroskedastic structural shocks from

belonging to the class of rotation-invariant time-varying SVARs models. Such models have

the following common specification:

y′tA = x
′
tF+ε̃

′
t with ε̃t ∼ N (0n,Ψt) for 1 ≤ t ≤ T, (5)

where Ψt is an n × n time-varying diagonal matrix with positive diagonal, A is a n × n

invertible matrix with ones along the diagonal, and F is an m × n matrix. These models can

be written in terms of the measurement Equation (1) by defining the n×n matrix At =AΨ
− 1

2
t

and the m × n matrix Ft = FΨ
− 1

2
t as the time-varying structural parameters. Lütkepohl and

Netšunajev (2017) describe several ways to model the law of motion of Ψt.9 With these

ingredients at hand, we can now formally show the following result.

8Multiplication by an n × n orthogonal matrix is either a rotation of Rn or a rotation of Rn times a
reflection of Rn, however, it is embedded in the literature to refer to orthogonal matrices as rotations. So, we
take rotation invariant to mean invariant to multiplication by any orthogonal matrix.

9For diagonal matrices, Ψ
−

1
2

t denotes the element by element inverse square root, either positive or
negative, of the elements of Ψt. There are also alternative ways of normalizing these models other than fixing
each element of the diagonal of A to one. These can also be written in terms of Equation (1).
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Proposition 2. Models with heteroskedastic structural shocks as defined in Equation (5) do

not belong to the class of rotation-invariant time-varying SVARs models.

See Appendix A for the proof. Similar arguments show that the restriction given by

Equation (3) excludes the models described in Sentana and Fiorentini (2001); Rigobon (2003);

Lanne and Lütkepohl (2008); Lanne et al. (2010); Brunnermeier et al. (2021). Furthermore,

a model with time-varying Ft and Ψt but time-invariant A is also excluded from the class by

the same reasoning, as we can still write At =AΨ−1t in the proof above, and the argument

follows.10 At this point, one might wonder if the class of rotation-invariant time-varying

SVARs models is too small to be of practical use. In the next section, we show how to

characterize and easily construct models belonging to the class. It is important to mention

that Bognanni (2018) presents a concrete instance of a fully specified probability model that

belongs to the class; we will give details about this model in Section 4.

While heteroskedasticity of the structural shocks can be exploited for identification, these

shocks may not have a meaningful structural economic interpretation Herwartz and Lütkepohl

(2014). In contrast, using sign restrictions—inspired by economic theory or institutional

knowledge—on either the structural parameters or some function of the structural parameters,

like impulse responses, ensures that the shocks have a meaningful structural economic

interpretation. In addition, the approach of identification through heteroskedasticity requires

constant impulse responses up to scale, which has been deemed to be a potential Achilles’

heel of the approach (see e.g., Brunnermeier et al., 2021).

3 Time-Varying Orthogonal Reduced-Form Models

Proposition 1 implies that the measurement equation described in Section 2 can alternatively

be written in terms of what we call the time-varying orthogonal reduced-form parameters.11

This parameterization is characterized by a sequence of time-varying reduced-form parameters

(Bt,Σt)
T
t=1 and a sequence of time-varying orthogonal matrices (Qt)

T
t=1, and the measurement

10This is relevant for those willing to give a structural interpretation to Cogley and Sargent (2005).
11See Arias et al. (2018) for a definition in the constant parameter case.
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equation can be written as follows:

y′t = x
′
tBt +ε

′
tQt

′h(Σt) for 1 ≤ t ≤ T, (6)

where the n × n matrix h(Σ) is any decomposition of the variance-covariance matrix Σ

satisfying h(Σ)′h(Σ) = Σ. We will take h to be the upper triangular Cholesky decomposition,

normalized so that the diagonal is positive, though any differentiable decomposition would

do. As in the case of constant parameters SVARs, the orthogonal reduced-form parameters

are convenient for drawing. The orthogonal reduced-form parameters can be turned into

structural parameters by exploiting the following mapping from the time-varying structural

parameters to the time-varying orthogonal reduced-form parameters:

fh((At,Ft)
T
t=1) = (FtA

−1
t

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
Bt

, (AtA
′
t)
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σt

, h((AtA
′
t)
−1)At

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Qt

)
T

t=1. (7)

This function is invertible and its inverse is given by:

f−1h ((Bt,Σt,Qt)
T
t=1) = (h(Σt)

−1Qt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

At

,Bt h(Σt)
−1Qt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ft

)
T

t=1. (8)

Let pOR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) denote a prior over the time-varying orthogonal reduced-form

parameters, conditional on ϕ.12 The functions defined by Equations (7) and (8) allow

us to transform priors over the time-varying structural parameters into equivalent priors

over the time-varying orthogonal reduced-form parameters and vice versa, but we must

take into account the volume element of the transformations. By Proposition 1 of Arias

et al. (2018), the volume element of the mapping given by Equation (7) is vfh((At,Ft)
T
t=1) =

∏
T
t=1 2

n(n+1)
2 ∣ det(At) ∣

−(2n+m+1) and the volume element of the mapping given by Equation (8)

is vf−1
h
((Bt,Σt,Qt)

T
t=1) = ∏

T
t=1 2

−n(n+1)
2 ∣ det(Σt) ∣

− 2n+m+1
2 . Thus, the prior over the time-varying

orthogonal reduced-form parameters induced by pS is:

pOR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) = 2

−n(n+1)T
2 (

T

∏
t=1
∣ det(Σt) ∣ )

− 2n+m+1
2

pS(f
−1
h ((Bt,Σt,Qt)

T
t=1) ∣ ϕ),

12The prior over the time-varying orthogonal reduced-form parameters is always conditional on ϕ, hence
we will only write “prior over the time-varying orthogonal reduced-form parameters.”
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and the prior over the time-varying structural parameters induced by pOR is:

pS((At,Ft)
T
t=1 ∣ ϕ) = 2

n(n+1)T
2 (

T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)
pOR(fh((At,Ft)

T
t=1) ∣ ϕ).

The following proposition shows that Equation (3) translates into a restriction on the

prior over the time-varying orthogonal reduced-form parameters.

Proposition 3. The prior over the time-varying structural parameters satisfies Equation (3)

if and only if the induced prior over the time-varying orthogonal reduced-form parameters

does not depend on (Qt)
T
t=1.

See Appendix A for the proof. The proposition implies that for any prior over the time-

varying structural parameters satisfying Equation (3), the induced prior over the time-varying

orthogonal reduced-form parameters must be independent over (Bt,Σt)
T
t=1 and (Qt)

T
t=1, and

the induced prior over (Qt)
T
t=1 must be uniform with respect to the volume measure over OT

n .
13

More importantly, it also says that any prior over the time-varying orthogonal reduced-form

parameters such that the prior over the orthogonal matrices conditional on the time-varying

reduced-form parameters is uniform induces a prior over the structural parameters that satisfy

the restriction given by Equation (3).14 In other words, any prior over the time-varying

orthogonal reduced-form parameters that can be written as:

pOR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) =

pR((Bt,Σt)
T
t=1 ∣ ϕ)

v(On)
T

,

where v(On) is the volume of On with respect to the volume measure overOn and pR((Bt,Σt)
T
t=1 ∣

ϕ) denotes the prior over the time-varying reduced-form parameters. Hence, every prior over

(Bt,Σt)
T
t=1 corresponds to an element of the class of rotation-invariant time-varying SVARs

13The proposition generalizes Proposition 4 in Bognanni (2018). The Haar measure over On, which is
only defined up to a scale factor, is any measure that is invariant with respect to rigid transformations,
rotations, and reflections in this case. The volume measure is a Haar measure but with the scale determined

by Lebesgue measure on Rn2

, the set of all n × n matrices. The volume measure is the natural measure over
orthogonal matrices in the sense that the Lebesgue measure is the natural measure over Euclidean spaces.

14Furthermore, the prior over the time-varying reduced-form parameters will be Markov if and only if the
prior over the time-varying structural parameters is Markov.
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models, and the prior over the time-varying structural parameters induced by pR is:

pS((At,Ft)
T
t=1 ∣ ϕ) = 2

n(n+1)T
2 (

T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pR(π(fh((At,Ft)
T
t=1)) ∣ ϕ)

v(On)
T

,

where π(⋅) denotes the projection of (Bt,Σt,Qt)
T
t=1 onto (Bt,Σt)

T
t=1. In the next section, we

use the novel parameterization of the correlation matrix described in Archakov and Hansen

(2021) to define a prior over the time-varying reduced-form parameters as in Arias et al.

(2023). This prior defines an element of the class of rotation-invariant time-varying SVARs

models. These results depend only on the fact that the volume element does not depend on

the sequence of orthogonal matrices. Hence, Proposition 3 will extend to any alternative

parameterization of the class, provided that the volume element does not depend on the

sequence of orthogonal matrices. For example, this would be the case if the measurement

equation were written in terms of impulse responses.

4 Time-Varying Reduced-Form Model

In this section, we describe the prior over the time-varying reduced-form parameters that

will be used in the rest of the paper. It is based on a time-varying extension of the

parameterization for reduced-form variance-covariance matrices proposed by Archakov and

Hansen (2021). Consider the decomposition of the reduced-form variance-covariance matrix

given by Σt =DtCtDt, where Dt = diag(diag(Σt)
1
2 ) is the diagonal matrix containing the

standard deviations and Ct = D
−1
t ΣtD

−1
t is the correlation matrix.15 We can map Σt to

(δt,γt) ∈ Rn × Rnγ , where nγ = n(n − 1)/2, δt = 2 log(diag(Dt)), and γt = vecl(log(Ct)).16

Clearly, the mapping Dt → δt is invertible and, by Theorem 1 of Archakov and Hansen

(2021), the mapping Ct → γt is also invertible. Thus, we can define an invertible function

gRC((Σt)
T
t=1) = (δt,γt)

T
t=1, and as a consequence, any law of motion, or equivalently any

prior, defined over (Bt,δt,γt)Tt=1 translates into a prior over the time-varying reduced-form

15The linear operator diag(⋅), when applied to a vector, denotes the diagonal matrix with the vector along
the diagonal and, when applied to a square matrix, denotes the diagonal of the matrix. The square root is
the element-by-element positive square root.

