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Abstract. We study the use of Temporal-Difference learning for estimating the struc-

tural parameters in dynamic discrete choice models. Our algorithms are based on the

conditional choice probability approach but use functional approximations to estimate

various terms in the pseudo-log-likelihood function. We suggest two approaches: The

first—linear semi-gradient—provides approximations to the recursive terms using basis

functions. The second—Approximate Value Iteration—builds a sequence of approxi-

mations to the recursive terms by solving non-parametric estimation problems. Our

approaches are fast and naturally allow for continuous and/or high-dimensional state

spaces. Furthermore, they do not require specification of transition densities. In dy-

namic games, they avoid integrating over other players’ actions, further heightening the

computational advantage. Our proposals can be paired with popular existing methods

such as pseudo-maximum-likelihood, and we propose locally robust corrections for the

latter to achieve parametric rates of convergence. Monte Carlo simulations confirm the

properties of our algorithms in practice.

1. Introduction

Recent years have seen a number of important developments in the field of Reinforce-

ment Learning (RL) for computation of value functions. The goal of this paper is to study

the use of a popular RL technique, Temporal-Difference (TD) learning, for estimation and

inference in Dynamic Discrete Choice (DDC) models.

DDC models are frequently used to describe the inter-temporal choices of

forward-looking individuals in a variety of contexts. In these models, agents maximize

their expected future payoff through repeated choice amongst a set of discrete alterna-

tives. Based on a revealed preference argument, structural estimation proceeds by using
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microdata on choices and outcomes to recover the underlying model parameters.1 A key

challenge in this literature is the complexity of estimation. Uncovering the structural

parameters originally required an explicit solution to a dynamic programming problem

in addition to the optimization of an estimation criterion. A key advance has been Hotz

and Miller’s (1993) Conditional Choice Probability (CCP) algorithm which avoids the

repeated solution of the inter-temporal optimization problem by taking advantage of a

mapping between value function differences and conditional choice probabilities.

Unfortunately, the standard CCP algorithm of Hotz and Miller (1993) is computa-

tionally infeasible when the underlying states are continuous and/or the state space is

high-dimensional. Such state spaces are common in applications. One approach to tackle

continuous state spaces is through state space discretization, e.g., Kalouptsidi (2014)

and Almagro and Domínguez-Iino (2025) use aggregation and clustering methods to do

this. However, it is not always clear how to perform such a discretization in practice,

and moreover, it introduces bias into the parameter estimates. An alternative is to em-

ploy functional approximations for the value functions. For instance, Barwick and Pathak

(2015) and Kalouptsidi (2018) use estimated transition densities and numerical/analytical

integration to approximate the value functions using linear sieves and LASSO, respec-

tively. However, the theoretical properties of these methods when using machine learning

methods (such as LASSO) are as yet unknown, and they still require estimation of transi-

tion densities, which is not straightforward, along with numerical integration, which can

be computationally expensive.2

The aim of this paper is to develop tractable algorithms for CCP estimation when the

state variables are continuous and/or the state space is large. Such algorithms should pos-

sess three properties: First, they should be fast to compute even under high-dimensional

state spaces. Second, they should avoid state space discretization, and instead rely on

functional approximation of value functions. Third, they should avoid estimation of tran-

sition densities which are difficult to parameterize and estimate under continuous states.

If the DDC model in question satisfies either finite dependence or a terminal state prop-

erty there already exist algorithms possessing these properties, see, e.g., Ackerberg et al.

(2014) and Chernozhukov et al. (2022). Our interest here is in developing general purpose

algorithms that do not require these assumptions.
1See Aguirregabiria and Mira (2010) for a survey of the literature on the estimation of DDC models.
2Yet another alternative is to use forward Monte Carlo simulations (Bajari et al., 2007, Hotz et al., 1994),
but this again becomes very involved as the number of continuous state variables or players increases.
The use of a finite number of Monte Carlo simulations also adds bias to the estimates.
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We suggest two methods, based on TD learning, that satisfy all the above properties.

