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Abstract

We evaluate the efficiency of dynamic linked environmental regulation. Linked regulation
allows inspectors who uncover violations at one plant to increase future enforcement at other
plants that share a common owner. When compliance costs are correlated, regulators can then
target scarce enforcement resources towards bad actors without inspecting everyone. We de-
velop an empirical framework of dynamic moral hazard under linked regulation that allows for
large portfolios of plants and for choices to be interdependent within the portfolio of plants and
across time. Using the framework we evaluate a linked regulation scheme in Texas and find
that linked regulation performs substantially better than both unlinked regulation and untar-
geted regulation. We test two alternative theoretical mechanisms that underpin the benefit—a
“firm-wide moral hazard mechanism” and a “correlated targeting mechanism”—and find that
a large share of the value of linked regulation is due to the former.
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1 Introduction

Environmental regulation covers a wide swath of industrial activity, but its effectiveness is ham-

pered by two key complications. First, incomplete information necessitates that regulators in-

spect plants to uncover violations. Second, this monitoring—and sometimes the enforcement of

penalties—is costly, and regulators only have limited budgets. As a result, a central question for

regulators is how to target their enforcement efficiently. This question is particularly important

because of the sheer scale of environmental enforcement in the United States: over 60,000 plants

are subject to federal hazardous waste regulation alone, with 80% of the U.S. population living

within three miles of a regulated facility [EPA [2015]]. More generally, inspections are widely

used in regulatory enforcement e.g. OSHA plant safety [OSHA [2024]], SEC enforcement actions

[Government Accountability Office [2018]], accounting violations [PCAOB [n.d.]], and restaurant

hygiene [Jin and Leslie [2009]].

One common form of targeting involves linked regulation, where regulators dynamically target

plants that are co-owned with other plants that have a history of committing violations. If the costs

of pollution abatement are correlated within a multi-plant firm—for example, through managerial

practices at commonly owned plants—inspecting one plant may be informative about the firm’s

other plants. Linked regulation leverages this correlation through two theoretical mechanisms. The

first is a “correlated targeting mechanism”, where the links provide useful information about where

next to investigate. The second is a “firm-wide moral hazard mechanism”, where the regulator can

punish a common owner for bad behavior.

Although linked regulation is a widespread feature of enforcement design, little is known about

whether it adds value in practice.1 This paper aims to fill that gap. Overall, we answer the question:

how effective is linked regulation? To do this, we build a new empirical framework of dynamic,

linked regulation and estimate it using data from a linked enforcement regime in Texas. Our

framework allows us to go beyond a simple quantification of the benefits of linked regulation;

we are also able to test the extent to which each of the two theoretical mechanisms account for
1Other linked environmental regulations include the EPA’s MACT standards [EPA [2005]]. Non-environmental

linked regulations include Occupational Safety and Health Administration (OSHA) regulation [OSHA] There are
debates about whether linked regulation should occur in, for example, nursing home regulation [Abramo and Lehman
[2015]].
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its effectiveness. Doing so is crucial to understanding how linked regulation would fare in other

settings. For example, the firm-wide moral hazard mechanism relies partially on the regulator’s

ability to commit to a policy; the correlated targeting effect does not rely on commitment.

In our framework, firms have private information about abatement costs, which may be correlated

across the plants in their portfolios, and they choose negligent polluting actions that are hidden

from the regulator, i.e., there is moral hazard. Our framework accommodates large portfolios

of plants and exploits novel data that includes compliance scores, inspections, violations, and

pollution, for the universe of plants subject to environmental regulation in Texas. Our estimates

show that linking significantly outperforms unlinked regulation (targeting at the plant level), as

well as untargeted regulation.

We find that the dominant mechanism driving the value of linked regulation is the firm-wide moral

hazard effect, with the correlated targeting effect playing a smaller role. This finding has impli-

cations beyond the setting of this paper since many group incentive structures in environmental

protection and natural resource management rely on similar mechanisms to the firm-wide moral

hazard effect [Segerson [2022]]. Specifically, it suggests that these group incentive structures may

be successful more generally.

The Texas Commission on Environmental Quality provides an ideal research setting as it uses

linked regulation to enforce the Clean Water Act and the Resource Conservation and Recovery Act,

which governs hazardous waste. Texas’s regulation regime involves a two-dimensional scoring

system that includes a plant-specific score, which reflects individual plants’ compliance history,

and a firm-wide score, which reflects the compliance history of all plants owned by the same firm.

The plant score allows the regulator to increase its regulatory pressure on plants suspected to be

non-compliant with the laws, and the firm-wide score allows the regulator to increase pressure on

co-owned plants that may also be non-compliant, without having to inspect every plant.

Linked regulation belongs to a class of enforcement mechanisms known as “escalation mecha-

nisms”. An escalation mechanism involves penalizing worse offenders more than non-offenders

per additional violation. The efficiency of escalation mechanisms has been supported both theoreti-

cally [Mookherjee and Png [1994], Polinsky and Shavell [1998]] and empirically in the single-plant
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case [Blundell et al. [2020]].2 Furthermore, the notion that a principal will optimally condition its

policy towards one agent on the actions of other agents when types are correlated is widespread in

the mechanism design literature [Crémer and McLean [1988], McAfee and Reny [1992]].

Our data are an unbalanced panel of 7379 plants regulated by the Texas Commission on Environ-

mental Quality under the Resource Conservation and Recovery Act and/or the Clean Water Act

from 2012-2020. We observe detailed information about each plant, including the firm ownership

network, scores, each environmental inspection, whether the inspection detected a violation, penal-

ties incurred, and pollution. For the analysis, we aggregate the data to the year-plant level. The

average plant is linked to a portfolio of approximately three other plants, but this average masks

substantial heterogeneity in portfolio size: some firms own large portfolios of more than 40 plants.

We begin the empirical analysis by documenting that Texas’s scoring rules are an effective means

of dynamic linked deterrence. We first show suggestive evidence that pollution abatement costs

are correlated within-firm: violations at one plant are correlated with violations by other plants

owned by the same firm. We then show that inspections target plants with higher plant-level and

firm-level scores (note that higher scores in this setting imply that a plant or owner has a poorer

environmental record). Furthermore, conditional on plant fixed effects, higher probabilities of

inspection are associated with fewer violations, evidence that the scores are an effective means of

deterrence.

We next develop and estimate a model of dynamic, linked regulation to assess counterfactual reg-

ulatory schemes. In our model, plants are endowed with a private type that governs how costly it

is for them to reduce their pollution. This type may be correlated with the types of other plants

owned by the same firm due to the presence of bad managers.3 Our model also allows for observed

heterogeneity (i.e., plants in different industry sectors).

The regulator assigns plant-specific and firm-wide scores to these plants based on what it learns by

inspecting these plants. At the outset, the regulator publicly commits to a policy that maps scores

and plant characteristics to a probability of inspection in a given period. Inspections reveal viola-

2We discuss in the related literature section in more detail about how we build on the insights from Blundell,
Gowrisankaran, and Langer [2020].

3Types may be correlated for other reasons. Our analysis remains valid so long as this correlation structure is
unaffected by the regulator’s policy rule.
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tions, which translate into penalties and update scores. Firms choose polluting actions optimally

across each plant by trading off present benefits of negligence against the cost of present-period

penalties, future escalations, and cross-plant linkages. In equilibrium, optimal firm behavior gives

rise to a steady-state distribution of actions and scores. On the regulator’s side, different sectors

have different perceived marginal social harms of pollution (as well as actual social harms), and

regulators allocate their inspections across sectors accordingly.

Estimation is complicated by the curse of dimensionality. Fully solving the dynamic model is

computationally infeasible: due to the scoring rule, optimal actions at each plant are a function of

the state at every other commonly-owned plant, and some firms have large portfolios leading to a

large state space. We use continuation value sufficiency, an assumption similar to inclusive value

sufficiency in Gowrisankaran and Rysman [2012], as a way to circumvent this problem. Under

continuation value sufficiency, the plant only keeps track of its own plant-level score and the firm-

level score and accounts for the continuation value of choosing an action for all other plants owned

by the same firm as a scalar-valued function that approximates the true continuation value from the

full model. We finally recover the relative social costs of pollution, by sector, by leveraging the

optimality of the allocation of inspections across sectors.

We use our estimates to examine the efficiency of linked regulation. Motivated by the limited

enforcement budget of the regulator, we simulate an increase in the budget that would increase the

probability of inspecting each plant by an average of 10 percentage points. We explore how this

increase would add value. We consider allocations of inspections under four different scenarios. In

the base case, all additional inspections are not targeted based on scores. In the other three cases,

inspections are targeted based on plant scores, based on firm scores, and a 50/50 mix of plant and

firm scores.

We show that linked escalations perform best, followed by a 50/50 mix, then unlinked escalations,

with untargeted inspections worst. Our main results focus on the effects on multi-plant firms,

which are the primary target of linked regulation. For these firms, a 10 percentage point increase

in the budget devoted to unlinked escalations lowers perceived social costs of pollution by 55.3%

compared to a 10 percentage point increase in untargeted inspections. Linked escalations do sub-

stantially better, lowering perceived social costs of pollution by 76.2% compared to untargeted
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inspections. Our results are robust to using more direct measures of pollution, rather than using

the regulator’s estimated “perceived” social costs.