16The linear operator vecl(⋅) returns the vectorized strictly lower triangular component of a square matrix.
When applied to a vector, the function log(⋅) denotes the element-by-element logarithm and, when applied to
a square matrix, denotes the matrix logarithm.
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parameters.17 Consider the following law of motion for (Bt,δt,γt)Tt=2:

βt = βt−1 + νt, with νt ∼ N (0nm,Vβ)and βt = vec(Bt), (9)

δt = δt−1 + ηt, with ηt ∼ N (0n,Vδ) , (10)

γt = γt−1 + ζt, with ζt ∼ N (0nγ ,Vγ) , (11)

where Vβ is a symmetric definite positive nm × nm matrix, Vδ = diag(Vδ,1, . . . ,Vδ,n) is a

diagonal definite positive n × n matrix and Vγ = diag(Vγ,1, . . . ,Vγ,nγ) is a diagonal definite

positive nγ × nγ matrix. In addition, we assume that β1 ∼ N (mβ1 ,Vβ1), where mβ1 is a

nm × 1 vector and Vβ1 is a symmetric definite positive nm × nm matrix; δ1 ∼ N (mδ1 ,Vδ1),

where mδ1 is an n × 1 vector and Vδ1 is an n × n diagonal matrix with positive diagonal; and

γ1 ∼ N (mγ1 ,Vγ1), where mγ1 is an nγ × 1 vector and Vγ1 is an nγ × nγ diagonal matrix with

positive diagonal. It is straightforward to see that the constant parameters of the model are:

ϕRC = (vech(Vβ),diag(Vδ),diag(Vγ),mβ1 ,vech(Vβ1),mδ1 ,diag(Vδ1),mγ1 ,diag(Vγ1)) ,

which is a vector of dimension nRC =
nm(nm+1)

2 +n+nγ +nm+
nm(nm+1)

2 + 2n+ 2nγ . We denote

the above prior over (Bt,δt,γt)Tt=1 by

pRC((Bt,δt,γt)
T
t=1 ∣ ϕ

RC) = pRC((Bt)
T
t=1 ∣ ϕ

RC)pRC((δt,γt)
T
t=1 ∣ ϕ

RC),

which we call the Random Correlations prior, where pRC((Bt)
T
t=1 ∣ ϕ

RC) = ∏
T
t=2 p

RC(Bt ∣

Bt−1,ϕRC)pRC(B1 ∣ ϕRC) and

pRC((δt,γt)
T
t=1 ∣ ϕ

RC) =
T

∏
t=2
pRC(δt,γt ∣ δt−1,γt−1,ϕ

RC)pRC(δ1,γ1 ∣ ϕ
RC) =

(
T

∏
t=2
pRC(δt ∣ δt−1,ϕ

RC)pRC(γt ∣ γt−1,ϕ
RC))pRC(δ1 ∣ ϕ

RC)pRC(γ1 ∣ ϕ
RC).

This prior, via the function gRC and the identity mapping, induces a prior over the time-

varying reduced-form parameters, denoted by pRC
R ((Bt,Σt)

T
t=1 ∣ ϕ

RC), of the form:

pRC
R ((Bt,Σt)

T
t=1 ∣ ϕ

RC) = vgRC((Σt)
T
t=1)p

RC((Bt, g
RC(Σt))

T
t=1 ∣ ϕ

RC), (12)

17We will also use the function gRC to denote a mapping from Σt to (δt,γt).
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where the volume element vgRC((Σt)
T
t=1) can be computed by numerical differentiation.18

If we combine this prior over the time-varying reduced-form parameters with the uniform

prior over (Qt)
T
t=1, the results of Section 3 imply that the induced prior over the time-

varying structural parameters will satisfy the condition given by Equation (3). In particular,

we are going to consider a prior over the time-varying structural parameters, denoted by

pRC
S ((At,Ft)

T
t=1 ∣ ϕ

RC), equal to:

pRC
S ((At,Ft)

T
t=1 ∣ ϕ

RC) = 2
n(n+1)T

2 (
T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pRC
R (π(fh((At,Ft)

T
t=1))) ∣ ϕ

RC)

v(On)
T

(13)

where π(⋅) denotes the projection of (Bt,Σt,Qt)
T
t=1 onto (Bt,Σt)

T
t=1. This prior corresponds

to an element of the class of rotation-invariant time-varying SVARs models that we will call

Random Correlations SVAR (RC-SVAR). Together with a prior over the constant parameters

pRC(ϕRC) and the likelihood in Equation (4), our prior over the time-varying structural

parameters implies a posterior over the time-varying structural parameters that we label

pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1).

It will be useful to introduce more notation. The mapping fh((At,Ft)
T
t=1) combined with

ḡRC((Bt,Σt,Qt)
T
t=1) = (Bt, gRC(Σt),Qt)

T
t=1, which we will denote (ḡRC ○ fh)((At,Ft)

T
t=1) =

(Bt,δt,γt,Qt)
T
t=1, constitutes the key ingredient of the Gibbs Sampler for inference based on

time-varying SVARs identified with sign restrictions developed in this paper, see Section 5.

4.1 Alternative Time-Varying Reduced-Form Models

Although our algorithms will be written in terms of the RC-SVAR, we could write them in

terms of other class members. For example, we could consider the member corresponding to

the prior over the time-varying reduced-form parameters in Primiceri (2005), which relies on a

decomposition of the reduced-form variance-covariance matrix given by Σt = Ξ
−1
t ΩtΩ

′
t(Ξ

′
t)
−1,

where Ωt is a positive diagonal matrix and Ξt is a lower triangular matrix with ones along

18Because Σt is symmetric, there is an implicit linear restriction on Σt. To directly compute the volume
element associated with the function gRC(), restricted to symmetric matrices, would require Theorem 3, as
opposed to the simpler Theorem 2, of Arias et al. (2018). Either approach will give identical answers, though
using Theorem 3 may be more efficient numerically.
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the diagonal. The prior over (Bt,Ξt,Ωt)
T
t=1 defined in Primiceri (2005), which we label

pP ((Bt,Ξt,Ωt)
T
t=1 ∣ ϕ

P ) = pP ((Bt)
T
t=1 ∣ ϕ

P )pP ((Ξt,Ωt)
T
t=1 ∣ ϕ

P ),

and the invertible function gP ((Σt)
T
t=1) = (Ξt,Ωt)

T
t=1 induce a prior over the time-varying

reduced-form parameters denoted by pPR((Bt,Σt)
T
t=1 ∣ ϕ

P ), of the form:

pPR((Bt,Σt)
T
t=1 ∣ ϕ

P ) = vgP ((Σt)
T
t=1)p

P ((Bt, g
P (Σt))

T
t=1 ∣ ϕ

P ),

where the volume element vgP ((Σt)
T
t=1) can be computed numerically. This prior over the

time-varying reduced-form parameters along with the uniform prior over the sequences of

orthogonal matrices induces an alternative prior over the time-varying structural parameters

satisfying the condition given by Equation (3). We denote such prior by pPS ((At,Ft)
T
t=1 ∣ ϕ

P ):

pPS ((At,Ft)
T
t=1 ∣ ϕ

P ) = 2
n(n+1)T

2 (
T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pPR(π(fh((At,Ft)
T
t=1))) ∣ ϕ

P )

v(On)
T

.

Together with a prior over the constant parameters pP (ϕP ) and the likelihood in Equation (4),

this prior over the time-varying structural parameters implies a posterior over the time-varying

structural parameters that we label pPS ((At,Ft)
T
t=1,ϕ

P ∣ (yt)
T
t=1). Since the order of the

variables matters in this framework (see Bognanni, 2018), there are n! different elements of

the class and posteriors, where n is the number of variables.19 At this point is also important

to highlight Cogley and Sargent (2005), who present a similar approach with a time-invariant

Ξ. Hence, their model could also be used as an alternative time-varying reduced-form model

to be combined with the uniform prior over the sequences of orthogonal matrices to induce

an alternative element of our class.

The fact that Primiceri’s (2005) approach has the unappealing feature of being order-

dependent has motivated a quest for order-independent approaches. In particular, as in our

baseline prior over the reduced-form parameters, the prior over the time-varying reduced-form

parameters defined in Bognanni (2018) is order invariant. This approach relays on the

discounted Wishart stochastic volatility model to directly define a prior over the time-varying

19It is important to highlight that if one considers Primiceri’s (2005) as a time-varying SVAR model, it
does not belong to the order-invariant class. This is due to the recursive identification.
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reduced-form parameters, which we label pDW
R ((Bt,Σt)

T
t=1 ∣ ϕ

DW ). When combined with

the uniform prior over the sequences of orthogonal matrices, it implies a prior over the

time-varying structural parameters, denoted by pDW
S ((At,Ft)

T
t=1 ∣ ϕ

DW ), where:

pDW
S ((At,Ft)

T
t=1 ∣ ϕ

DW ) = 2
n(n+1)T

2 (
T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pDW
R (π(fh(At,Ft)

T
t=1) ∣ ϕ

DW )

v(On)
T

.

Together with a prior over the constant parameters pDW (ϕDW ) and the likelihood in Equa-

tion (4), this prior over the time-varying structural parameters implies a posterior over the

time-varying structural parameters that we label pDW
S ((At,Ft)

T
t=1,ϕ

DW ∣ (yt)
T
t=1).