The methods involve two different techniques for estimating recursive terms (which are

akin to value functions) that arise in CCP estimation. The first approach, the linear

semi-gradient method, provides functional approximations to the recursive terms using

basis functions. This simply involves inverting a matrix whose dimension is the num-

ber of basis functions, so the computational cost is generally trivial. Furthermore, it

only requires the observed sequences of current and future state-action pairs as input

and estimation of transition densities is not needed. The second approach, Approximate

Value Iteration (AVI), builds a sequence of approximations to the value terms by solving

a non-parametric estimation problem in each step. Almost any machine learning (ML)

method for prediction can be used for the approximation, including (but not limited to)

LASSO, Random Forests and Neural Networks. To our knowledge, the AVI method is

the first estimator for general DDC models that can be applied with any ML method

that achieves suitable rates of convergence. Hence, it naturally allows for very high-

dimensional state spaces. Again, no estimation of transition densities is required. We

derive the non-parametric rates of convergence for estimation of the value terms under

both methods. Using the estimates of these functions, estimation of the structural param-

eters can proceed with standard methods such as pseudo-maximum-likelihood estimation

(PMLE, Aguirregabiria and Mira (2002)) or minimum distance estimation.

The focus of this paper is on the estimation of structural parameters. To this end, our

procedures avoid modeling state transitions. Performing counterfactual analysis may still

require estimating the transition density, but we argue that our techniques remain useful,

even for this purpose, for two reasons: First, counterfactuals often involve transition

densities which are different from the ones that enter the estimation of the structural

parameters, see e.g., Kalouptsidi (2018). Our methods thus avoid estimation of the

original transition densities. Second, with continuous states, decoupling the estimation

of structural parameters and transition densities may be beneficial for robustness and

efficiency. For instance, it is common to employ AR (e.g., Aguirregabiria and Mira,

2007; Kalouptsidi, 2014) or VAR (Barwick and Pathak, 2015) specifications for transition

densities. However, these specifications involve a number of choices (e.g., dimension of

VARs, distribution of error terms etc.), which the structural parameter estimates may not

be robust to. Importantly, even when non-parametric estimates of transition densities are

available, plugging them into the second-stage PMLE criterion would seriously degrade
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the rate of convergence of structural parameters. One would need to adjust the PMLE

to account for the non-parametric first stage, but the form of this adjustment is not

known. By contrast, our proposals use non-parametric estimates of value functions, and

as described below, we derive the necessary adjustments to account for this. To perform

counterfactual analysis, we suggest combining our estimates of the structural parameters

- which do not rely on non-parametric estimates of transition densities and are robust to

mis-specification - with non-parametric estimates of the transition densities.

The previous discussion highlights that in continuous state spaces, estimation of struc-

tural parameters is inherently a problem of semi-parametric estimation. In fact, even

under discrete states, estimation of transition densities affects the variance of the struc-

tural parameter estimates, see Aguirregabiria and Mira (2002). If the state variables

are continuous, existing two-step CCP methods such as the PMLE are no longer
√
n-

consistent. We therefore derive a locally robust estimator by adding a correction term

to the PMLE criterion function that accounts for the non-parametric estimation of value

function terms using either of our TD methods. This construction is novel and does

not directly follow from existing results, e.g., in Chernozhukov et al. (2022).3 The re-

sulting estimator converges at parametric rates under continuous states and unrestricted

transition densities.

Our TD estimators are thus consistent, converge at parametric rates, and provide a

feasible estimation method when the states are continuous and/or the state space is

large. The latter is particularly important for the estimation of dynamic discrete games.

Existing methods for the estimation of dynamic games (Bajari et al., 2007; Aguirregabiria

and Mira, 2007; Pesendorfer and Schmidt-Dengler, 2008) require integrating out other

players’ actions, which can get quite cumbersome with many players, or under continuous

states. By contrast, our procedure works directly with the joint empirical distribution

of the states and their sample successors. Thus the ‘integrating out’ is done implicitly

within the sample expectations.
3Independently of our work and around the release of our initial draft, Chernozhukov et al. (2019) derived
orthogonal moment conditions for weighted averages of value functions of the form θ0 = E[w(x)V (x)],
where V (·) is an estimated value function and w(·) is a known weight function. Their approach to
deriving the orthogonal moment is different from ours as it is based on the methods by Ichimura and
Newey (2022), but similarly to us, it results in a debiasing function involving backward projections,
where the current state is regressed on a future one. Subsequent versions of Chernozhukov et al. (2019),
released after the first revision of our paper, extend their framework to estimate parameters of the
form θ = E[m(x, V )], where m(x, ·) is a nonlinear functional of V . In this generalized setting, their
construction of the locally robust correction term involves iterating the local-Riesz representer α(·) for
E[m(x, V )] backwards in what the authors call a ‘dynamic dual representation’. This approach closely
parallels the methodology of our paper.
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Finally, we also incorporate permanent unobserved heterogeneity into our methods by

combining the TD estimation with an Expectation-Maximization (EM) algorithm.