Decomposing the total effects into the two channels, we find that the “correlated targeting” effect

is significant, and reduces the perceived social costs of pollution by 8.7%. However, a large share

of the benefits to linked regulation is due to the “firm-wide moral hazard” channel which reduces

the perceived social costs of pollution by 67.5%.

We also provide results including single-plant firms and show that the overall results are not due

to a reallocation of enforcement resources from single-plant to multi-plant firms. Additional coun-

terfactuals evaluate the efficiency of random crackdowns and alternative scoring rules that record

longer histories of violations.

Contributions We make three main contributions in this paper. First, we construct a novel dataset

of compliance scores, regulatory inspections, violations, penalties, and pollution, for the 7379

plants regulated under the Resource Conservation and Recovery Act or the Clean Water Act in

Texas from 2012-2020. A novel feature of the data in our setting (as compared to recent papers

in the literature) is that we directly observe the multi-dimensional score that the regulator uses to

target inspections and penalties at each plant. The availability of this scoring data—as well as a

clearly defined algorithm for how the score is updated—allows us to estimate the model without

having to infer the score evolution from inspection and violation histories, which would require

strong assumptions to maintain tractability.

The second contribution is that we build a new empirical framework to study dynamic linked

regulation. The framework combines elements of the moral hazard literature and the dynamic

discrete choice literature. While other work has studied dynamic escalation mechanisms based

on the compliance history of a single plant over time (e.g. Blundell, Gowrisankaran, and Langer

[2020]), our framework allows for large portfolios of plants and for choices to be interdependent

within the portfolio of plants and across time.

The third contribution is a set of new findings about the efficiency of dynamic linked regulation,

including counterfactual regulatory designs. Our findings show that linked regulation can present

a significant improvement over escalation at the plant level, which is already an improvement over
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untargeted inspections.

As well as the previously discussed cases where linked regulation is used, there are also numer-

ous examples where firm-based risk scoring is not used to regulate multi-plant firms but where

implementing it could add substantial value. A prime example is where firm ownership crosses

state borders. For instance, expanding linked regulation by using information on co-owned plants

outside Texas could potentially improve Texas’s scoring regime. More generally, in the US, firms

have polluting facilities located across 10 EPA regions and 50 states, but enforcement is rarely

coordinated, as has been studied extensively in the literature on environmental federalism [Mil-

limet, 2014]. Overall, the results in this paper illustrate another downside of delegating legislation

like the CWA and RCRA to states: the lost precision in targeting enforcement resources due to

dispersed information about firm types compared to a more centralized linked regime.

1.1 Related literature

This paper is related to several strands of literature. The first is the literature that empirically es-

timates structural models of environmental regulation, to study alternative policy designs. Closest

to this paper is Blundell, Gowrisankaran, and Langer [2020], who estimate a dynamic model of

EPA’s enforcement of the Clean Air Act and illustrate how escalation mechanisms can add value in

the single-plant case. Our model nests the idea that single-plant escalations can add value, but the

major distinction of our paper is that we focus on designing regulation that incorporates dynamic

linkages that leverage correlated types within commonly-owned portfolios.4

The second strand is the broader literature on environmental regulation e.g. Colmer, Evans, and

Shimshack [2023], Shimshack and Ward [2022], and Blundell, Evans, and Stafford [2021]. Both

Gibson [2019] and Rijal and Khanna [2020] document pollution substitution within multi-plant

firms from plants regulated under the Clean Air Act. This channel would tend to result in additional

benefits to linked regulation. However, we do not model this channel in our application which

focuses on different regulation; instead, we argue that reallocation does not seem to be empirically

important in Online Appendix 3.1.

4There are also some other key differences. For example, our model views firms as facing a hidden action/moral
hazard problem (which we argue is the primary margin of response for firms regulated under the Clean Water Act and
the Resource Conservation and Recovery Act), while Blundell et al. [2020] focus on the decision to invest in clean
technology (which is the primary margin of response for firms under the Clean Air Act). Furthermore, we estimate the
regulator’s objective function.
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The third strand is the empirical literature that documents the importance of firm management in

decision-making, and the consequences more broadly for understanding markets and policy. Scur

et al. [2021] provide a non-technical summary of an influential series of papers in this literature.

Giardili et al. [Forthcoming], Bloom et al. [2019], and Goldfarb and Xiao [2011] document the

importance of firm management—as opposed to the underlying physical technology of plants—as

a key driver of firm outcomes. Our paper complements these findings, and highlights the relevance

of firm management for designing optimal regulation, as well as providing an estimable framework

that explicitly incorporates ownership linkages across plants.

Finally, this paper is related to the theory literature on deterrence. This literature includes papers

about the optimal design of deterrence mechanisms such as [Mookherjee and Png [1994], Polin-

sky and Shavell [1998]]. Many of these papers find that escalation mechanisms— whereby the

marginal penalty faced by the most egregious or repeat offenders is higher— are optimal. The

reasons for escalation mechanisms are varied and include limited liability constraints (a feature of

Mookherjee and Png [1994]), costly enforcement (as in Polinsky and Shavell [1998]), and a pos-

itive relationship between agents’ cost of compliance and the responsiveness to greater penalties.

There is also some theoretical work on how to optimally inspect in the presence of firm dynamics,

e.g. Varas et al. [2020].

2 Context

In this paper, we focus on environmental violations subject to the Resource Conservation and

Recovery Act and the Clean Water Act. The Resource Conservation and Recovery Act (RCRA)

governs the safe “generation, transportation, treatment, storage, and disposal of hazardous wastes”,

where “hazardous wastes” range from nuclear material to oil from deep fat fryers. The Clean Wa-

ter Act governs water pollution. Although both laws are federal, the Environmental Protection

Agency delegates enforcement to states. In Texas, the Texas Commission on Environmental Qual-

ity (TCEQ) is the primary governing body that administers these regulations.

2.1 Details about regulated agents, violations, and inspections

What is a plant? We use the term “plant” to describe what the regulator calls “sites”: specific

geographical locations where regulated behavior takes place. We define a site according to the
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TCEQ’s “RN” identifier. In our data, examples of plants are dry cleaners, gas stations, and conve-

nience stores. For example, a gas station may have an underground petroleum tank which would

be regulated under RCRA. There is substantial overlap between facilities that are regulated under

RCRA and Clean Water Act (and the regulator aggregates violations under both laws to determine

enforcement decisions) so we consider plants regulated under both laws together.

We proxy for observable plant heterogeneity using the industry according to its NAICS code

(concretely, we classify plants into utility, services, manufacturing, resources, transportation, and

trade). To foreshadow, later in the paper and the model we also incorporate unobserved plant het-

erogeneity by allowing for different compliance costs within a sector which are private information

to firms. One may ask whether plants might be differentiated on other observable dimensions (for

example Blundell, Gowrisankaran, and Langer [2020] allow for plant types to depend on the geo-

graphical region). However, in Section 3.2 we empirically investigate this by testing for whether

geographical regions and other potentially observable characteristics are relevant to how the regu-

lator targets inspections. Ultimately, we do not find that the regulator uses these characteristics to

target regulation.

What is a firm? A firm is the owner of a portfolio of plants and we define a firm using the TCEQ’s

“CN” identifier. Sometimes the “firm” in our data is just the name of the person who owns the

business; when this is not the case we often see an individual person responsible for compliance in

the firm listed across the permits for the plants. As a result, we view the organizational structure

of a typical firm as quite simple: they have a flat structure and operate a collection of plants

with different compliance costs.5 Note that there is substantial heterogeneity in these portfolios of

plants. For example, firm portfolios can contain varying numbers of plants, and within a portfolio,

plants can differ in their industry sector as well as their (unobserved) plant-specific compliance

costs.

What is an inspection? Inspections are typically on-site, although it is possible for the regulator

to conduct inspections virtually. Inspections can be untargeted (i.e. a plant with a clean record may

still be inspected) or through the history of violations at the plant or co-owned plants. The regulator

5Consistent with this, the structure of a “firm” is quite simple in our model as well, abstracting away from delega-
tion, etc.
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also allows for inspections to be triggered by public complaints, but the regulator allocates less than

5% of its total inspections as a response to complaints [TCEQ, 2022]. We therefore abstract away

from this channel later in the model. One may ask whether distance/remoteness plays a role in

which plants get inspected. However, the TCEQ structure guards against this: it is split into 16

operating regions with inspectors drawn from local offices, so inspectors do not need to travel great

distances.

What is a violation? Most of the violations of the regulations that we study are “process viola-

tions” such as deviations from the correct management process for storing toxic waste. As a result,

we often do not see in the data an associated specific environmental harm with each violation (like

a spill, or a leak into groundwater). Rather, the regulator penalizes and corrects these violations

because they run a potential risk of a high-magnitude environmental harm event occurring.

These violations usually cannot be remedied through, for example, a technological investment.

Instead, firms must maintain continuous effort and attention to ensure that these management prac-

tices are followed properly. We proxy for the gravity of bad management practices through mul-

tiple violations discovered at the same facility during an inspection; the rationale behind this is

that empirically total penalties in the data scale approximately linearly in the number of detected

violations, as we document in the Online Appendix in Table A-13.

The regulator can also detect violations by means other than inspections, for example through

continuous monitoring or self-reported violations (see Shimshack and Ward [2022] for more details

about these violations). We allow for this possibility in the model and therefore the overall results.