Our rationale for using the Random Correlations prior is motivated by the insights in

Giannone et al. (2015) pointing out that a natural way to determine the impact of priors is to

assess their implied out-of-sample forecasting performance. In a similar environment, Arias

et al. (2023) shows that the Random Correlations prior outperforms most of the orderings

of the variables in Primiceri (2005) and Bognanni (2018). Unfortunately, given the number

of variables in the current framework we cannot compare the Random Correlations prior

against all the orderings of the variables in Primiceri (2005). Finally, as explained in Arias

et al. (2023), we also could have followed Asai and McAleer (2009) and directly imposed a

Wishart process-based prior on the dynamics of the correlation matrix without the need to

parameterize it. While the empirical performance is similar across the procedures, we favor

the Random Correlations prior approach presented here because it preserves the spirit of the

random walk modeling in Primiceri (2005). Chan et al. (2021) also describes a prior over the

time-varying reduced-form parameters that could be used.

5 Algorithms

This section presents algorithms to draw from the posterior distribution of rotation-invariant

time-varying SVARs models conditional on sign restrictions. To facilitate the exposition we

will use the RC-SVAR, but our algorithms could be easily adapted for any model of the class

of rotation-invariant time-varying SVARs models and, in particular, to the two alternative

models described in Section 4.1. Oftentimes we will refer to this distribution as the desired

target distribution.
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We present three algorithms. The first algorithm is straightforward but infeasible for

the sample sizes commonly encountered in empirical macroeconomics unless the identifying

sign restrictions are limited to a small number of periods. The second algorithm is typically

employed by current papers. This algorithm is feasible, but we show that it unfortunately

does not draw from the desired target posterior distribution. The third algorithm draws from

the desired target posterior distribution subject to sign restrictions on an arbitrary number

of periods. Thus, it overcomes the limitations of the two algorithms mentioned above.

Let SS,t(At,Ft) be any continuous function whose range is Rst , where st is the number

of sign restrictions at time t. We will consider sign restrictions of the form SS,t(At,Ft) > 0.

For instance, the function could be a collection of impulse responses of various variables to

various shocks at various horizons. These are very general types of sign restrictions, but they

do not allow for restrictions to combine information across different t. The advantage of this

is that we can determine if the sign restrictions are satisfied independently across t. Allowing

for time-varying sign restrictions is another important contribution of our methodology. For

example, researchers interested in identifying monetary policy rules typically choose the

federal funds rate to be the monetary policy instrument for the entire sample under analysis.

This assumption is questionable because the funds rate has not always been the policy

instrument: e.g., the Federal Reserve targeted non-borrowed reserves during the early years

of Chair Paul Volcker’s tenure. As we demonstrate in Section 6, time-varying sign restrictions

would allow these researchers to tackle the challenge by relaxing the assumption that the

federal funds rate is the policy instrument throughout the entire sample.

Let [SS,t(At,Ft) > 0] be an indicator function that equals 1 if the sign restrictions

are satisfied at time t, and 0 otherwise. In addition, let SS((At,Ft)
T
t=1) > 0 denote the

collection of sign restrictions, so that [SS((At,Ft)
T
t=1) > 0] = ∏

T
t=1 [SS,t(At,Ft) > 0], and OT =

{(At,Ft)
T
t=1 ∶ [SS((At,Ft)

T
t=1) > 0] = 1}. Equipped with these definitions, we can formally

state that our objective is to sample from the posterior

pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0)
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defined as

p((yt)
T
t=1 ∣ (At,Ft)

T
t=1) [SS((At,Ft)

T
t=1) > 0)]p

RC
S ((At,Ft)

T
t=1 ∣ ϕ

RC)p(ϕRC)

∫ ∫OT
p((yt)

T
t=1 ∣ (At,Ft)

T
t=1)p

RC
S ((At,Ft)

T
t=1 ∣ ϕ

RC)d(At,Ft)
T
t=1p(ϕ

RC)dϕRC
. (14)

We organize the rest of this section in three parts. The first part presents the simple but

limited algorithm. This algorithm will also be useful to establish a connection between our

efficient algorithm and an alternative importance sampling algorithm that could be applied in

some special cases. The second part describes the current algorithms and shows that they do

not draw from the desired target posterior distribution. The third part develops an efficient

algorithm based on the Gibbs Sampler.

5.1 A Simple Algorithm

Because SS,t() is continuous, the set of all sequences of time-varying structural parameters

satisfying the sign restrictions will be open in the set of all sequences of time-varying structural

parameters. If at least one sequence satisfies the sign restrictions, then the set of sequences

satisfying the sign restrictions will be of positive Lebesgue measure in the set of all sequences.

This justifies algorithms of the following type to accomplish our objective. The idea behind

the algorithm below is to sample several sequences of time-varying orthogonal reduced-form

parameters and then keep only the draws that satisfy the sign restrictions.

Algorithm 1. This algorithm draws from pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0).

1. Let M > 0 and I > 1 and set i = 1.

2. Draw ((Bi
t,Σ

i
t)

T
t=1,ϕ

i,RC) from the pRC
R ((Bt,Σt)

T
t=1,ϕ

RC ∣ (yt)
T
t=1) distribution.

3. Draw (Qi,m
t )

T
t=1 independently from the uniform distribution over OT

n for 1 ≤m ≤M .

4. Let (Ai,m
t ,Fi,m

t )
T
t=1 = f

−1
h ((B

i
t,Σ

i
t,Q

i,m
t )

T
t=1) for 1 ≤m ≤M .

5. If i < I, let i = i + 1 and return to Step 2.

6. Keep ((Ai,m
t ,Fi,m

t )
T
t=1,ϕ

i,RC) for 1 ≤ i ≤ I and 1 ≤m ≤M , if [SS((A
i,m
t ,Fi,m

t )
T
t=1) > 0] =

1.
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Step 2 draws ((Bi
t,δ

i
t,γ

i
t)

T
t=1,ϕ

i,RC) from pRC((Bt,δt,γt)Tt=1,ϕ
RC ∣ (yt)

T
t=1) and sets (Bi

t,Σ
i
t)

T
t=1 =

(Bi
t, (g

RC)−1(δit,γ
i
t))

T
t=1. These draws approximate the desired distribution via a Gibbs Sam-

pler algorithm (see Arias et al., 2023, for details). As mentioned in Section 4.1, using a different

prior over (Bi
t,Σ

i
t)

T
t=1 allows this algorithm to be used for rotation-invariant time-varying

SVARs models. One could use the prior over the time-varying reduced-form parameters in

either Primiceri (2005); Cogley and Sargent (2005) or Bognanni (2018) by simply changing

Step 2 to draw from the distributions over the time-varying reduced-form parameters defined

in those papers.

Algorithm 1 is very easy to implement. Still, unless the identifying sign restrictions are

limited to a few periods, the number of sequences of orthogonal matrices required to get

sufficient draws that satisfy the sign restrictions is computationally infeasible. To see this,

notice that, for every i, the probability that f−1h (B
i
t,Σ

i
t,Q

i,m
t ) satisfies the restrictions is

less than one for 1 ≤ t ≤ T . Hence, the probability that f−1h ((B
i
t,Σ

i
t,Q

i,m
t )

T
t=1) satisfies the

restrictions converges to zero as T goes to infinity.

5.2 Current Algorithms

Because of the infeasibility of using Algorithm 1 in most applications of interest, cur-

rent algorithms (e.g., Baumeister and Peersman, 2013; Bognanni, 2018; Debortoli et al.,

2020) modify Step 3. Let SOR,t(Bt,Σt,Qt) = SS,t(f−1h (Bt,Σt,Qt)) and On(Bt,Σt) =

{Qt ∶ [SOR,t(Bt,Σt,Qt) > 0] = 1}. Current algorithms draw (Qi,m
t )

M
m=1 independently from

the uniform distribution over On(Bt,Σt) for 1 ≤ m ≤M and 1 ≤ t ≤ T . Given a draw from

the specified posterior over the sequences of reduced-form parameters, this is implemented by

drawing Qt independently from the uniform distribution over On until one obtains a draw

such that Qt ∈ On(Bt,Σt), for 1 ≤ t ≤ T .20 The current algorithms can be written as follows:

Algorithm 2. This algorithm draws from a posterior distribution of (At,Ft)
T
t=1 conditional

on the sign restrictions.

1. Let I > 1 and set i = 1.

20To simplify the exposition, we are assuming that On(Bt,Σt) ≠ ∅ for all (Bt,Σt) for 1 ≤ t ≤ T . The same
argument is valid otherwise, although the discussion is more tedious.
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2. Draw ((Bi
t,Σ

i
t)

T
t=1,ϕ

i,RC) from the pRC
R ((Bt,Σt)

T
t=1,ϕ

RC ∣ (yt)
T
t=1) distribution.

3. Draw Qi
t uniformly from the set On(B

i
t,Σ

i
t) for 1 ≤ t ≤ T .

4. Let (Ai
t,F

i
t)

T
t=1 = f

−1
h ((B

i
t,Σ

i
t,Q

i
t)

T
t=1).