A range of Monte Carlo studies confirm the workings of our algorithms. First, we

present simulations based on the dynamic firm entry problem described in Aguirregabiria

and Magesan (2018). The model has seven structural parameters and five continuous

state variables. Existing methods often struggle at this dimensionality; certainly, state

space discretization would not work too well. We provide simulations for the linear semi-

gradient and the AVI method with Random Forests, with and without locally robust

corrections. Our estimators perform very well in this setting and they outperform CCP

estimators that employ discretization, leading to a 10-fold reduction in average mean

squared error across the structural parameters. They also perform similar to or outper-

form alternative methods such as the 2-step Euler-Equation (EE) approach of Aguirre-

gabiria and Magesan (2018), even though the latter only applies to a more restricted class

of models. Our linear semi-gradient method is even three times faster to compute.

Second, we test our algorithms for dynamic discrete games based on a firm entry game

similar to that outlined in Aguirregabiria and Mira (2007). We use the linear semi-

gradient method here and, as before, our estimates are closely centered around the true

parameters. Since this approach requires the selection of a set of basis functions for

the functional approximations, we present results for different sets (a second, third and

fourth order polynomial) in this model. Our findings suggest that the choice of basis

functions has only a small effect on the performance of the estimator. Moreover, a simple

cross-validation procedure may be used to select the preferred set of functions.

1.1. Related literature. Rust (1987) is the seminal work in the literature of DDC mod-

els. Motivated by computational considerations, Hotz and Miller (1993) propose the CCP

algorithm. The CCP idea has subsequently been refined by Hotz et al. (1994) who suggest

a simulation-based method, and Aguirregabiria and Mira (2002) who develop a pseudo-

likelihood estimator. Arcidiacono and Miller (2011) introduce and exploit the property

of finite dependence to speed up CCP estimation. Despite these advances, the estimation

of DDC models remains constrained by its computational complexity, particularly in the

large class of models where finite dependence does not hold. Estimation of dynamic dis-

crete games is particularly affected by these issues as the strategic interaction of agents

means that the state space increases exponentially with the number of players. It is also

uncommon for finite dependence to hold in dynamic games.
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The standard CCP algorithm is a two-step method, and is known to suffer from severe

bias in finite samples. Aguirregabiria and Mira (2002; 2007) address this issue by present-

ing a recursive CCP estimator, the nested pseudo-likelihood (NPL), that is equivalent

to the nested-fixed-point estimator (NFXP, Rust, 1987). Both are in turn equivalent

to partial-MLE, which employs a plug-in estimate of the transition density in the MLE

criterion, but they are not fully efficient (they are not equivalent to full-MLE). In fact,

with continuous states, estimation of the transition density introduces bias that is the

dominant term in determining the rate of convergence. This motivates the construction

of our locally robust estimator which gets rid of this bias and restores parametric rates.

In fact, our proposal can be more efficient than these methods even with a parametric

model for the transition density, see Section 4.2.2.

Ackerberg et al. (2014) and Chernozhukov et al. (2022) consider semi-parametric esti-

mation using ML methods when either finite dependence or a ‘terminal action’ property

holds (Hotz and Miller, 1993).4 Chernozhukov et al. (2022) also derive locally robust cor-

rections for this setting. Under finite dependence the PMLE criterion can be written as

a function of choice probabilities only (transition densities are not required); the authors

employ non-parametric estimates for choice probabilities and correct for this estimation

in the second stage. Computation and estimation is thus relatively simpler under finite

dependence. By contrast, our methods are applicable to the more general and difficult

setting where finite dependence may not apply. Nevertheless, the computational speed

of our linear semi-gradient procedure is comparable to methods that exploit finite depen-

dence. For dynamic games, Semenova (2018) allows for high-dimensional state spaces,

but the approach it is based on, due to Bajari et al. (2007), is not efficient, e.g., it may

only partially identify parameters even if the model is fully identified. On the other hand,

it allows for continuous actions, unlike our method.