2.2 How does Texas perform environmental enforcement?

Texas uses a “risk-based system” to determine inspections of firms and assess penalties (such

as fines). A risk-based system means that, due to limited resources that preclude inspecting all

firms regularly, the regulator needs to carefully target enforcement. For example, the 2012 Sunset

Commission reports that “the agency has implemented risk-based approaches to attempt to use its

available resources wisely and on the most serious environmental concerns”.

The regulator determines the “risk” of each plant through a two-dimensional scoring system based

on the compliance history of each plant and firm. The first score is a “site rating” which we refer to
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as the “plant score”. This score captures the history of violations at a particular geographical site.

The second score is a “person rating” which we refer to as the “firm score”. This score aggregates

the plant scores over the portfolio of plants that are owned by the same firm.

Plant score The plant score combines the past five years of violations and inspections at a par-

ticular site into a one-dimensional index. We detail the exact scoring algorithm that the regulator

uses in Online Appendix Section 1. Overall, the score indicates how “far from compliance” a par-

ticular site is. A plant with a clean record will have a score of 0.0. Higher scores indicate worse

compliance histories. Note that older violations are discounted and erased from the score after five

years. Therefore, if no violations are detected at a plant then over time the score eventually resets

to 0.0.6

Complexity points The regulator normalizes plant scores by “complexity points” when making

enforcement decisions. Adjustments for complexity points were introduced because there is het-

erogeneity in terms of, for example, the sector to which the plant belongs. Complexity points

allow different types of plants to be compared under the same rating system. For example, a fa-

cility in one sector may mechanically generate more violations than another sector; adjusting by

complexity points allows for the scores to be comparable.

Firm score The firm score is the average of all the plant scores, weighted by the complexity

points. Denote Jf as the set of plants that are part of firm f . Denote sj as the score of plant j and

Qj as the corresponding complexity points of plant j. Then, the firm-wide score is computed as

follows:

sf =

∑
j∈Jf

Qjsj∑
j∈Jf

Qj

(1)

Note that for a single-plant firm, the firm score will be equal to the plant score by construction.

However, complexity points are still incorporated, since violations are pre-adjusted by dividing by

complexity points before they enter into the plant score. This is illustrated in the TCEQ’s algorithm

6Although the focus of the scores is past violations, the scoring rule detailed in Online Appendix Section 1 shows
that—in principle—scores can also be affected by other considerations like whether a plant “participated in a self-
audit”. In practice, as we explain further in Online Appendix Section 1.1, it is extremely rare for firms in our dataset
to take these actions. As a result, we abstract away from their effect on scores later in our modeling framework to keep
the empirical model tractable.
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in Online Appendix Section 1.

Inspections and penalties The regulator escalates inspections and penalties based on the scores

sj and sf . We discuss how inspections escalate with scores in Section 3. The penalties are escalated

using the following rule:

Penalty = Base Penalty × Plant Escalation × Firm Escalation (2)

where the Plant Escalation is a function of sj and the Firm Escalation is a function of sf . The

base penalty depends on the gravity of the violation. After determining the base penalty, the total

penalty is then escalated based on the compliance scores.7 It is important to note that the firm

score affects all of the plants in a firm’s portfolio. Therefore, even small changes in firm scores are

amplified across many plants and so can potentially be quite costly to the firm, resulting in large

deterrence effects. The plant escalations are also increasing in the scores.

2.3 Data

Our data are an unbalanced panel of the universe of plants regulated in Texas under RCRA and

the Clean Water Act from 2012-2020. There are 7379 plants across 5345 firms in our dataset. We

observe extremely detailed information about each plant, including the firm, each environmental

inspection, whether the inspection detected a violation, the nature of the violation, and the mone-

tary penalty that was incurred. We map violations to pollution using an index; we detail the steps

used to create this index in Online Appendix 2.2. For the analysis, we aggregate the data to the

year-plant level.8

Table 1 contains information about key summary statistics in the data. Due to the long right tail of

plant scores and firm-wide scores, we transform these variables using a log(1+ x) transformation.

Here, a value of 0 corresponds to the lowest score possible, which implies a clean compliance

history with no violations in the past five years.

Overall, the probability that the average plant is inspected each year is 0.31. The fact that in-

7The firm escalations are: Firm Escalation = 0.9 if the firm is a “high performer” (sf ∈ [0, 0.1)),
Firm Escalation = 1.0 if the firm is a “satisfactory performer” (sf ∈ [0.1, 55)) and Firm Escalation = 1.1 if the
firm is an “unsatisfactory performer” (sf ∈ [55,∞)).

8Scores are updated in November, so we define the start/end to each “year” as November 1st.

12



Table 1: Summary statistics

Percentiles

Variable N Mean Std. dev. 1 99

Log(1 + plant score) 50864 0.66 1.04 0 4.23
Log(1 + firm score) 50864 0.79 1.01 0 4.19
Inspection 50864 0.31 0.46 0 1
# Violations 50864 0.71 3.10 0 16
# Plants in portfolio 50864 3.25 5.89 1 40
Env. justice score 50864 0.44 0.18 0.09 0.87

spections occur infrequently is consistent with inspections being costly to the regulator. It is quite

common for these inspections to uncover violations: on average, around 2 violations are discovered

for each inspection. Note that a very small percentage (3.5 percent) of inspections are conducted

by the federal EPA rather than the TCEQ. We choose to retain these inspections in the dataset,

since these inspections may be relevant to firms’ actions. We discuss in greater detail in Online

Appendix 3.3 that this decision has minimal effects on the descriptive results, estimation, and

counterfactual findings.

The average portfolio size is 3.25.9 This average masks substantial heterogeneity in portfolio size:

while the largest portfolio consists of 43 plants, single-plant firms are also present in the data.

Finally, the environmental justice index is an EPA measure that averages a census block’s percent

people of color and low-income percentage in the census tract where the plant is located.

3 Descriptive analysis

We now provide several pieces of descriptive evidence illustrating how linked regulation operates

in practice in our setting. First, commonly-owned plants’ violations per inspection are correlated,

suggesting that costs of compliance with regulations (i.e., plant “types”) are correlated. Second,

regulators selectively target their inspections toward bad actors. Third, we show evidence of moral

hazard: firms respond to increased regulation by decreasing their pollution.
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Figure 1: Binscatter of violations per inspection at one plant vs other co-owned plants
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Note: 95% confidence intervals plotted around each bin.

3.1 Violations are correlated within commonly-managed plants

In Figure 1 we show that violations per inspection of a given plant are correlated with violations

per inspection of other plants of the same firm. The horizontal axis of the figure is the logarithm of

the average number of violations per inspection at plant j over the course of the panel. The vertical

axis shows the logarithm of average number of violations per inspection at all other plants owned

by the same firm as plant j, leaving out plant j itself.

The positive correlation in Figure 1 suggests that plants’ pollution mitigation actions are correlated

with the actions of other co-owned plants (note that the exact correlation is 0.504). As we show

in Table A-14 of the Online Appendix, this positive correlation is robust to controls for observable

plant characteristics. Actions are endogenous, so we would ideally show that plants’ pollution

mitigation costs are correlated with other co-owned plants’ costs, but these costs are not observed.

9Note that the percentage of plants in multi-plant firms is 41.2%. Furthermore, we observe multi-plant firms for
7.1 years on average, and single-plant firms for 6.7 years on average.
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The correlation in costs is likely to be higher than the correlation in actions under this regulatory

scheme. If commonly-owned plants A and B both have high costs of abatement, and plant A

commits violations causing its score to increase, then plant B will be deterred from committing

violations. This will attenuate the correlation between violations at plant A and plant B.

3.2 The regulator targets inspections based on linkages

Next, we show that inspections are targeted toward bad actors. To identify which plant charac-

teristics predict inspection, we report the results from logit regressions where the binary outcome

is whether a plant is inspected in Table 2. We condition on year and NAICS sector fixed effects.

Plants with higher scores, reflecting more past violations, are more likely to be inspected. This

is true of both plant-level and firm-wide scores. Specification (1) implies the average plant with

a clean record is inspected 28% of the time. For the same plant with a “bad” record (at the top

percentile of firm and plant scores) the probability of inspection is escalated to 44%.

The magnitude of these effects does not change substantially when we include the environmental

justice index for each plant (specification (2)) or when we include fixed effects for each of the

sixteen enforcement regions of TCEQ (specification (3)). Though the log-likelihood is higher, by

construction, when we include these additional controls, the gain is small. We therefore use the

more parsimonious specification (1) as our main specification of the inspector’s policy function.

3.3 Evidence of moral hazard and deterrence

Next, we demonstrate that higher scores have the desired effect of deterring plants from polluting.

In Table 3 we report estimates from regressions where the dependent variable is the number of

violations uncovered at a plant and the main independent variable is the predicted probability of

an inspection occurring as determined by specification (1) of Table 2. Specification (1) of Table

3 shows that the probability of inspection does not significantly predict changes in violations.