5. If i < I, let i = i + 1 and return to Step 2.

Step 3 can be done by drawingQt fromOn until obtaining one that satisfies SS,t(f−1h (B
i
t,Σ

i
t,Qt)) >

0 is found. The computational benefit comes from the conditional nature of the prior dis-

tribution for Qt. However, it has an undesirable implication. For any (Bt,Σt), the current

algorithms implicitly define a density p(Qt ∣ Bt,Σt) with respect to the volume measure over

On(Bt,Σt) that is proportional to [SOR,t(Bt,Σt,Qt) > 0]:

p(Qt ∣ Bt,Σt) =
[SOR,t(Bt,Σt,Qt) > 0]

v(On(Bt,Σt))
for 1 ≤ t ≤ T (15)

which demonstrates that current algorithms define a density for the orthogonal matrices

conditional on the reduced-form parameters that are not uniform. To see that, notice that

v(On(Bt,Σt)) depends on the reduced-form parameters. Thus, current algorithms use this

prior:

(
T

∏
t=1
∣ det(At) ∣ )

−(2n+m+1)pRC
R (π(fh((At,Ft)

T
t=1))) ∣ ϕ

RC)

∏
T
t=1 v(On(π(fh(At,Ft)))

, (16)

instead of using pRC
S ((At,Ft)

T
t=1 ∣ ϕ

RC). To see this, the reader should compare Equa-

tions (13) and (16). In particular, in the case of Equation (16) the space of integra-

tion depends on the particular sequence of time-varying reduced-form parameters being

drawn. Hence, the prior implied by the current algorithms does not satisfy Proposi-

tion 3. In this particular version, the posterior implied by Algorithm 2 will misrepre-

sent pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0), as it will overrepresent sequences

of structural parameters with low ∏
T
t=1 v(On(π(fh(At,Ft))) and it will underrepresent

sequences with high ∏
T
t=1 v(On(π(fh(At,Ft))). Because our objective is to draw from

pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0), one could use importance sampling

weights proportional to ∏
T
t=1 v(On(π(fh(At,Ft)))

v(On)T to re-sample the outcome of Algorithm 2. How-

ever, as explained in Durbin and Koopman (2002), this is excessively burdensome for the

type of values that T takes in empirical applications.
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5.3 A Gibbs Sampler Algorithm

In this section, we present a feasible Gibbs Sampler that draws from the desired target

distribution. Our sampling approach is based on single-move sampling along the lines of Koop

and Potter (2011). The key insight is to draw from a sequence of conditional distributions

that have the elliptical slice sampling of Murray et al. (2010) as a critical component. This

will allow us to break the infeasibility of Algorithm 1. Our algorithm generates posterior

draws based on the prior distribution that satisfies the conditions in Proposition 3. We will

present the implementation details of the main steps of this algorithm, relegating the details

to the Online Appendix.

Let SRC,t(Bt,δt,γt,Qt) = SS,t((ḡRC○fh)−1(Bt,δt,γt,Qt)) and let [SRC,t(Bt,δt,γt,Qt) > 0]

be the indicator function that equals 1 if the sign restrictions are satisfied at time t and 0 other-

wise. In addition, let [SRC((Bt,δt,γt,Qt)
T
t=1) > 0] = ∏

T
t=1 [SRC,t(Bt,δt,γt,Qt) > 0] denote the

collection of sign restrictions and letORC
T = {((Bt,δt,γt,Qt)

T
t=1 ∶ [SRC((Bt,δt,γt,Qt)

T
t=1) > 0] = 1}

be the set of sequences that satisfy the sign restrictions.

The objective is to sample from Equation (14). By the theory in Section 3, this can be

accomplished by sampling from the posterior

pRC((Bt,δt,γt,Qt)
T
t=1,ϕ

RC ∣ (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

defined as:

p((yt)
T
t=1 ∣ (Bt,δt,γt)Tt=1) [SRC((Bt,δt,γt,Qt)

T
t=1) > 0]p

RC((Bt,δt,γt)Tt=1 ∣ ϕ
RC)p(ϕRC)

∫ ∫ORC
T
p((yt)

T
t=1 ∣ (Bt,δt,γt)Tt=1)p

RC((Bt,δt,γt)Tt=1 ∣ ϕ
RC)d(Bt,δt,γt,Qt)

T
t=1p(ϕ

RC)dϕRC
,

and then mapping (Bt,δt,γt,Qt)
T
t=1 to (At,Ft)

T
t=1 using the mapping (ḡRC ○ fh)−1. This

procedure is described by Algorithm 3.

Algorithm 3. This algorithm draws from pRC
S ((At,Ft)

T
t=1,ϕ

RC ∣ (yt)
T
t=1,SS((At,Ft)

T
t=1) > 0).

1. Let I > 1 and set i = 1 and assign initial values to (δi−1t ,γi−1
t ,Qi−1

t )
T
t=1,ϕ

i−1,RC.

2. Draw (Bi
t)

T
t=1 from

pRC((Bt)
T
t=1 ∣ (δ

i−1
t ,γi−1

t ,Qi−1
t )

T
t=1,ϕ

i−1,RC , (yt)
T
t=1,SRC((Bt,δ

i−1
t ,γi−1

t ,Qi−1
t )

T
t=1) > 0).

20



3. Draw (Qi
t)

T
t=1 from

pRC((Qt)
T
t=1 ∣ (B

i
t,δ

i−1
t ,γi−1

t )
T
t=1,ϕ

i−1,RC , (yt)
T
t=1,SRC((B

i
t,δ

i−1
t ,γi−1

t ,Qt)
T
t=1) > 0).

4. Draw (δit,γ
i
t)

T
t=1 from

pRC((δt,γt)
T
t=1 ∣ (B

i
t,Q

i
t)

T
t=1,ϕ

i−1,RC , (yt)
T
t=1,SRC((B

i
t,δt,γt,Q

i
t)

T
t=1) > 0).

5. Draw ϕi,RC from

pRC(ϕRC ∣ (Bi
t,δ

i
t,γ

i
t ,Q

i
t)

T
t=1, (yt)

T
t=1).

6. Set (Ai
t,F

i
t)

T
t=1 = (ḡ

RC ○ fh)−1((B
i
t,δ

i
t,γ

i
t ,Q

i
t)

T
t=1).

7. If i < I, let i = i + 1 and return to Step 2.

Step 2 draws Bt from pRC(Bt ∣ B−t, (δt,γt,Qt)
T
t=1,ϕ

RC , (yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) >

0) for 1 ≤ t ≤ T . These densities are truncated normal and, hence, standard algorithms

can be used to draw from them. Step 3 is implemented by drawing Qt from pRC(Qt ∣

Q−t, (Bt,δt,γt)Tt=1,ϕ
RC , (yt)

T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0) for 1 ≤ t ≤ T . These densities are

truncated uniform over the set of orthogonal matrices
[SRC,t(Bt,δt,γt,Qt)>0]

v(On(Bt,(gRC)−1(δt,γt))) for 1 ≤ t ≤ T

and, hence, standard algorithms can be used to draw from them. Step 4 is implemented by

drawing (δt,γt) from pRC(δt,γt ∣ δ−t,γ−t, (Bt,Qt)
T
t=1,ϕ

RC(yt)
T
t=1,SRC((Bt,δt,γt,Qt)

T
t=1) > 0)

for 1 ≤ t ≤ T . We use the elliptical slice sampler to do that. The key to the approach is

the fact that pRC(δt,γt ∣ δ−t,γ−t,ϕRC) = pRC(δt ∣ δ−t,ϕRC)pRC(γt ∣ γ−t,ϕRC) is normal for

1 ≤ t ≤ T . When it is not normal, one may need to use a different strategy for posterior

sampling, and we illustrate how this can be approached in Section ?? of the Online Appendix.

Step 5 is based on a standard hyperparameter updating. All the details are described in the

Online Appendix. The fundamental insight of our Gibbs Sampler is that we need to condition

on SRC((Bt,δt,γt,Qt)
T
t=1) > 0 at every step. Without such conditioning at every step, our

approach will not be drawing from the correct posterior distribution. Related to this point,

it is important to notice that the density used in Step 3 is the same density displayed in

Equation (15). This highlights that readers should not infer that any use of such a density is

always incorrect; the key issue is how the density is used in the context of the algorithm.
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6 The Current Monetary Policy Tightening Cycle

This section illustrates our methodology by analyzing the monetary policy tightening cycle

that began on March 16, 2022. Since lift-off, policy discussions have revolved around the

effects of interest rate increases on economic activity and inflation. As Powell (2023) recently

noted, doing too little or too much could cause unnecessary harm to the economy. Motivated

by this discussion, we use our methodology to tackle three questions: (i) How did the Federal

Reserve respond to the state of the economy during the current policy tightening cycle? (ii)

How does the Federal Reserve’s performance during the tightening cycle compare with more

dovish or hawkish monetary policy stances? (iii) Was the Federal Reserve behind the curve

as suggested by Summers (2021)? And, if so, at what cost?

6.1 Data and Model Specification

We use an RC-SVAR specified at a quarterly frequency that includes output growth (as

measured by the log difference of real GDP), core inflation (as measured by the log difference

of the price index of personal consumption expenditures excluding food and energy), the

federal funds rate, the growth in the stock of money (as measured by the log difference of M2),

and Moody’s seasoned Baa corporate bond yield relative to the yield on 10-year Treasury

constant maturity. Often, we will refer to the latter as the credit spread. The sample runs

from 1959:Q1 until 2023:Q2. As typically done when working with time-varying SVARs at

a quarterly frequency, we include a constant and two lags. Thus, we have n = 5, p = 2, and

m = 11 in this model. Appendix B provides a detailed description of the data sources.

Our prior over ϕRC is described in Appendix C. For ease of exposition, we present a

summary. We set mβ1 equal to the maximum likelihood estimate of a constant parameter

reduced-form VAR—featuring the same variables, constant, and lags as our time-varying

model—based on the first T0 = 40 observations available in our sample. We denote such an

estimate by B̂. We set Vβ1 equal to 4 times the unbiased estimator for the variance of B̂,

as in Primiceri (2005). To set the values for mδ1 , mγ1 , Vδ1 , and Vγ1 , first we let Σ̂ denote

the maximum likelihood estimate of the variance of the residuals. Second we use the Delta

method to set the values formδ1 , Vδ1 ,mγ1 , and Vγ1 . The variances Vδ1 and Vγ1 are set equal
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to 4 times the variance implied by the Delta method. Turning to the parameters governing

the step sizes of the processes for βt, δt, and γt (Vβ, Vδ, and Vγ respectively), we impose

an Inverse-Wishart prior for Vβ and an Inverse-Gamma prior for each of the diagonal entries

of Vδ and Vγ . The scale parameters for these priors are chosen to be constant fractions

of the maximum likelihood estimate variances for β, δ, and γ in the constant parameter

reduced-form VAR over the training sample described above. We follow Primiceri (2005)

when setting the degrees of freedom (for the Inverse-Wishart prior) and the shape parameters

(for the Inverse-Gamma priors); they are set so that the priors are diffuse and uninformative.