In making use of TD learning, our methods relate to the literature on RL, particu-

larly batch RL. Batch RL describes learning about how to map states into actions to

maximize an expected payoff, using a fixed set of data (a so-called batch); see Lange

et al. (2012) for a survey.5 A key step in RL, including batch RL, is the estimation of

value functions. TD learning methods, first formulated by Sutton (1988), are the most

commonly used set of algorithms for this purpose. We study non-parametric estimation
4In a different application of ML methods in this context, Norets (2012) suggests combining Neural
Networks with a Bayesian MCMC approach.
5See Sutton and Barto (2018) for a detailed treatment of RL in genreal.
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of value functions using two TD methods: semi-gradients and AVI. Our analysis builds

on the techniques developed by Tsitsiklis and Van Roy (1997) for linear semi-gradients,

and Munos and Szepesvári (2008) for AVI. While Tsitsiklis and Van Roy (1997) focus on

online learning (i.e., where collection of data and estimation of value functions is con-

ducted simultaneously), we translate their methods to batch learning.6 With regards to

Munos and Szepesvári (2008), we differ in employing assumptions that are more common

to econometrics and our characterization of the rates is also different (compare Theorem

2 in their paper with our Theorem 3).

TD methods are distinct from other value function approximation methods developed

in economics, e.g., parametric policy iteration (Benítez-Silva et al., 2000), simulation and

interpolation (Keane and Wolpin 1994), and sieve value function iteration (Arcidiacono

et al., 2013). The last of these is similar in spirit to AVI with linear functional approxi-

mations. However, our semi-gradient method provides a linear approximation in a single

step without any need for iterations, and we analyze AVI under generic machine learning

methods. Our approximation results, and the technical arguments leading to them, are

thus different from Arcidiacono et al. (2013); in fact, their setting is different too as the

authors focus on estimating the ‘optimal’ value function, while the recursive terms in our

setting are more akin to a value function under a fixed policy.

2. Setup

We start with an infinite horizon single-agent DDC model in discrete time, where

observations consist of i = 1, . . . , n agents. We assume that the agents are homogeneous,

relegating extensions to unobserved heterogeneity to Online Appendix C. In each period,

an agent chooses among A mutually exclusive actions, denoted by a. Choosing a when

the current state is x gives the agent an instantaneous utility of z(a, x)⊺θ∗ + e, where

z(a, x) is a known vector-valued function of a, x and e is an idiosyncratic error term. We

denote the realized state of an agent i at time t by xit, and her corresponding action and

error by ait and eit. We assume that eit is an iid draw from some known distribution

ge(·). Let (a′, x′) denote the one-period ahead random variables following the actions

and states (a, x), where x′ ∼ K(·|a, x), with K(·|a, x) denoting the transition density

given a, x (more precisely, it is the Markov kernel). We do not make any parametric

assumptions about K(·|a, x). The utility from future periods is discounted by β.
6See also Chen and Qi (2022) for related results on Q-learning under series approximations.
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Agent i chooses actions ai = (ai1, ai2, . . . ) to sequentially maximize the discounted sum

of payoffs

E

[ ∞∑
t=1

βt {z(xit, ait)⊺θ∗ + eit}
]
.

The econometrician observes a panel consisting of state-action pairs for all individuals,

(xi, ai) = {(xi1, ai1), . . . , (xiT , aiT )}, for T periods (note, however, that the agent maxi-

mizes an infinite horizon objective, not a fixed T one). Typically T ≪ n in applications,

so we work within an asymptotic regime where n → ∞ but T is fixed. Using this data,

the econometrician aims to recover the structural parameters θ∗.

In this paper, we study the CCP approach for estimating θ∗ (Hotz and Miller, 1993).

CCP methods are based on the conditional choice probabilities of choosing action a given

state x. We denote these by Pt(a|x) for a given period t but henceforth drop the subscript

t with the idea that it can be made a part of the state variable x, if needed (we should also

add that some of our theoretical results are based on assuming stationarity, i.e., Pt(a|x)

is independent of t). Denote e(a, x) as expected value of the idiosyncratic error term e

given that action a was chosen. Hotz and Miller (1993) show that if the distribution of e

follows a Generalized Extreme Value (GEV) distribution, it is possible to express e(a, x)

as a function of the choice probabilities P (a|x), i.e., e(a, x) = G(P (a|x)). We assume

that e follows a Type I Extreme Value distribution, which is perhaps the most common

choice in applications. In this case e(a, x) = γ− lnP (a|x), where γ is the Euler constant.