However, this reflects two opposing effects: on one hand there is a sorting effect where plants with

higher compliance costs have both higher scores and violations, while on the other hand, higher

scores deter plants from violating. Specification (2) eliminates the first effect by including plant

fixed effects. When a plant’s score increases, its violations tend to decrease, consistent with higher

scores having a deterrence effect. The estimate in (2) is still attenuated by the fact that plants

with higher scores are more likely to be inspected and therefore are more likely to have violations
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Table 2: Inspection probability regressions

(1) (2) (3)
Dependent Variable Inspection Inspection Inspection

Log(1+firm score) 0.056 0.056 0.049
(0.018) (0.018) (0.018)

Log(1+plant score) 0.109 0.110 0.111
(0.017) (0.017) (0.017)

Env. justice index - 0.088 -
(-) (0.054) (-)

Year FEs Yes Yes Yes
NAICS category FEs Yes Yes Yes
Region FEs No No Yes

N 50864 50864 50864
Log-likelihood -30706 -30705 -30545

uncovered. We address this in specification (3) by estimating the same specification as in (2) but

using only plant-years where an inspection occurred. Here, the coefficient on plant scores becomes

larger in magnitude. In Table A-12 of the Online Appendix we also show plants that have high

violations, on average, are more responsive to increases in the probability of inspection. This

supports the assumption that—even in a dynamic setting—targeting bad actors is useful because

they are more responsive to regulation.

Using our estimates in this section, it is possible to compute the implied effect of higher scores

Table 3: Deterrence regressions

(1) (2) (3)
Dependent Variable Violations Violations Violations

Pr(Inspection) -0.246 -3.079 -4.229
(0.703) (0.765) (0.750)

Year FEs Yes Yes Yes
Unit FEs Category, Firm Plant Plant
Only Inspected No No Yes

N 38869 33527 10531
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Figure 2: Implied deterrence effect of scores
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Note: Implied effect of a change in plant score, firm score, or both at once, on expected number of
violations, conditional on inspection, for the average firm in our dataset.

on deterring inspections via a higher probability of inspection. We do this using the regression (1)

from Table 2 to compute the probability of inspection at different scores, and then plugging these

probabilities into the regressions in Table 3. We do this separately for the firm-wide score and

the plant-specific score. The results are plotted in Figure 2. Because the plant score has a larger

estimated effect on the probability of being inspected, the deterrence effect of plant scores is larger.

Both, however, yield strong deterrence effects. An increase in scores from a “good” plant with a

clean record at both the plant and firm level, to a “bad” plant with a plant score and firm score in

the top percentile, decreases the expected number of violations by roughly 0.8.

Although these results suggest that a combination of dynamic scoring and targeted inspections

deters plants from polluting, we cannot ascertain a causal relationship from this analysis. For

example, violations are only recorded if a plant is inspected, the expectation of inspection implied

by scores drives a plant’s actions, and inspections are targeted based on scores. These relationships

become even more complicated for multi-plant firms, where firms dynamically trade off the costs
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of mitigation at one plant versus the effects of future harsher regulation across several plants. In

order to disentangle all of these effects, as well as to evaluate the welfare implications of different

regulatory schemes, we estimate a model that explicitly accounts for the objectives of firms and

regulators.

Robustness In the Online Appendix we perform two robustness tests for alternative ways that

firms might respond to the regulation. First, in Online Appendix 3.2 we test for strategic avoid-

ance. Specifically, we test the hypothesis that a devious firm might use the knowledge of what an

inspector looked for in one plant to somehow hide violations at other plants. We focus on firms that

have plants in multiple TCEQ regions, and we exploit that TCEQ inspectors are drawn from the

local regional office, generating plausible variation in the identities of who is inspecting each plant.

Ultimately, we find no evidence of strategic avoidance. Second, we test for production reallocation

in Online Appendix Section 3.1 but we also find no evidence for this.

4 Model

4.1 Outline of model

Our model is a discrete-time dynamic model, with time indexed by t.

Agents. There is a set of firms, F , and a regulator. Each firm owns a portfolio of plants Jf , with

each plant indexed by j. Each plant belongs to industry g(j) and is assigned a type, θj , from

joint distribution Gθ(.) which can include correlated types by firm and industry. The parameter θj

affects a plant’s marginal cost of abatement or, equivalently, its marginal benefit of polluting.

Actions. The regulator chooses an inspection policy at time t = 0 which is fixed over time (com-

mitted) and public.10 We model inspections zjt as a draw from a Bernoulli distribution, and the

regulator chooses the Bernoulli parameter z̄g(j)(sjt, sft). Here, g(j) is the firm industry, sft is

the firm score, and sjt is the plant score. The Bernoulli draws zjt are independent across plants

conditional on industries and scores.

At time t, each firm firm chooses a negligence action ajt for each plant in its portfolio. Higher

10In the empirical application of this paper, it is arguably reasonable to assume that the regulator can commit to a
policy. For example, the scoring rule, penalties, and many other components are codified in the Texas Administrative
Code [2002] and are unchanging over the period of our study.
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actions incur higher pollution and, conditional on plant j being inspected, more violations vjt.

Information structure. The inspection policy z̄g(j)(sjt, sft) is common knowledge. Violations

are common knowledge once they are uncovered. Scores, and the updating rule for scores, are also

common knowledge. Plant types are not observed by the regulator.11 Because the scores are com-

mon knowledge, and the inspection policy is committed, there is no regulatory hold-up or moral

hazard on the regulator’s side, and therefore no double moral hazard as in, e.g., Bhattacharyya and

Lafontaine [1995].

Timing. Since scores are updated once a year, in our model one period is one year. We summarize

the timing of the model below and in the diagram in Figure 3.

t = 0 Nature draws private plant types, θj , for each j. Regulator chooses public

inspection policy z̄g(j)(sjt, sft).

t = 1, 2, ...

(i) Plants enter period t with score sjt and firm score sft.

(ii) Firms choose pollution levels ajt for each j in Jf .

(iii) Regulator inspects each plant independently with Bernoulli probability

z̄g(j)(sjt, sft). Violations are drawn vjt ∼ Poisson(ajt), and they are uncov-

ered with probability 1 if an inspection occurs and with probability γ if no

inspection occurs.12 Denote detected violations by v̂jt.

(iv) Penalties are assessed. These penalties scale with the number of detected

violations.13 Total penalties per violation are given by x(sjt, sft).

(v) Plant scores are updated to the next period (sj,t+1) as a function of the cur-

rent scores and the number of detected violations. Firm-level scores are also

updated using the aggregation rule (i.e. firm scores are the weighted average

of the individual plants, where the weights are given by the complexity points

of each plant: sf,t+1 =
∑

j∈Jf
Qg(j)sj,t+1/

∑
j∈Jf

Qg(j)). The updating and

aggregation rules are common knowledge.

11Equivalently, plant types and actions could be observed by the regulator, but the regulator cannot contract directly
on plant types and actions and must use scores instead.

12This “alternative detection” can include self-reported violations and continuous monitoring.
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Figure 3: Timing of model
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We next characterize the payoffs governing the two key decisions in the game: the firms’ choice of

ajt for their plants, and the regulator’s design of z̄g(j)(sjt, sft). We begin our discussion with the

periods where, given z̄g(j)(sjt, sft), firms choose ajt.

4.2 The firm’s problem

Firms are individually small compared to the overall set of 5345 firms in our dataset, with no firm

accounting for more than 1% of total violations in our dataset. Similarly, no firm accounts for more

than .8% of total inspections in our dataset. Furthermore, the inspection policy only depends on

the scores and characteristics of the firm’s own plants. Therefore, there is no strategic interaction

across firms. Because each firm’s problem can be considered independently of the other firms,

we drop firm-specific subscripts in this section. We also drop time t subscripts for notational

simplicity. The expected flow payoff of plant j, given action aj , with the expectation taken over

13Online Appendix Table A-13 shows that this linear scaling is a reasonable assumption.
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stochastic violations and inspections, is:

πj(aj; sj, sf ) = θjb(aj)︸ ︷︷ ︸
Flow benefit

from negligent
actions

− (z̄g(j)(sj, sf )︸ ︷︷ ︸
Inspection

+ γ(1− z̄g(j)(sj, sf ))︸ ︷︷ ︸
Alternative methods
to detect violations

) × Evj(vjx(sj, sf )|sj, sf , aj)︸ ︷︷ ︸
Expected penalty
(=ajx(sj ,sf ))

(3)

The first component of Equation 3 is the plant’s flow benefit from negligent actions. We call this a

“benefit” because b(.) is increasing in the negligent action aj , but it accrues due to cost savings. For

example, a higher negligent action aj provides a higher benefit to a firm manager because it requires

less attention and effort to implement the proper pollution mitigation procedures. The second

component in Equation 3 comprises the costs to the firm of taking a negligent action aj . Here, the

regulator first inspects the plant with probability z̄g(j)(sj, sf ). Violations may also be detected by

alternative methods than inspections (for example, by an automatic monitoring technology), and

this occurs as a draw from a Bernouilli distribution with parameter γ. If the plant is inspected,

or the alternative detection draw occurs, then the regulator will observe the count of violations vj

(which is drawn from a Poisson distribution with mean aj). Finally, after observing violations,

the regulator administers penalties per violation x(sj, sf ). Note that Evj(vjx(sj, sf )|sj, sf , aj) =

ajx(sj, sf ).