Our results are based on one independent chain obtained using Algorithm 3. The chain

consists of 1,000,000 draws, we keep one every 50-th draw of the structural parameters. Of

the resulting 20,000 draws, we discard the first 5,000 draws. The Online Appendix shows

some convergence results.

6.2 Identification

We identify the parameters of one of the RC-SVAR equations, which we label the monetary

policy equation, by incorporating the insights of the identification strategies proposed by

Uhlig (2005) and Arias et al. (2019), and at the same time allowing for time variation in

both the systematic component of monetary policy and the variance of the monetary policy

shock. This is critical because the Federal Reserve’s reaction function to economic conditions

has undoubtedly changed over time. For example, in October 1979, the Fed abandoned the

federal funds rate as its main policy instrument and adopted non-borrowed reserves targeting

to fight inflation. Similarly, the federal funds rate took a secondary role in December 2008

when it hit the effective zero lower bound (ZLB), and quantitative easing (QE) took center

stage. In addition, changes in Federal Reserve chairs and the composition of the Federal Open

Market Committee (FOMC) may have led to changes in the reaction function of monetary

policy over time (see, e.g., Coibion and Gorodnichenko, 2011).

To address these changes, we consider an identification scheme that disciplines the

systematic component of monetary policy during periods in which the federal funds rate can

be deemed to have been the primary policy tool and that remains agnostic during periods in

which the Fed targeted non-borrowed reserves or was constrained by the effective ZLB. When
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the federal funds rate is not the main policy instrument, the identifying restrictions follow

Uhlig (2005) and concentrate on a minimal number of impulse responses. When the federal

funds rate is the main policy instrument, we maintain the restrictions on impulse responses

and, in addition, we impose restrictions on the contemporaneous structural parameters of the

monetary policy equation following Arias et al. (2019).21 Importantly, the federal funds rate

is not the main policy instrument during the whole sample; hence, the restrictions on the

contemporaneous structural parameters of the monetary policy equation cannot be imposed

for all the periods.

Without loss of generality, we assume that the first equation of the SVAR is the monetary

policy equation and, abstracting from the constant and lagged variables, we write it as

rt = ψ∆y,t∆yt + ψπ,tπt + ψ∆m,t∆mt + ψcs,tcst
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Systematic Component

+σr,tεr,t
´¹¹¹¹¸¹¹¹¹¶
Shock

, (17)

where rt is the federal funds rate, ∆yt is output growth, πt is inflation, ∆mt is the growth rate

of money, cst is the corporate credit spread, εr,t is the monetary policy shock, ψ∆y,t = −at,11a−1t,31,

ψπ,t = −at,21a−1t,31, ψ∆m,t = −at,41a−1t,31, ψcs,t = −at,51a−1t,31, and σr,t = a
−1
t,31, with at,ij denoting the

(i, j) entry of At. Sometimes we will refer to the coefficients (ψ∆y,t, ψπ,t, ψ∆m,t, ψcs,t) as

contemporaneous elasticities. Importantly, this equation clarifies that the monetary policy

shock represents a deviation from a policy rule. Equation (17) is enough to describe the

contemporaneous elasticities at the center stage of the monetary SVAR literature (e.g.,

Bernanke and Mihov, 1998). However, there are cases in which the interest is in using the

monetary policy equation to compute the long-run response of the federal funds rate to a

permanent increase in inflation. When computing these long-run responses, we will also

need to consider ψ
(1)
r,t = ft,41a

−1
t,31, ψ

(2)
r,t = ft,91a

−1
t,31, ψ

(1)
π,t = ft,31a

−1
t,31 and ψ

(2)
π,t = ft,81a

−1
t,31, with ft,ij

denoting the (i, j) entry of Ft and ψ
(1)
π,t and ψ

(2)
π,t denoting the effect of πt−1 and πt−2 on rt,

respectively, and ψ
(1)
r,t and ψ

(2)
r,t denoting the effect of rt−1 and rt−2 on rt, respectively.

Following Primiceri (2005), we define Ψ
(h)
r,t , with h > 0, to be the cumulative response of

the fed funds rate in period h+ t after a permanent 1 percentage point increase in inflation in

21Wolf (2020) shows that restricting the systematic component of monetary policy can avoid shock-
masquerading issues inherent to set identification with too few sign restrictions.
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period t. More specifically, we define:

Ψ
(h)
r,t = ψ

(1)
r,t Ψ

(h−1)
r,t + ψ

(2)
r,t Ψ

(h−2)
r,t + ψ

(2)
π,t + ψ

(1)
π,t + ψπ,t for h > 2,

where Ψ
(2)
r,t = ψ

(1)
r,t Ψ

(1)
r,t + ψ

(1)
π,t + ψπ,t and Ψ

(1)
r,t = ψπ,t and we approximate the long-run response

of the fed funds rate to inflation by Ψ
(60)
r,t . Let us now introduce Restrictions 1 and 2:

Restriction 1. Following a monetary policy shock, the contemporaneous impulse responses

of inflation and the growth rate of the stock of money are negative, and the impulse response

of the federal funds rate is positive.

Restriction 1, motivated by Uhlig (2005), is imposed for the entire sample. Uhlig’s

(2005) celebrated identification scheme consists of imposing minimal sign restrictions on

impulse responses motivated by economic theory without restricting the question of interest.

Accordingly, when using his approach to study the economic effects of monetary policy shocks

on output, he assumed that a monetary policy shock that increases the federal funds rate does

not cause an increase in prices or non-borrowed reserves. In line with his identification scheme,

we assume that the contemporaneous impulse response of inflation and the growth rate of the

stock of money is negative in response to a monetary policy shock that increases the federal

funds rate upon impact.22 The cost of using such a minimal number of restrictions is that

some impulse responses consistent with Restriction 1 could be associated with an implausible

systematic component of monetary policy or be subject to the shock masquerading issue

highlighted by Wolf (2020).23

Restriction 2. Consider the following restrictions on the contemporaneous coefficients of

Equation (17), ψ∆y,t ∈ (0,4), ψπ,t ∈ (0,4), ψ∆m,t ∈ (0,4), and ψcs,t ∈ (−4,0). In addition, we

restrict the long-run response of the fed funds rate to inflation to be positive and respect the

Taylor principle since the mid-1980s.

Restriction 2, inspired by Arias et al. (2019), addresses these concerns by restricting the

contemporaneous rule coefficients as well as the long-run response of the federal funds rate to

22The length of the restrictions could be extended for one quarter to match the restricted horizons in
Uhlig (2005). We impose only one period to keep the restrictions to the smallest number possible.

23See also Kilian and Murphy (2012), who highlighted a related issue in the global market for crude oil.
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inflation. The signs and bounds on the contemporaneous reaction of the federal funds rate

to output growth and inflation follow directly from Arias et al. (2019). While the signs of

these responses can be viewed as uncontroversial, the upper limit of the bounds is somewhat

arbitrary. We set it to 4 to strike a balance between using conservative bounds and ruling

out implausible monetary policy behavior. Turning to the restriction on the response of the

federal funds rate to the growth rate of money, we impose a positive sign following the work

of Leeper and Zha (2003). The upper bound is large enough to encompass the point estimate

of the elasticity of the federal funds rate to money in their model. Finally, the restriction

on the response of the federal funds rate to the corporate credit spread is inspired by the

work of Caldara and Herbst (2019), who highlighted that this response is crucial to address

misspecification concerns in the monetary policy equation. In line with their estimates, we

restrict this response to be negative and impose a lower bound to rule out implausible large

negative responses. This bound is such that the range of possible values for ψcs,t includes the

90 percent credible sets for this coefficient reported by Caldara and Herbst (2019).

In addition to restricting the short-run elasticities, we restrict the long-run response of the

fed funds rate to inflation to be positive and to respect the Taylor principle since 1984Q1. The

former is inspired in the New Keynesian framework. The rationale for the Taylor principle

restriction is inspired in Clarida et al. (2000); Lubik and Schorfheide (2004), pointing to a

shift in the long-run response of the policy rate to inflation in the early 1980s.

Restriction 2 is imposed on all the periods in our sample except for 1979Q4:1982Q4,

2009Q1:2015Q3, and 2020Q2:2021Q4. The first period corresponds to changes in monetary

policy announced by Chair Volcker in late 1979. The second and third periods correspond to

the QE policies around the Great Recession and COVID-19. The rationale for not imposing

Restriction 2 during these three periods is as follows. In the first of these periods, the

Federal Reserve explicitly targeted non-borrowed reserves. Lindsey et al. (2013) provides an

extensive analysis of the New Operating Procedures announced by Chair Volcker on October

6, 1979. Their analysis highlights that the credibility of the prevailing discount rate framework

came under severe stress following a near-split decision on the discount-rate vote and that

the FOMC considered that targeting non-borrowed reserves would provide it the necessary

flexibility to control inflation by allowing significant changes in interest rates. By October
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1982, with inflation in a sustained downward trajectory, the Fed abandoned non-borrowed

reserves as the main policy instrument. The abandonment was communicated less clearly

than its adoption, and the Fed was vague about the details of its operating procedures for

most of the 1980s and early 1990s (see, e.g., Lindsey, 2003). Chappell et al. (2005) describe

the post-1982 conduct of monetary policy as indirect targeting of the federal funds rate,

which gradually moved to direct targeting of the federal funds rate as made clear by the

FOMC statement of March 1997.