Using the standard CCP approach, under the given distributional assumptions, the

parameters are obtained as the maximizers of the pseudo-log-likelihood function

Q(θ) =
n∑

i=1

T −1∑
t=1

ln exp {h(ait, xit)⊺θ + g(ait, xit)}∑
a exp {h(a, xit)⊺θ + g(a, xit)}

, (2.1)

where for any (a, x), h(·) and g(·) solve the following recursive expressions:7

h(a, x) = z(a, x) + βE [h(a′, x′)|a, x] , (2.2)

g(a, x) = βE [e(a′, x′) + g(a′, x′)|a, x] .

Here, E[·|a, x] denotes the expectation over the distribution of (a′, x′) conditional on

(a, x); it is a function of K(·|a, x), P (·|x). Both h(a, x) and g(a, x) have a ‘value-function’

form, which turns out to be useful for our approach.
7Note that h(ait, xit) = E

[∑∞
τ=t β

(τ−t)z(aiτ , xiτ )
∣∣ ait, xit

]
, i.e., we can interpret h(ait, xit)⊺θ as the

expected discounted utility (excluding the error term) given the current state ait, xit. A similar inter-
pretation holds for g(·). See Aguirregabiria and Mira (2010) for a further description.
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Clearly, h(·) and g(·) are functions of K(·|·) and P (·|·). Since the latter are unknown,

current literature generally proceeds by first estimating these as (K̂, P̂ ). Typically, K̂ is

obtained by MLE based on a parametric form of K(x′|a, x; θf ), while P̂ is estimated non-

parametrically using either a blocking scheme or kernel regression. Then, given (K̂, P̂ ),

h(·) and g(·) are estimated by solving the recursive equations (2.2). In the next section,

we propose an alternative algorithm for maximizing Q(θ) that directly estimates h(·) and

g(·) in a single step without requiring any knowledge about or estimation of K(·|·).

Notation. We assume that the distribution of (ait, xit, ait+1, xit+1) is time stationary.

This greatly simplifies our notation. It is not necessary for our results on the ap-

proximation properties of our TD methods, see Appendix A, but we do require it for

deriving a locally robust estimator. Since the transition density and choice proba-

bilities are time independent (the latter due to Blackwell’s theorem), the stationar-

ity assumption is equivalent to supposing that {ait, xit, ait+1, xit+1}i are random draws

from the ergodic, i.e., long-run distribution of (a, x, a′, x′).8 Let P denote such a dis-

tribution over (a, x, a′, x′), and E[·] the corresponding expectation over P. Define En[·]

as the expectation over the empirical distribution, Pn, of (a, x, a′, x′). In particular,

En[f(a, x, a′, x′)] := (n(T − 1))−1∑n
i=1

∑T −1
t=1 f(ait, xit, ait+1, xit+1), i.e., we always drop

the last time period in the summation index even if f(·) does not depend on a′, x′.

Let H denote the space of all square integrable functions over the domain A × X of

(a, x). Define the pseudo-norm ∥·∥2 over H as ∥f∥2 := E[|f(a, x)|2]1/2 for all f ∈ H. We

use |·| to denote the usual Euclidean norm on a Euclidean space.

3. Temporal-difference estimation

This section presents our TD estimation of h(·) and g(·). Note that h(·) is a vector

of the same dimension as θ∗. Our methods provide functional approximations separately

for each component h(j) of h. To simplify notation, we drop the superscript j indexing

the elements of h(·) and proceed as if the latter, and therefore θ∗, is a scalar. However,

all our results hold for general h(·), as long as each of its elements is treated separately.
8This is a slightly stronger requirement than the one imposed by Aguirregabiria and Mira (2002), who
assume only that {ait, xit, ait+1}i are i.i.d. draws from a distribution P̆ satisfying P̆(xit = x) > 0 for
all x ∈ support(X). In the discrete case, P̆ and the ergodic distribution P are mutually absolutely
continuous, with dP̆/dP ≤ C < ∞. As a result, replacing P with P̆ would only introduce a constant
multiplicative factor in our results, without altering the convergence rates. Moreover, as Aguirregabiria
and Mira (2002) note, the i.i.d. assumption is often used as a convenient approximation for time-
series dynamics. But the equivalence between time-series and cross-sectional analysis holds only under
the ergodic distribution, which guarantees that cross-sectional expectations coincide with long-run time
averages.
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For any candidate function, f(a, x), for h(a, x), denote the TD error by

δz(a, x, a′, x′; f) := z(a, x) + βf(a′, x′)− f(a, x),

and the dynamic programming operator by

Γz[f ](a, x) := z(a, x) + βE[f(a′, x′)|a, x].