Using these flow payoffs, the firm’s decision problem at each period is to choose the (continuous)

level of negligence at each plant in its portfolio aj . To make this choice, the firm will need to

account for the fact that the action at each plant will affect the payoffs across the entire portfolio of

plants J . Denoting the vector of plant-specific variables in bold, e.g., a = {aj}j∈J , and the state

in the next period as s′, the firms’ problem is:

V (s) = max
a

∑
j∈J

πj(aj; sj, sf ) + βEz,v
[
V (s′)

∣∣ s, a
]

(4)

Discussion of assumptions The above setup contains two implicit assumptions. The first is that

we assume that flow payoffs are linked through correlated types and linked regulation, but are

otherwise independent. In particular, we are ruling out linkages that occur through production

shifting within a firm when one plant is under more scrutiny (like in Gibson [2019] and Rijal and
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Khanna [2020] which study the Clean Air Act or Chen, Chen, Liu, Suárez Serrato, and Xu [2021]

for conglomerates in China). As previously discussed, we run robustness tests for reallocation in

Online Appendix 3.1 and do not find any evidence. One potential reason for this result is that

plants in our application (such as gas stations) are smaller than those studied in these papers and

so do not have the ability to easily scale production.14 We also test for whether firms strategically

avoid the regulation in other ways in the Online Appendix, and similarly do not find evidence of

this.

Second, we assume that firms internalize the effects of their actions on co-owned plants. This as-

sumption may be questionable if firms have complex organizational structures (e.g. regional man-

agers at different plants). However, as we mention in the context section of the paper, the typical

firm in our setting has quite a flat structure, usually with an individual person as an owner/operator

or responsible for environmental compliance.

Simplifying the state space. The portfolio problem defined in Equation 4 is extremely complex

to solve. In order to determine the optimal action at each plant j, a firm needs to think about

how this will affect future payoffs at other plants because the regulation is linked. This generates

a curse of dimensionality: the firm manager needs to think about the entire state space s which

is of dimension nplant + 1.15 In our application many firms have large portfolios (that is, nplant

can be large), so solving Equation 4 is essentially infeasible. Therefore, we need to employ an

alternative approach. Our approach begins from the observation that the optimal actions a∗j that

satisfy Equation 4 are equivalent to the optimal actions that jointly satisfy the following nplant

equations (one for each plant):16

max
aj

πj(aj; sj, sf )︸ ︷︷ ︸
Plant flow payoff

+βEz,v

[
Vj(s′)︸ ︷︷ ︸

Plant
continuation

value

+
∑

k∈J /j

Vk(s′)︸ ︷︷ ︸
Other plants’

continuation values

∣∣∣∣ s, a∗
−j, aj

]
(5)

14Even if they could, some degree of linked regulation would tend to guard against this behavior since scrutiny
increases at all plants with a common owner, and so our results about the efficacy of linked regulation would be
conservative.

15Because the firm score, sf is implied by the nplant plant-level scores sj , the state space is technically only of
dimension nplant, but this is still insufficient to solve the curse of dimensionality for large firms.

16This can be verified by observing that the first order conditions resulting from Equation 4 and Equation 5 are
identical.
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where Vj(s) denotes the value function for an individual plant j (i.e. the lifetime discounted stream

of flow payoffs to plant j) and therefore the firm’s value function V (s) =
∑

j∈J Vj(s).

Inspecting Equation 5 highlights where the state space complexity bites in the portfolio choice

problem. Concretely, it is through the third term in Equation 5 which governs how firm j’s action

affects the future payoffs of other commonly-owned plants, i.e., cross-plant effects. If that third

term were eliminated, the value function for plant j only—Vj—would only depend on sj and sf

because flow payoffs only depend on sj and sf .

Therefore, to solve the curse of dimensionality, we make an assumption in the spirit of Gowrisankaran

and Rysman [2012], which we call continuation value sufficiency. The intuition underlying con-

tinuation value sufficiency is that the firm makes decisions at each plant in its portfolio one at a

time, and that the firm uses only three variables to make each decision: the plant’s score sj , the

aggregate firm score sf , and a third scalar, Wj =
∑

k∈J /j Vk(s), that summarizes the continuation

values of all the other plants. While sj and sf enter the flow payoffs for plant j directly, Wj acts as

a heuristic to account for the cross-plant effects of aj . Note that all cross-plant effects are dynamic

since the flow payoffs πj are separable across plants’ actions. We assume that the transitions over

these three states are governed by a separate AR(1) process for each plant.

Defining the resulting firm-level problem. The above assumptions turn the computationally in-

tractable problem in Equation 5 that requires solving a value function over a nplants + 1 dimen-

sional state space, into nplant separate value function computations each over three states, which

is computationally feasible. Denote ŝj = (sj, sf ,Wj). Then—leaving a formal derivation to On-

line Appendix 4.1—the following three equations fully characterize the firm’s problem. First, the

optimal action a∗j(ŝj) is given by:

a∗j(ŝj) = argmax
aj

πj(aj; sj, sf ) + βEzj ,vj

[
Vj(ŝ′j) +W ′

j

∣∣ ŝj, aj
]

(6)

where plant j’s value function can be defined with respect to this optimal action a∗j(ŝj):

Vj(ŝj) = πj(a
∗
j(ŝj); sj, sf ) + βEzj ,vj

[
Vj(ŝ′j)

∣∣ ŝj, aj
]

(7)
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and the state transition beliefs are governed by the AR(1) process (where v̂j denotes detected

violations that are normalized by the complexity score of plant j):

ŝ′j = R0,j +R1,j × [sj, sf ,Wj, v̂j]
′ (8)

Note the subscripts in Equation 8 indicate that the transition matrices R0,j and R1,j need to be

computed separately for each plant as part of the solution algorithm. Concretely, they need to be

consistent with equilibrium behavior across the larger portfolio of plants for firm f , as well as the

updating rules of the scores defined by the regulator. We detail the full solution algorithm—which

comprises an outer loop where we solve for the beliefs in Equation 8 and an inner loop where

we compute actions and value functions that satisfy Equation 6 and Equation 7—in the Online

Appendix. Note that the firm-level problem needs to be computed separately for each individual

firm that we observe in the data, since each firm has a different portfolio of plants.

4.2.1 Equilibrium: firms

Define a steady state equilibrium as the joint distribution of actions and scores given an inspection

policy, which we shorten to z̄, and a vector of types for each plant θ, F (a, s; z̄,θ), that satisfies the

following conditions:

1. Each firm chooses actions optimally according to Equation 6 and Equation 7.

2. Beliefs about state transitions in Equation 8 are consistent with the equilibrium.

3. Given the law of motion for scores, the regulator’s policy function, and the optimal actions

at each state, the distribution of scores is in steady state.

4.3 The regulator’s problem

At t = 0, the regulator commits to a stationary and observable inspection rule, z̄, from a set of

allowable rules Z to minimize the “perceived” social cost of equilibrium violations subject to an

inspection budget B and an implementability constraint that ensures violations are part of a steady

state equilibrium for z̄. We expand on how we parameterize the inspection policy function—and

therefore the set Z—in the estimation section, but it might, for example, feature inspections that do

not depend on plant scores (“untargeted regulation”), inspections that are responsive to individual
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plant scores (“unlinked regulation”), or inspections that are responsive to firm scores (“linked

regulation”). The perceived social harm of a violation, hg, can vary across sectors. Z also allows

inspection rules to depend on sectors. The regulator does not know the type of each plant but does

know the distribution of plant types Gθ. Formally, the regulator’s problem is:

min
z̄∈Z

V R = min
z̄∈Z

∫ ∫ ∑
f∈F

∑
j∈Jf

hg(j)aj dF (a, s; z̄,θ) dGθ(θ) (9)

s.t.:
∫ ∫ ∑

f∈F

∑
j∈Jf

z̄g(j)(sj, sf ) dF (a, s; z̄,θ) dGθ(θ) ≤ B [Budget balance]

F (a, s; z̄,θ) from equilibrium firm behavior in Section 4.2.1 [Implementability]

In the above equations, we include actions aj directly and not the resulting violations. We set up the

problem this way because the violations are given by a Poisson distribution with mean parameter

aj , so the expected number of violations for plant j is given by the action aj .

Discussion of assumptions We now justify three assumptions we are making in the regulator’s

problem in Equation 9. First, we assume that the regulator does not place a weight on the pri-

vate compliance costs of individual managers, but is simply trying to minimize the total costs of

pollution. We verify robustness of our results to this assumption in Online Appendix Section 5.6.

Our justification for this assumption is that scores are normalized by complexity points, and the

inspection policy functions are defined over these normalized scores. An objective of complexity

points—and a key reason they were introduced—is to ensure that enforcement is adjusted for the

compliance costs of different types of firms.17 However, in official reports, the TCEQ tends to

refer to the complexity points as the way that it incorporates variation in individual compliance

costs into its regulation, rather than through ad-hoc adjustments to inspections, which is consistent

with how we are estimating their objective function in Equation 9.

The second implicit assumption is that we are taking the penalty structure as given and we are not

taking a stand on whether the penalty schedule is chosen optimally by the regulator. We choose

to not do this for two reasons. First, while it is clear that the TCEQ has short-run discretion over

who to inspect (as documented by their previously discussed “risk-based approach” to targeting),
17Of course, since compliance costs are private information, there is still dispersion in compliance costs even after

normalizing for complexity points.
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penalties are much more rigid. Keeping the penalty policy fixed reflects this inflexibility. For

example, penalties are explicitly spelled out in Texas Administrative Code [2002]. Although these

rules can be modified by the TCEQ in the long-run, these rules are likely to be inflexible in the

short-run since changes may be subject to a more elaborate rule-making procedure.18 The second

reason for not explicitly modeling optimal penalties is that the inspection moments—which result

from assumptions that the regulator spends their inspection budget optimally across industries—

are sufficient for identification. Therefore, in terms of estimating the model, we do not need to

make additional assumptions on how these more rigid penalties are determined.