The post-1982 period of interest rate targeting was interrupted when the Fed lowered

interest rates to the 0 to 0.25 percent target range, hitting its effective ZLB, and embarked on

a period of QE policies to address the negative economic consequences of the Great Recession

of 2007 to 2009. The conduct of monetary policy consistent with Equation (17) reemerged

only after the federal funds rate lift-off was announced in December 2015. Similarly, the

COVID-19 pandemic induced a new period of QE policies and kept the federal funds rate at

its effective ZLB from 2020Q2 until 2021Q4.

6.3 Systematic Component and Monetary Policy Shock

In this section, we show the systematic component of monetary policy and the monetary

policy shock. Let us begin with the former. Figure 1 shows the contemporaneous elasticities

of the federal funds rate to output growth, inflation, money growth, and the credit spread,

from 1969Q4 until 2023Q2 except for those periods in which Restriction 2 is not imposed. The

solid blue lines depict the point-wise posterior medians, and the solid gray lines represent the

68 percent point-wise posterior probability bands. As seen, the contemporaneous elasticity

of the federal funds rate to output growth exhibits three peaks. The first occurred in 1974

during the chairmanship of Arthur Burns, and it captures the sharp decline in the federal

funds rate in response to the 1974-1975 recession. The second peak occurred in 1983-1984

during the chairmanship of Paul Volcker. This may come as a surprise, as his tenure at the

Fed is commonly viewed as squarely focused on combating inflation. Even so, during this

period, the annualized real growth rate of GDP averaged 6.8 percent. To the extent that

the FOMC under Volcker’s leadership viewed high growth as posing a risk to the progress

they had made on the inflation front, it is natural to find that the federal funds rate was
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more sensitive to output growth during this period. The third peak occurred in 2001 during

the chairmanship of Alan Greenspan when the Fed cut interest rates sharply in the face of

the 2001 recession: In December 2000, the federal funds rate was 6.4 percent, and it ended

2001 at 1.8 percent. Outside of these peaks, the contemporaneous elasticities of the federal

funds rate have been between 0.01 and 0.15, averaging about 0.1, implying that, other things

constant, a one percentage point increase in annualized GDP growth would lead to a rise of

0.1 percent in the federal funds rate (annualized).

Turning to the contemporaneous elasticity of the federal funds rate to inflation, in line

with the conventional wisdom, we find that the Fed reacted more aggressively to inflation in

the early 1980s than during the Great Moderation. However, we also find high elasticities in

the early 1970s under the first years of Burns’s tenure and around the 2000s under Greenspan.

The former suggests that through the lens of our model, the political pressure that President

Nixon exerted on the Fed during the early 1970s (see, e.g., Drechsel, 2024) did not manifest

in a lower response to inflation. Instead, as we will discuss below, such dovish pressure

appears to be reflected in the reaction of the federal funds rate to the corporate credit spreads.

The high elasticities around 1999-2000 are consistent concerns about inflationary pressures

mentioned in the FOMC statement of the time. When looking at the magnitude of the

responses throughout the estimation sample, we find that while, on average, the annualized

federal funds rate increased by 0.3 percentage points in response to a one percentage point

increase in annualized core inflation, the range of responses is wide. For example, these

responses were as low as 0.14 during Janet Yellen’s leadership.

Regarding the response of the federal funds rate to the growth rate of money, let us

highlight that, on average, the elasticities are larger before 1979Q4 than after 1982Q4. This

is consistent with the view that policymakers in the early 1980s were concerned with the

reliability of monetary aggregates. For example, Lindsey et al. (2013) emphasize the following

quote from Chair Volcker obtained from an FOMC transcript from January 1980: “I would

remind you that nothing that has happened—or that I’ve observed recently—makes the

money/GNP relationship any clearer or more stable than before. Having gone through all

these redefinition problems, one recognizes how arbitrary some of this is. It depends on how

you define [money]”.
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Figure 1: Contemporaneous Elasticities

Finally, we discuss the contemporaneous elasticity of the federal funds rate to corporate

credit spreads. Analogously to Caldara and Herbst (2019), we find a significant reaction to

changes in credit spreads. Nevertheless, we also find evidence of notable time variation in the

magnitude of this coefficient. Interestingly, as highlighted above, the noticeable change in the

contemporaneous elasticity of corporate credit spreads could be attributed to the political

pressure faced by the Fed during the early 1970s. The coefficient moved from about −1.3

at the beginning of Burns’s tenure to −2 at the end of Nixon’s presidency. Hence, the tight

credit spreads of the early 1970s induced the largest dovish pressure on the funds rate in

our sample. Subsequently, it is clear that from the mid-1970s until the onset of the Great

Recession, the Fed gradually became less responsive to corporate credit spreads. Perhaps not

too surprisingly, the downward trend in responsiveness ended after the financial crisis. By

mid-2023, the response was about -1.2, which aligns with the posterior median estimates for

the 1990s and early 2000s. While Caldara and Herbst (2019) focuses on the period 1994-2007,
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our results indicate that corporate credit spreads played a potentially even more critical role

in the conduct of monetary policy during the 1970s and 1980s.

Figure 2: Standard Deviation of the Monetary Policy Shock

Figure 2 shows the standard deviation of the monetary policy shock. In line with other

estimates in the literature, it has declined since the early 1980s. Notably, the clear evidence

of time variation in the systematic component of monetary policy and the standard deviation

of the monetary policy shock suggests that a time-varying structural model could be critical

to studying the conduct of monetary policy in the U.S. over a long sample.

6.4 Dissecting the 2022-2023 Tightening Cycle

As outlined in the introduction, it is widely acknowledged that the Federal Reserve initiated

a tightening of monetary policy in early 2022 due to inflation concerns (see Romer and

Romer, 2023). We now examine the degree to which the unexpected changes in the federal

funds rate from the second quarter of 2022 to the second quarter of 2023 are attributable to

either the systematic component of monetary policy or monetary policy shocks. Figure 3

presents our model-based forecasts for the federal funds rate, output growth, and inflation

over the period 2022Q2-2023Q2, using data from 2022Q1. In addition, the figure shows the

cumulative contribution of the structural shocks to the forecast error in these projections.

The forecast and the cumulative shock contributions are constructed using point-wise means
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conditional on the distribution of structural parameters corresponding to 2022Q1. The former

are represented by dotted lines and the latter are represented by the colored bars. We depict

the contribution of monetary policy shocks using red bars, while the contributions from

non-monetary policy shocks are shown in yellow bars. For each quarter between 2022Q2 and

2023Q2, the gap between the data (shown by solid lines) and the forecast is equal to the sum

of the yellow and red bars.
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Figure 3: Monetary Policy versus Non-Monetary Policy Shocks

The forecast for the federal funds rate shows that the model significantly under-predicted its

trajectory. In contrast, the projection for output growth and inflation was remarkably accurate.

We contrast our model with the median predictions from the 2022Q1 and 2022Q2 Survey

of Professional Forecasters (SPF).24 The 2022Q1 SPF participants are at an informational

disadvantage relative to our model, while the 2022Q2 SPF participants are at an informational

advantage compared to our model. The main takeaway from this comparison is that the

model forecasts is broadly in line with the SPF for the case of the federal funds rates and

output growth, while the SPF does worse than the model when forecasting inflation.

Looking at the decomposition of the federal funds rate, it is clear that most of the

unexpected changes in the federal funds rate can be attributed to the systematic component

of monetary policy. In particular, interest rates increased beyond what could have been

predicted in 2022Q1, mainly as a systematic response to non-monetary policy shocks. This

can be seen in the figure by comparing the height of the yellow bars to the height of the

red bars. The yellow bars represent the contribution of the systematic part of monetary

policy to unexpected changes in the federal funds rate. In contrast, the red bars represent the

24We interpret the SPF projections for the 3-month T-bill rate as projections for the federal funds rate.
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contribution of the monetary policy shocks. Consequently, the lion’s share of the unpredictable

increases in the interest rate can be attributed to the Fed’s policy reaction function. This is in

line with the findings of the literature when analyzing other periods, which argues that most

of the variation in policy instruments is due to the systematic component of policy and not

monetary policy shocks. Even so, monetary policy shocks also played a role, amounting to

about 150 basis points of the unexpected change in the federal funds rate by 2023Q2. Table 1

shows the details of this decomposition for the case of the fed funds rate. As shown in Figure

2022Q2 2022Q3 2022Q4 2023Q1 2023Q2
Predictable 0.15 0.37 0.64 0.93 1.20
Unpredictable due to Systematic 0.29 0.92 1.67 2.12 2.27
Unpredictable due to MP Shocks 0.34 0.89 1.34 1.47 1.52
Federal Funds Rate 0.77 2.19 3.65 4.52 4.99

Table 1: Federal Funds Rate Decomposition (p.p.)

3, non-monetary policy shocks are also the main contributor to the unexpected changes

in output growth and inflation: since the second half of 2022 non-monetary policy shocks

caused the economy to run hotter (larger than expected output growth and inflation) than

predicted. This explains why the systematic part of monetary policy contributed positively

to the unexpected change in the fed fund rate.

Our analysis restricts monetary shocks to be one-off deviations from the estimated

monetary policy equation; intuitively, however, such deviations could be either transitory or

persistent, and differentially so at different points in time. Hence, it is natural to ask how

our conclusions on the importance of systematic monetary policy versus monetary shocks in

explaining nominal interest rate movements post-2021 are affected by allowing for multiple

distinct monetary policy shocks. To assess this, the Online Appendix re-visits our analysis by

disentangling exogenous variation at the short end and long end of the yield curve. We find

that the share of the unexpected changes in the federal funds rate that can be attributed to

non-monetary policy shocks is in line with the results presented in this section. In addition,

the monetary policy shock in the baseline is deconstructed in similar proportions into the short

end and long-term monetary policy shocks: the sum of both short- and long end monetary

policy shocks seems to be equally important contributors to the unexpected variations in the
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variables under analysis than the specification featuring the term spread.

6.5 Policy Counterfactual Simulations

One of the benefits of considering a structural model is the ability to look at the effects of

counterfactual experiments that change the structural parameters in the monetary policy

equation. For instance, Sims and Zha (2006a) look at impulse responses to shocks in an SVAR

where the estimated policy equation is replaced by one in which the monetary authority

is unresponsive to other variables in the system. Similarly, Primiceri (2005) conducts an

experiment he calls “planting Greenspan into the 1970s.” The idea of such an experiment is

to replay history, drawing the parameters of the policy rule in the 1970s from their posterior

in 1991-1992, to assess the consequences of a change in the systematic policy component.

Building on this tradition, we produce two types of counterfactuals. In the first type, we

modify the systematic component of monetary policy, keeping other aspects of the model

unchanged. This approach aligns with the framework presented in Sims and Zha (2006a),

wherein rational agents cannot comprehend or anticipate policy changes. In the second type,

we generate counterfactuals inspired by the work of McKay and Wolf (2023) and Caravello

et al. (2024); these address the expectational concerns of the Lucas critique.

The results obtained under both types of counterfactual simulations are similar. We will

focus on the first type and discuss the results obtained with the second type in the Online

Appendix. More specifically, we replay history since 2022Q2, assuming that the FOMC would

have responded to contemporary inflation differently than what would be prescribed by our

estimated policy rule. In the first simulation, which we label Hawkish Fed, we replace the

model’s estimated reaction to contemporaneous inflation with a twice as large response. In

the second simulation, which we label Dovish Fed, we replace the model’s estimated reaction

to contemporaneous inflation with a response that is half as large.

Figure 4 shows the point-wise medians and the 68 percent point-wise probability bands

for each counterfactual. Focusing on posterior medians, through the lens of our model, under

the Dovish Fed counterfactual, the economy would have marginally overheated with output

increasing above the pace implied by the U.S. Congressional Budget Office’s estimates of

potential GDP, and inflation would have run persistently above 5 percent. Under the Hawkish
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Figure 4: Counterfactuals

Fed counterfactual, inflation would have quickly decreased in terms of economic activity at

a relatively small cost. In the Hawkish counterfactual, the output in the second quarter of

2023 would have been about 0.5 percent lower. When looking at the output level at risk, the

lower envelope of the 68 percent probability bands shows that the cost in terms of output

could have been as high as 1.7 percent.

Let us highlight that variations in the slope of the Phillips curve could influence the

transmission mechanisms of monetary policy, potentially altering the trade-offs between

output and inflation. Our counterfactual results are coherent with price responses being

much larger at the end of the sample than in the mid-seventies, suggesting Chair Burns faced

a more adverse trade-off than Chair Powell.25 In addition, the Online Appendix shows that

the output loss associated with the Hawkish counterfactual is somewhat larger when we use

a monetary policy equation centered around the short end of the yield curve.

6.6 Robustness to Prior

The results in Section 3 demonstrate that to operate within the class of rotation-invariant

time-varying SVARs models described in this paper, a researcher must use a uniform prior

over (Qt)
T
t=1 with respect to the volume measure over OT

n . However, as emphasized by

Baumeister and Hamilton (2015); Giacomini and Kitagawa (2021), it is crucial to recognize

that sign restrictions yield identified sets, and the outcomes are influenced not only by these

25This is shown in the Online Appendix where we compare the impulse responses of output and prices in
1975Q1 and 2022Q1. We thank a referee for bringing this point to our attention.
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Figure 5: Identified Sets for Counterfactuals

restrictions but also by the prior imposed on the sequence of orthogonal rotation matrices.

To address this, we assess the sensitivity of the reported policy counterfactual simulations

to the choice of the uniform prior. Specifically, we examine the identified sets associated

with Figure 4 at the value of the point-wise posterior median sequence of reduced-form

parameters.26 The shadowed areas in Figure 5 represent the point-wise identified set. The

figure shows two important things: (1) the identified sets are much wider than the probability

bands and (2) the main finding of the paper is robust to reporting identified sets.

The identified sets can naturally be wider than our reported probability bands, as they

represent the domain of the counterfactual outcomes in the absence of reduced-form parameter

uncertainty. Although with a larger uncertainty, the identified sets still tell us that under

the Dovish Fed counterfactual, the economy would have marginally overheated and inflation

would have been much higher while, under the Hawkish Fed counterfactual, inflation would

have been remarkably lower with a set of likely outcomes for output broadly similar to those

under the Dovish counterfactual. Importantly, this exercise accounts only for identification

uncertainty and not for reduced-form estimation uncertainty. Unfortunately, given the

dimensionality of our problem, accounting for both is computationally infeasible.

26That is, we report the point-wise range of counterfactual outcomes that are observationally equivalent to
the point-wise medians presented in Figure 4. Conditional on the point-wise posterior median sequence of
reduced-form parameters, we simulate 50,000 sequences of orthogonal matrices that satisfy the sign restrictions.
We eliminate any draws that imply negative interest rates. These represent the 0.6 percent of the total
number of draws.
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6.7 Was the Fed Behind the Curve?

Thus far, our analysis has revolved around understanding the 2022-2023 tightening cycle since

its onset. This section focuses on whether the Federal Reserve was late to increase interest

rates. This is an interesting question because, in early 2021, influential economists expressed

concerns that the American Rescue Plan Act (signed into law on March 11, 2021) could

result in a surge of inflation not seen since the 1970s unless the Federal Reserve responded to

the program. Figure 6 shows our model-based forecasts for 2021Q2:2021Q4 based on 2021Q1

data (dotted line). In addition, the figure shows the cumulative contribution of structural

shocks to the unexpected change in the federal funds rate for each quarter from 2021Q2 until

2021Q4. As above, we plot monetary policy shocks (red bars), and the rest of the structural

shocks are aggregated into a non-monetary policy shocks category (yellow bars). Forecast and

shock contributions are constructed using point-wise means conditional on the distribution of

structural parameters corresponding to 2021Q1.
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Figure 6: Monetary Policy versus Non-Monetary Policy Shocks

Let us begin by discussing the point-wise mean forecasts. The RC-SVAR predicted an

earlier-than-realized lift-off for the federal funds rate: the model expected the funds rate to

be nearly 0.6 percent by the end of 2021. This projection was associated with a prediction for

output growth of about 4 percent from 2021Q1 until 2021Q4 and a prediction for inflation of

about 3 percent throughout the same forecast horizon. Regarding the shock decomposition,

the cumulative unexpected change in the federal funds rate is driven by expansionary monetary

policy shocks, supporting the view that the monetary policy stance was accommodative and

that the FOMC fell behind the curve during this period. The inflationary consequences of
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these actions can be seen in the cumulative decomposition of the unexpected change in core

inflation: monetary policy shocks on average contributed about 0.6 percentage points to

annualized core inflation during the period under analysis. The remaining and larger share of

the unexpected change in inflation can be attributed to non-monetary policy shocks. Thus,

interestingly, we find that although the Fed was running behind the curve, this was not the

primary factor underlying the inflation run-up. The relative contribution of monetary policy

shocks to the unexpected change in the output growth rate by the end of the forecast horizon

(2021Q4) is relatively small.

7 Conclusion

The theory developed in this paper can be extended in multiple directions. First, it offers

a path forward to researchers interested in conducting empirical work using time-varying

SVARs with priors that assign the same density to observationally equivalent sequences of

structural parameters. Second, the techniques can be adapted to consider zero restrictions,

provided that one considers the volume elements when inducing priors over sequences of

structural parameters. This extension is not straightforward since these volume elements are

more intricate than the constant parameters case considered by Arias et al. (2018). Third,

exploring the role of inference about the fixed parameters is another interesting line of research.

Finally, given that our methodology is compatible with a wide range of time-varying models,

it could be fruitful to conduct marginal likelihood comparisons across them conditional on

the identifying restrictions.

8 Data Availability

The data and code underlying this research is available on Zenodo at https://doi.org/10.

5281/zenodo.15102165.
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Appendix

A Proofs

Proof of Proposition 1. The likelihood is given by p((yt)
T
t=1 ∣ (At,Ft)

T
t=1,ϕ) = ∏

T
t=1 p(yt ∣

xt,At,Ft), where p(yt ∣ xt,At,Ft) is Gaussian with mean x′tFtA
−1
t and variance (AtA

′
t)
−1.

So, if there exists (Qt)
T
t=1 ∈ O

T
n such that (Ãt, F̃t)

T
t=1 = (AtQt,FtQt)

T
t=1, then the likelihoods at

((At,Ft)
T
t=1,ϕ) and ((Ãt, F̃t)

T
t=1, ϕ̃) are equal for all (yt)

T
t=1. Thus, (At,Ft)

T
t=1 and (Ãt, F̃t)

T
t=1

are observationally equivalent. Now assume that (At,Ft)
T
t=1 and (Ãt, F̃t)

T
t=1 are observationally

equivalent. Again, because p(yt ∣ xt,At,Ft) is Gaussian with mean x′tFtA
−1
t and variance

(AtA
′
t)
−1 and p(yt ∣ xt, Ãt, F̃t) is Gaussian with mean x′t F̃tÃ

−1
t and variance (ÃtÃ

′
t)
−1, it

must be the case that (AtA
′
t)
−1 = (ÃtÃ

′
t)
−1 and x′tFtA

−1
t = x

′
t F̃tÃ

−1
t . The former implies

that (A−1t Ãt)(A
−1
t Ãt)

′ = In, so that Qt ≡ A−1t Ãt ∈ On, or equivalently, Ãt = AtQt, for
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Qt ∈ On and 1 ≤ t ≤ T . The latter implies that it must be the case that x′t(FtQt −F̃t) = 0

for almost every xt. Because, the support of the initial conditions, (y0,⋯,y1−p), is full, the

span of the support of x1 is all of Rm. Thus, the span of the support of xt is all of Rm, for

1 ≤ t ≤ T . Thus, F̃t = FtQt for 1 ≤ t ≤ T .