The third assumption is that the perceived social harms of violations vary across industry sectors,

but not other plant characteristics such as location or environmental justice considerations. This is

broadly consistent with the descriptive findings in Table 2, which showed that the environmental

justice score and region fixed effects had little predictive power for the regulator’s inspection de-

cisions. Still, we include results in the counterfactuals where social costs are based on pollution

measures instead of inferred from the regulator’s behavior as robustness to this assumption.

Finally, we explain how assumptions on the regulator’s problem in this section affect the estimates

and the counterfactual results. Overall, we only use the regulator’s problem to estimate parame-

ters relating to the perceived social cost of violations hg(j). These social costs are then used in the

counterfactual section to aggregate violations from heterogeneous industry sectors into a single so-

cial cost number. Therefore, to illustrate robustness in the counterfactuals section, we also provide

disaggregated results by industry sector in Online Appendix 5.3; these results are identified, esti-

mated, and computed, independently from any assumptions on how the regulator makes decisions.

In addition, in the counterfactual results, we also use an alternative measure constructed directly

using pollution data.

5 Estimation and identification

5.1 Parameterization

Plant types and payoffs We assume plant j’s type is θj = |θ̄g(j)+εf(j)+εj|. Here, θ̄g is the mean

type of a plant in sector g, εf(j) ∼i.i.d. N (0, σ2
F ) is a firm-wide type draw, and εj ∼i.i.d. N (0, σ2

J) is

18A useful guide to these procedures is Texas Environmental Public Participation Guide [2017]. Note that we do
not see any changes to the penalty rule in our sample period 2012-2020.
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a plant-specific type draw. The larger σ2
F is relative to σ2

J , the more within-firm correlation in types,

all else equal. We also parameterize the plant’s benefit of taking a negligent action b(a) = ay, so a

firm with type θ has marginal benefit of pollution equal to θyay−1. While θ governs different firms’

relative private benefits of pollution, y captures the extent to which there are diminishing marginal

returns to polluting more. This multiplicative-in-types specification implies increasing differences

and is standard in the literature on marginal deterrence (Mookherjee and Png [1994], Kang and

Silveira [2021]).

The specification b(a) = ay implies that marginal static deterrence—the responsiveness of a my-

opic firm’s optimal action to an increase in z—is larger in magnitude for high types than for low

types. This is supported by the regressions in Online Appendix Table A-12, which shows that

plants that violate more are more responsive to regulation. We also provide further discussion in

Online Appendix 4.6 about why this may imply that it is optimal to target inspections on firms

with a worse history of violations.

Law of motion for scores Firms make decisions based on a reduced state space, with an estimated

AR(1) process given by Equation 8. The plant-specific transition matrices R0,j , R1,j in this law of

motion are given by:

R0,j =


0

0

rw,j
0

 , R1,j =


r
sj
sj 0 0 r

sj
v

0 r
sf ,j
sf 0 r

sf ,j
v

0 0 rw,j
w rw,j

v

 (10)

We set certain coefficients in these matrices to 0. First, we set the intercepts for the plant score

updating and the firm score updating equal to 0. This restriction follows directly from how scores

work in our setting: if no violations are observed then the score will converge to 0.19 The regulator

only updates the plant score sj using plant-specific information. Therefore, we switch the depen-

dence of sj on other states in R1,j to 0. An additional implication of using only plant-specific

information to update this score is that the remaining parameters in the first row in R1,j can be

19The AR(1) process we estimate closely resembles the score updating process in the Texas Administrative Code,
30 Tx. Admin. Code §60.2:

“The total number of points assigned for all resolved violations[...] over two years old will be multiplied by 0.75
[...] over three years old will be multiplied by 0.5 [...] over four years old will be multiplied by 0.25”
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computed directly from the data.

The remaining coefficients—which enter into the updating rules for the firm state and also the value

functions of the other states—need to be computed to be consistent with the equilibrium choices

of the other plants in the portfolio, as well as how the regulator aggregates individual scores to the

firm-level score. Since these coefficients need to be computed individually for each plant j, and

there are thousands of individual plants in the data, we set four coefficients in the second and third

rows of R1,j to 0 to ease the computational burden. These four coefficients relate to second-order

interactions between the state variables; we still allow for states to be serially correlated with past

realizations of themselves (through the diagonal terms) and detected violations (the final column).

Inspection functions We assume the probability that the regulator inspects plant j at time t is of

the logit form, consistent with our regression specification (1) in Table 2:

z̄g(j)(sjt, sft) =
exp

{
ρz0g(j) + ρz1log(1 + sjt) + ρz2log(1 + sft)

}
1 + exp

{
ρz0g(j) + ρz1log(1 + sjt) + ρz2log(1 + sft)

} (11)

When solving the regulator’s problem, we limit Z to the family of logit functions in the above

form.

Penalties Penalties are assessed according to a base penalty, plant-level scores, and firm-level

scores, as defined in Equation 2. We calibrate the escalations as a function of the states directly

from the regulator’s bylaws. We normalize the base penalty per violation to 1.0, which is without

loss of generality when computing the firms’ problem because we do not normalize the scale of

the plant types θ.

5.2 Estimation routine

The primitives we estimate correspond to: the inspection function ρz, the complexity weights Qg,

the state updating process R0,j and R1,j , the distribution of firm types σF , σJ , and θ̄g for each

industry sector g, the curvature parameter y, and the marginal social costs of pollution by sector

hg. We estimate the model in three steps.
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First step: We estimate/calibrate the following parameters “offline”. We calibrate the discount

parameter β = 0.95. We use the estimates for ρz from Column (1) of Table 2, including the NAICS

sector fixed effects. We estimate the complexity weights using non-linear least squares, finding the

Qg that minimize the squared residual of the true firm score observed in the data compared to a

predicted firm score built from the observed plant scores and Qg using Equation 1. We provide

more details in Online Appendix 4.3. We compute the coefficient rsjsj in the plant score updating

rule directly from the data using a linear regression. We calibrate the parameter for how current

violations affect future plant scores r
sj
v using the regulator’s rule in Texas Administrative Code

[2002]. We explain how we calibrate the parameter γ (for violations discovered by means other

than inspections) in Online Appendix Section 4.4.

Second step (firms’ problem): We estimate the parameters governing the firms’ problem (σF , σJ , θ̄g, y)

using simulated method of moments. We provide a short description of the algorithm here and

leave a more detailed explanation of the algorithm—as well as the method of moments implementation—

in Online Appendix 4.5. For each of the thousands of firm portfolios Jf we observe in the data

we run an individual solution algorithm that contains two nested loops. In the inner loop we take

the state updating process beliefs for each plant j ∈ Jf (i.e., R0,j and R1,j) as given, and solve

for a fixed point of the optimal actions and value functions at each state that satisfies Equation 6

and Equation 7 subject to the regulator’s conditional choice probabilities. Then, we simulate se-

quences of “data” given the results from the inner loop, computing a time-series of optimal actions

at each plant in the portfolio given the state, corresponding violations, inspections, and penalties.

At the end of each period we update the scores and the state to the next period. We then run AR(1)

regressions on this simulated “data”, updating the state transition beliefs for each plant j over the

reduced state space: R0,j and R1,j . We continue the outer and inner loop procedures until these

state transition beliefs converge.

Third step (regulator’s problem): Finally, we estimate the social cost parameters hg by lever-

aging the assumption that the regulator chooses the inspection policy function optimally. Our

estimates of the firm parameters in Step 2 allow us to compute the stationary distribution of scores

and actions F (a, s; z̄,θ) for alternative inspection policies z̄. Therefore, we can also compute the

regulator’s objective function V R for alternative inspection policies. We show in Online Appendix
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4.2 that hg can be analytically computed up to a scale normalization (due to the budget constraint)

by inverting the first-order-conditions of the regulator’s optimal policy defined by Equation 9. We

approximate derivatives of V R in the analytical formula via finite differences.

5.3 Identification

Second step (firms’ problem): We informally discuss the moments selected and how the mo-

ments selected identify the parameters of the model that are recovered in step two of the above

estimation routine. The parameters recovered in step two are: the mean plant type, θ̄g, for each g

of the six NAICS categories; the variances of the firm- and plant-level type draws σ2
F and σ2

J , and

the curvature parameter y.

To exposit identification, consider a highly simplified setting in which a plant of type θj considers

only the present period and does not have any other co-owned plants, suppose that violations are

deterministic: vj = aj , and denote z as the probability of inspection. The firm’s problem is then:

a∗j = arg maxa θja
y − za. Taking a first-order condition, rearranging, and taking logs yields the

solution

log(a∗j) =
1

1− y
(log(θj)− log(z) + log(y)) . (12)

From this equation, it is clear that the responsiveness of recovered violations to changes in the

probability of inspection (i.e., deterrence) identifies y. With y known, differences in (log) levels of

violations across different plants identify their types θj .

Though our empirical model is more complicated, these comparative statics inform our choice of

moments. To identify the average type for each NAICS sector, θg, we use the average number of

(detected) violations per year, conditional on inspection occurring, for all plants in that sector. This

yields six moments (one for each industry sector). All else equal, a higher mean type for sector g

corresponds to more violations on average for plants in that sector, conditional on inspection.

To identify σ2
F and σ2

J , we examine the distribution of equilibrium violations—conditional on

inspection—across firms. Suppressing the notation that conditions on inspections occurring, we
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decompose the total variance of detected violations v̂ as follows:

Var[v̂] = Ej

[
Vart(v̂jt|j)]︸ ︷︷ ︸

Within plant,
over time

+Ef

[
Varj[Et(v̂jt|j)|j ∈ Jf ]

]︸ ︷︷ ︸
Across plants,

within firm

+Varf
[
Ej,t(v̂jt|j ∈ Jf )

]︸ ︷︷ ︸
Across firms

(13)

We divide the second term on the right hand side of this equation by the total variance Var[v̂] to

identify σ2
J . With this identified, we also include the ratio of the second and third terms to identify

σ2
F . All else equal, higher types will choose higher actions and commit more violations upon

inspection. Therefore, greater variance in violations across plants indicates larger variances of the

type draws. The share of this variance that occurs within a firm/across plants identifies σ2
J , while

the ratio of the within/across variance identifies σ2
F .

As evident in Equation 12, the curvature parameter y is identified by the responsiveness of vi-

olations to changes in inspection probabilities. We construct the relevant moment in two steps:

first, we compute the predicted probability of inspection using our first-stage estimates. Next, we

regress violations on this predicted inspection probability and plant fixed effects, conditional on

inspection occurring. We compute the same moment analogously in our simulated data.

Third step (regulator’s problem): The discussion in Online Appendix 4.2 elucidates identifica-

tion of {hg} from the inspector’s first order condition with respect to each of the sector-specific

intercepts in the estimated inspection function. Generally, the greater the intercept for sector g—

which corresponds to a greater probability of an untargeted inspection that does not depend on

plant or firm scores—the larger the relative implied harms of pollution from that sector. However,

because we impose a binding budget constraint, we do not know if these first order conditions hold

exactly. Instead, we only know that the regulator allocates its inspection budget efficiently across

sectors in equilibrium. This allows us to identify the relative marginal harms of pollution. There-

fore, we normalize hutility = 1 and estimate the marginal harms of pollution in other industries

relative to this.

6 Results

The first-stage estimates are in Online Appendix Table A-7. The second and third-stage estimates

are in Table 4. Notably, the variances of the plant-level and firm-level draws are similar, indicating
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Table 4: Structural estimates

Parameter Estimate Std. Error Parameter Estimate Std. Error

Mean type θ̄g Perceived social cost hg
Manufacturing 0.445 0.084 Manufacturing 0.984 0.037
Resources 0.019 0.04 Resources 1.076 0.043
Services 0.17 0.102 Services 0.945 0.043
Trade 0.023 0.035 Trade 1.248 0.086
Transportation 0.39 0.074 Transportation 1.561 0.275
Utility 0.45 0.084 Utility 1.0 -

Type variances
Plant-level, σ2

J 0.192 0.039
Firm-level, σ2

F 0.271 0.061
Shape parameter, y 0.6 0.077

Notes: We normalize the regulator preferences on the “utility” sector to 1.0, since regulator pref-
erences are identified only up to a scale normalization. Standard errors are computed using 100
bootstrap iterations, sampling with replacement at the firm level.

a moderate degree of within-firm correlation conditional on a firm’s portfolio. Differences across

firms in their portfolio may induce even more correlation by firm: if firms that own one “trade”

plant also own other “trade” plants, these firms are likely to have high types across all their plants.

Our estimates show that utility plants tend to have higher types, and trade and resources plants tend

to have lower types.

6.1 Model fit

We first assess model fit by reporting the fit of each moment used in estimation in Table 5. Broadly,

we match the moments well. In Figure 4 we plot a binscatter representing the joint distribution of

plant types with the leave-one-out average of other co-owned plant types. The results indicate that

the underlying distribution of types is correlated within firms.
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Table 5: Model fit: moments

Moment Simulated Empirical

Mean violations

Manufacturing 0.218 0.194
Resources 0.109 0.075
Services 0.140 0.134
Trade 0.118 0.090
Transportation 0.121 0.145
Utility 0.212 0.187

Viol. variance share

Within-firm 0.195 0.214
Within-to-across-firm ratio 0.621 0.618

Responsiveness -6.393 -6.512

Figure 4: Estimated correlation of types
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7 Counterfactuals

7.1 Overview

To evaluate the efficiency of linked regulation, we simulate a counterfactual budget increase that

would increase the probability of inspecting a plant by an average of 10 percentage points. We mea-

sure effectiveness in terms of the decrease in total perceived social costs of violations:
∑

j hg(j)vj .

Note that although we can measure changes to the absolute number of violations vj , the social costs

hg(j) are only identified up to a scale normalization. Therefore, we focus on percentage changes in

total social costs, which are unaffected by this normalization. We also measure effectiveness using

a pollution index; we describe the index construction in Online Appendix 2.2.

Overall, we investigate how much more effective this budget increase would be compared to an

increase in untargeted inspections if: (i) the budget was completely spent on linked inspections;

(ii) the budget was completely spent on unlinked inspections; (iii) the budget was split equally

between linked and unlinked inspections. In Online Appendix 5.3 we show that these results are

overall robust to assumptions on the regulator’s problem by also presenting changes in violations
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disaggregated by industry sector.20 We focus mainly on multi-plant firms because these are the

targets of the regulation.

Theoretical properties of the optimal policies We provide an extended discussion of the theoret-

ical properties of an increase in linked regulation, as well as the other counterfactuals considered

in this section, through the lens of a two-period stylized model in Online Appendix 6. We also use

the model to describe theoretical properties of optimal regulation.

Computational details We model changes to untargeted inspections, unlinked inspections, and

linked inspections, by modifying the parameters in the regulator’s inspection function: ρz0g(j), ρ
z
1, ρ

z
2.

Specifically, we interpret untargeted inspections as an increase in the constant of the inspection

function ρz0g(j). Similarly, changing the level of unlinked inspections corresponds to changing the

coefficient on plant scores (ρz1), and changing the level of linked inspections corresponds to in-

creasing the sensitivity to manager scores (ρz2). A 50/50 mix of linked and unlinked escalation

involves changing the level of ρz1 and ρz2 equally. We use a root-finding algorithm to search for

the coefficient where the total probability of inspection equals the (increased) inspections budget.

Note that to compute the counterfactuals we completely recompute the new equilibrium, which

includes recomputing the equilibrium beliefs of agents.

7.2 Decomposition: correlated targeting vs firm-wide moral hazard

There are two main channels by which linked regulation may outperform untargeted inspections.

We provide an intuitive discussion of these mechanisms here and leave a more complete theo-

retical justification to Online Appendix 6.21 In addition, we provide more details about how we

operationalize these decompositions numerically in Online Appendix 4.7.

The first channel is a “correlated targeting mechanism”. The idea here is that, because types are

correlated within a firm, the links between plants provide useful information about where next to

investigate and allow the regulator to allocate inspections towards the most responsive plants.

20As previously mentioned, the regulator’s problem is only used to compute estimates for the (perceived) social
costs hg(j), which are then used in the counterfactuals to aggregate up violations across different sectors into a single
number. All the other parameters are identified and estimated separately with no assumptions on the regulator’s
problem. Therefore, presenting the results by industry sector tests whether assumptions about the regulator are driving
the results; ultimately, we find that this is not the case.

21The stylized model in that section provides a theoretical justification for this decomposition and also illustrates
that the total effect can be divided additively into these two effects.
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We isolate the correlated targeting mechanism by first fixing each firms’ mapping from scores to

optimal actions (a∗j(ŝj)) at the baseline. Note that this also fixes the responsiveness of each plant

to scores e.g. ∂a∗j/∂sj . We then simulate a new stationary distribution of actions, violations, and

scores, using the counterfactual regulator’s inspection function. We record the decrease in the

total social cost of violations. We also repeat the same procedure for the case where the budget

is allocated to untargeted inspections. The difference between the two totals is what we call the

correlated targeting mechanism. Intuitively, when types are correlated, linked regulation uncovers

more violations at the most responsive plants. This then leads these plants to have relatively higher

scores in the stationary equilibrium, lower actions, and fewer violations, compared to untargeted

inspections.

The second channel is a “firm-wide moral hazard mechanism”. Here, the links allow the regulator

to punish a common owner for bad behavior, so a violation at one plant increases deterrence at

co-owned plants. Intuitively, owners internalize that a violation at one plant will escalate scrutiny

at other commonly-owned plants, which causes them to change their optimal choice of actions

conditional on scores. We isolate this mechanism by allowing the mapping from scores to actions

a∗j(ŝj) to change, which accounts for the remainder of the total effect of regulation.

We also show using a stylized model in Online Appendix 6 how both of these effects depend on

the correlation structure in plant types. We show that, as the plant types become more correlated,

the effect of both mechanisms becomes larger.