Proof of Proposition 2. To prove the proposition, we will show that the priors over the time-

varying structural parameters implied by models with heteroskedastic structural shocks do

not satisfy Equation (3). Implicit in Equation (3) is the fact that if pS((At,Ft)
T
t=1 ∣ ϕ) > 0,

then pS((AtQt,FtQt)
T
t=1 ∣ ϕ) > 0, for every (Qt)

T
t=1 ∈ O

T
n . For models with heteroskedastic

structural shocks, the prior pS((At,Ft)
T
t=1 ∣ ϕ) must be zero unless there exists A, F, and

a sequence of diagonal matrices with positive diagonal, (Ψt)
T
t=1, such that (At,Ft)

T
t=1 =

(AΨ
− 1

2
t ,FΨ

− 1
2

t )
T
t=1. In particular, if the prior is positive then it must be the case that

A−11 At = Ψ
1
2
1 Ψ

− 1
2

t is diagonal for 1 ≤ t ≤ T . Suppose that pS((AΨ
− 1

2
t ,FΨ

− 1
2

t )
T
t=1) > 0.

Let (Qt)
T
t=1 ∈ O

T
n be any sequence such that Q1 ∈ On is not diagonal and Qt = In, for

2 ≤ t ≤ T . It cannot be the case that pS((AΨ
− 1

2
t Qt,FΨ

− 1
2

t Qt)
T
t=1) > 0 because, for 2 ≤ t ≤ T ,

(AΨ
− 1

2
1 Q1)

−1(AΨ
− 1

2
t Qt) =Q

′
1Ψ

1
2
1 Ψ

− 1
2

t , which is not diagonal.

Proof of Proposition 3. Because vf−1
h
((Bt,Σt,Qt)

T
t=1) does not depend on (Qt)

T
t=1, the condi-

tional prior pS((At,Ft)
T
t=1 ∣ ϕ) satisfies Equation (3) if and only if the equivalent conditional

prior pR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) satisfies pR((Bt,Σt,Qt)

T
t=1 ∣ ϕ) = pR((Bt,Σt,QtPt)

T
t=1 ∣ ϕ), for

every (Pt)
T
t=1 ∈ O

T
n . The result follows because the Equation is satisfied if and only if

pR((Bt,Σt,Qt)
T
t=1 ∣ ϕ) does not depend on (Qt)

T
t=1.

B Data References

The U.S. Bureau of Economic Analysis, Real Gross Domestic Product [GDPC1], retrieved

from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GDPC1,

September 9, 2023. U.S. Bureau of Economic Analysis, Personal Consumption Expendi-

tures Excluding Food and Energy (Chain-Type Price Index) [PCEPILFE], retrieved from

FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PCEPILFE,

September 9, 2023. Board of Governors of the Federal Reserve System (US), Federal Funds

Effective Rate [FEDFUNDS], retrieved from FRED, Federal Reserve Bank of St. Louis;
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https://fred.stlouisfed.org/series/FEDFUNDS, September 9, 2023. Board of Governors of the

Federal Reserve System (US), M2 [M2SL], retrieved from FRED, Federal Reserve Bank of St.

Louis; https://fred.stlouisfed.org/series/M2SL, September 9, 2023. Federal Reserve Bank

of St. Louis, Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year

Treasury Constant Maturity [BAA10YM], retrieved from FRED, Federal Reserve Bank of St.

Louis; https://fred.stlouisfed.org/series/BAA10YM, September 9, 2023.

C Prior over ϕRC

This section summarizes the model constant parameters and describes our prior over ϕRC .

For ease of exposition, we partition ϕRC into fixed constant parameters ϕRC
F and estimated

constant parameters ϕRC
E , that is ϕRC = (ϕRC

F ,ϕRC
E ). The parameters in ϕRC

E depend on

hyperparameters, which we denote by ψRC . Table C.1 summarizes the parameters and

hyperparameters of the RC-SVAR. Next, we turn to the details.

Table C.1: Model Parameters

Fixed Constant Parameters: ϕRC
F

mβ1 Expected value of β1.
Vβ1 Variance of β1.
mδ1 Expected value of δ1.
Vδ1 Variance of δ1.
mγ1 Expected value of γ1.
Vγ1 Variance of γ1.
Estimated Constant Parameters: ϕRC

E

Vβ Variance of the innovations to βt.
Vδ Variance of the innovations to δt.
Vγ Variance of the innovations to γt.
Hyperparameters: ψRC

ν̄β Degrees of freedom of the prior for Vβ.
k̄β Scaling factor for the scale matrix of the prior for Vβ.
ν̄δ Shape parameter of the prior for Vδ,i for i = 1, . . . , n.
k̄δ Scaling factor for scale parameter of the prior for Vδ,i for i = 1, . . . , n.
ν̄γ Shape parameter of the prior for Vγ,i for i = 1, . . . , nγ.
k̄γ Scaling factor for scale parameter of the prior for Vγ,i for i = 1, . . . , nγ.

The prior over ϕRC
F will be Dirac. This assumption can be relaxed at the cost of increased

computation time. To set a value for ϕRC
F , we set mβ1 equal to the maximum likelihood
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estimate of a constant parameter VAR with the same variables and lags based on the first

T0 = 40 observations available in our sample. We denote such an estimate by B̂. We set Vβ1

equal to 4 times the unbiased estimator for the variance of B̂, as in Primiceri (2005). To set

the values for mδ1 , mγ1 , Vδ1 and Vγ1 , first it will be useful to let Σ̂ denote the maximum

likelihood estimate of the variance of the reduced-form residuals of the constant parameter

VAR mentioned above, and second to define the following mapping between vech(Σ̂)—

where the vech operator stacks the elements on and below the main diagonal of a square

matrix—and (δ1,γ1) ∶ g (vech(Σ̂)) =

⎛
⎜
⎜
⎝

2log (diag(D̂))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δ1

,vecl(log Ĉ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γ1

⎞
⎟
⎟
⎠

, where Ĉ = D̂
−1
Σ̂D̂

−1
,

D̂ = (diag(diag(Σ̂)))
1
2 , Σ̂ = (vec(In)′ ⊗ In) (In ⊗ (Dn vech(Σ̂))), and Dn is a n2 ×

n(n+1)
2

duplication matrix such that vec(Σ̂) =Dn vech(Σ̂). By Proposition 3.4 of Lütkepohl (2007),

√
T (vech(Σ̂) − vech(Σ)) → N(0,2D+n (Σ⊗Σ)D+′n )

where D+n is the Moore-Penrose generalized inverse of the duplication matrix Dn. Then, by

the Delta Method,
√
T (g (vech(Σ̂)) − g (vech(Σ))) → N(0,Dg(Σ)2D

+
n (Σ⊗Σ)D+′n Dg(Σ)′)

where Dg (Σ) =
∂g(vech(Σ))
∂vech(Σ) . Let Vg(vech(Σ̂))(Σ) =

Dg(Σ)2D+n(Σ⊗Σ)D+′n Dg(Σ)′
T . Thus, mδ1 =

2log (diag(D̂)), mγ1 = vecl(log Ĉ)

Vδ1 = 4 [ In 0n,nγ
]Vg(vech(Σ̂))(Σ̂)

⎡
⎢
⎢
⎢
⎢
⎣

In

0nγ ,n

⎤
⎥
⎥
⎥
⎥
⎦

, and Vγ1 = 4 [ 0nγ ,n Inγ
]Vg(vech(Σ̂))(Σ̂)

⎡
⎢
⎢
⎢
⎢
⎣

Inγ

0n,nγ

⎤
⎥
⎥
⎥
⎥
⎦

where Is is the identity matrix of dimension s×s and 0s1,s2 is a matrix of zeros of dimension s1×

s2. The prior over ϕRC
E , i.e., p(ϕRC

E ∣ ϕRC
F ,ψRC), is as follows: Vβ ∼ IW(ν̄βk̄2βVβ1 , ν̄β), Vδ,i ∼

IG( ν̄δ2 ,
ν̄δ k̄

2
δ(e

′

i,nVδ1
ei,n)

2 ) for i = 1, . . . , n, and Vγ,i ∼ IG(
ν̄γ
2 ,

ν̄γ k̄2γ(e′i,nγ
Vγ1ei,nγ )
2 ) for i = 1, . . . , nγ

where ei,x denotes the i -th column of an identity matrix of dimension x. The scale pa-

rameters are chosen to be constant fractions of the maximum likelihood estimate variances

of the corresponding subsample. In particular, k̄β = 0.01 and k̄δ = k̄γ = 0.1. We choose the

fractions to be larger for Vδ,i and Vγ,i. This choice reflects our prior belief that most of the

time variation is on the variance of the reduced-form innovations (see, for example Sims and

Zha, 2006b). The shape parameters are chosen to be the smallest natural number such that
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the densities are defined. The degrees of freedom, ν̄β, are set equal to 105 so that the degrees

of freedom per parameter in our model are equivalent to the ones in Primiceri (2005). As a

consequence, the priors are as diffuse and uninformative as possible (see Primiceri, 2005, for

a similar motivation).
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