7.3 Discussion

We present the counterfactual results in Table 6. Recall that the objective of the regulator is to

minimize the social cost of violations and so reductions in this metric correspond to “more effec-

tive” regulation. To produce the numbers in Table 6 we first consider an increase in the inspection

budget devoted to untargeted inspections, and then compare how much more effective alternative

types of regulation would be compared to this. In other words, the numbers in Table 6 are the

change in the (perceived) social cost of violations compared to untargeted additional inspections.

Results: linked regulation We first consider a counterfactual policy where additional inspections

are entirely devoted to linked regulation. We report the results in the first column of Table 6. Linked
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Table 6: Counterfactuals

↑ Inspections budget by 10%. Spent on:
Linked reg. Unlinked reg. 50/50 mix

%∆Perceived social cost vs. untargeted:

Multi-plant firms -76.2% -55.3% -74.4%
Decomposition:

= Correlated targeting mechanism -8.7% -9.6% -9.7%
+ Firm-wide moral hazard mechanism -67.5% -45.7% -64.7%

Single-plant firms -34.0% -35.0% -36.4%
All firms -48.0% -41.7% -49.0%

%∆Social costs derived from pollution index vs. untargeted:

Multi-plant firms -76.7% -55.3% -74.6%

Notes: In the baseline model the average number of violations per plant (both discovered and not
discovered by the inspector) is 0.74. The row “%∆ Social costs derived from pollution index vs.
untargeted” uses the pollution index. Details about the pollution index construction are in Online
Appendix 2.2. Robustness to alternative constructions of the pollution index are in the same section.

regulation performs dramatically better than an increase in untargeted inspections. Concretely, they

reduce the social cost of violations by 76.2% overall compared to untargeted inspections.

The decomposition shows why: the correlated targeting effect of 8.7% indicates that linked regu-

lation shifts inspections toward plants that are more responsive to regulation, while the firm-wide

moral hazard effect of 67.5% shows that linked regulation is a powerful form of deterrence. Firms

now face the threat of escalations not only on the offending plant, but on all co-owned plants,

thereby amplifying this effect. Although the correlated targeting effect is smaller than the firm-

wide moral hazard effect, there may be other settings in which the correlated targeting effect is

comparatively larger. For instance, if firms can shift pollution from one plant to another to avoid

detection (as in Gibson [2019]), correlated targeting would be an effective means of predicting the

sites onto where the firm is shifting its pollution.

We also report the effect on single-plant firms. Here, the plant score and the firm score are identical,

so we might expect the overall effects of unlinked and linked regulation to be similar. However, this

intuition is less obvious when accounting for the equilibrium effects of extra linked inspections:

one might be concerned that extra linked regulation may reveal more information about violations
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at multi-plant firms, and, therefore the large effects on multi-plant firms are due to a reallocation of

existing enforcement resources from single-plant firms. The results for single-plant firms show that

this is not the case: the decrease in the social cost of violations is qualitatively similar regardless

of whether unlinked or linked regulation is used. Finally, the total effect is just a weighted average

of the effects on single-plant and multi-plant firms.

Results: unlinked regulation We next consider the results for the counterfactual policy where ad-

ditional inspections are entirely used for unlinked regulation (that is, escalations that only respond

to plant scores). Consistent with Blundell, Gowrisankaran, and Langer [2020] we find overall that

these inspections add value and reduce the perceived social cost of violations by 55.3% more than

untargeted inspections in multi-plant firms.

The decomposition illustrates how unlinked regulation compares to linked inspections. The corre-

lated targeting effect shows that unlinked regulation targets more responsive plants roughly as well

as linked regulation. This is because types are fixed at individual plants across time. The firm-wide

moral hazard effect of 45.7% shows that unlinked escalations have a deterrence effect. However,

this effect is smaller than for linked regulation. Unlike linked regulation, unlinked regulation esca-

lates at only one plant in the firm’s portfolio, so the deterrence effect is more limited.

Results: 50/50 split of linked and unlinked escalations We also compute an equal mix of linked

and unlinked escalations for the extra inspections budget in the third column. We find that the mix

does slightly worse for multi-plant firms—but slightly better overall—compared to only linked

escalations.

Results: using actual pollution data We also consider replacing the perceived social costs in-

ferred from the regulator with an index constructed from actual pollution data linked to plants.

This is important because the regulator may consider economic factors other than environment and

health when deciding where to focus inspections (see, e.g., Deily and Gray [1991] for an example).

The details of how we incorporate these data are in Section 2.2 of the Online Appendix. The results

are in the final row of Table 6 and are overall very similar to our main specification.

Discussion: heterogeneity and targeting Figure 5 breaks down the change in inspection prob-

ability by type quantile for a 10 percentage point increase linked regulation and in untargeted
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inspections. The linked regulation counterfactual allocates more of these inspections towards high

type plants. These high type plants have, on average, higher baseline marginal deterrence: the

correlation between baseline marginal deterrence and plant type is 0.54.

Figure 5: Targeting under linked regulation
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Notes: Horizontal axis reports bins of plant type quantiles. The figure reports the LOWESS-smoothed
change in inspection probability between baseline and coutnerfactual inspection policies, by type quan-
tile.

Discussion: role of commitment An assumption that we make throughout the paper is that the

regulator can commit to a policy. While this is arguably reasonable in our empirical setting, one

may ask how the results extend to a scenario where the regulator cannot fully commit. A complete

characterization of the set of self-enforcing policies is outside the scope of this paper (and, indeed,

is known to be challenging more generally).22 However, our decomposition into the two mecha-

nisms suggests that linked regulation can be implemented and add some value even in the absence

of commitment. The firm-wide moral hazard mechanism certainly requires a credible commitment

from the regulator to go through with their firm-level punishment to ensure deterrence. How-

ever, the correlated targeting mechanism merely directs the regulator to inspect the plants with the

highest marginal abatement benefits, which may be self-enforcing behavior even in the absence of

commitment. As an additional exercise in the Online Appendix 6.3, using a stylized version of our

22A useful summary of common difficulties is in Skreta [2006] in Section “Technical Difficulties and the Procedure”.
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empirical setting, we show that targeting plants with higher responsiveness to regulation is optimal

both with and without commitment.

7.4 Robustness and additional results

We run several tests to check how robust our conclusions are to alternative modeling assumptions,

and also to provide more detail about what is driving the value-added of linked regulation in the

model. In Online Appendix 5.1, we examine the extent to which correlation of compliance costs

within plants of the same industry is driving the value added from linked regulation. Although the

correlation does not play a major role in the overall results, it does comprise a notable share of the

correlated targeting mechanism. This suggests that linked regulation could act as a way to “nudge”

the regulator in a socially beneficial direction if the fixed parts of the regulatory scheme (here, the

complexity points) are not optimally specified.

In Online Appendix 5.6, we test robustness to the assumption that the regulator does not internalize

the compliance costs of the firms; the estimates are qualitatively similar to our baseline estimates.

We next examine counterfactual policies that use longer violation histories to inform scores. We

do this by changing the persistence of the AR(1) process that governs scores, and re-simulate the

model to equilibrium. Details of our implementation and results are in Online Appendix 5.4. We

find that using slightly longer histories is beneficial, but if scores grow too persistent, they become

insensitive to present-day violations and regulation becomes less effective. This resembles the

intuition in Hörner and Lambert [2021].

Finally, we simulate a “random crackdown” as in Eeckhout et al. [2010]. We provide more in-

formation about our empirical implementation in Online Appendix 5.2. We find that increasing

inspections for only a random subset of plants is less efficient than our main policy counterfactu-

als, with perceived social harms 19% higher under a 10 percentage point increase in the budget

devoted to crackdowns rather than untargeted inspections. The stylized model in the Online Ap-

pendix provides intuition for why crackdowns are less useful in our setting. One reason is due

to the curvature of equilibrium actions with respect to inspections. A second reason is that ran-

dom crackdowns do not take advantage of histories and the resulting benefits of dynamic targeting

through the firm-wide moral hazard and correlated targeting mechanisms. This may explain that,

39



while random crackdowns are used for traffic infractions where histories are not directly observed

(as in Eeckhout et al. [2010]), they are not used—to our knowledge—by the TCEQ who regulate

firms where more prior information is available.

8 Conclusion

Regulators often face incomplete information about which firms are bad actors, while only having

limited enforcement budgets to detect and deter violations. Therefore a central question for reg-

ulators is how to efficiently target scarce enforcement resources. In this paper, we study ‘linked

regulation’ which is a common form of targeting that is present in many real-world enforcement

regimes. Linked regulation exploits the correlation of types within firms—driven potentially by

the presence of ‘bad managers’ who are negligent across the plants in their portfolio—to improve

the effectiveness of regulation.

We develop a new empirical framework to study dynamic linked regulation. Our framework allows

us to go beyond a simple quantification of whether linked regulation adds value in practice. In

addition, we are able to test two alternative theoretical mechanisms about why it works: a firm-

wide moral hazard mechanism and a correlated targeting mechanism. Disentangling these two

mechanisms is important to understanding if linked regulation would work in other settings (for

example, when the regulator cannot commit to a policy). Overall, we show that linked regulation

can add significant value compared to other forms of regulation, and that the firm-wide moral

hazard mechanism is primarily responsible for its benefit.

9 Data Availability Statement

The data and code underlying this research are available on Zenodo at https://doi.org/10.

5281/zenodo.16987699.
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