Clearly, h(a, x) is the unique fixed point of Γz[·]. TD estimation involves approximating

h(a, x) using a functional class F , where each element h(·;ω) of F is indexed by a finite-

dimensional vector ω. The aim is to ostensibly minimize the mean-squared TD error

TDE(ω) := E
[
∥z(a, x) + βh(a′, x′;ω)− h(a, x;ω)∥2]

.

However, this minimization problem is neither computationally feasible nor is it proven

to converge when the true h /∈ F . Instead, two approaches are commonly used.

The first approach, the semi-gradient method, involves updating ω as

ωj+1 = ωj + αE [{z(a, x) + βh(a′, x′;ωj)− h(a, x;ωj)}∇ωh(a, x;ωj)] (3.1)

for some small value of α. As the name suggests, the above is not a complete gradient

as the derivative does not take into account how ω affects the ‘target’, i.e., the future

value h(a′, x′;ω). Nevertheless, for linear functional classes F , it is possible to explicitly

characterize the limit point of the updates, ω∗, and compute it directly. Section 3.1

describes this in greater detail. In the RL literature, it is common to employ semi-

gradients with Neural Networks as the functional class F , but it appears difficult to

extend our theoretical analysis to this setting (we can, however, use Neural Networks

with our AVI procedure described below).

The second approach, Approximate Value Iteration (AVI; Munos and Szepesvári, 2008),

employs the idea of ‘target networks’. Here, the parameters in the future value of h are

fixed at the current ω, and the functional parameters iteratively updated as

ωj+1 = arg min
ω

E
[
∥z(a, x) + βh(a′, x′;ωj)− h(a, x;ω)∥2]

. (3.2)

Clearly, the semi-gradient method and AVI are closely related: if one were to solve the

problem in (3.2) using gradient descent, the updates within each iteration would look

similar to (3.1) except for fixing the value of ω in h(a′, x′;ω) at the past values. After

the updates converge, i.e., at the end of the iteration, h(a′, x′;ω) is revised with the new
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ω. The semi-gradient approach can thus be considered a one-step variant of AVI. Section

3.2 describes AVI in more detail. We characterize the theoretical properties of AVI under

general functional classes F including Neural Networks, Random Forests, LASSO etc.

The approximation to g follows similarly after replacing δz(·; f),Γz[·] by

δe(a, x, a′, x′; f) := βe(a′, x′) + βf(a′, x′)− f(a, x),

Γe[f ](a, x) := βE[e(a′, x′) + f(a′, x′)|a, x].

3.1. Semi-gradients. Let ϕ(a, x) consist of a set of basis functions over the domain

(a, x). Then the linear approximation class is F ≡ {ϕ(a, x)⊺ω : ω ∈ Rkϕ}, where kϕ =

dim(ϕ). Denote the projection operator onto F by Pϕ:

Pϕ[f ](a, x) := ϕ(a, x)⊺E[ϕ(a, x)ϕ(a, x)⊺]−1E[ϕ(a, x)f(a, x)].

For linear basis functions, it can be shown, e.g., Tsitsiklis and Van Roy (1997), that

the sequence of functional approximations h(a, x;ωj) := ϕ(a, x)⊺ωj converges to h∗ :=

ϕ(a, x)⊺ω∗, defined as the fixed point of the projected dynamic programming operator

PϕΓz[·] (i.e., PϕΓz[h∗] = h∗). Based on this characterization, we show in Lemma 1

(Online Appendix B.2) that h∗(a, x) = ϕ(a, x)⊺ω∗, where

ω∗ = E
[
ϕ(a, x) (ϕ(a, x)− βϕ(a′, x′))⊺

]−1
E [ϕ(a, x)z(a, x)] . (3.3)

Lemma 2 in Online Appendix B.2 assures that E [ϕ(a, x) (ϕ(a, x)− βϕ(a′, x′))⊺] is indeed

non-singular as long as β < 1 and E[ϕ(a, x)ϕ(a, x)⊺] is non-singular. While ω∗ cannot

be computed directly, we can obtain an estimator, ω̂, by replacing E[·] with the sample

expectation En[·]:

ω̂ = En

[
ϕ(a, x) (ϕ(a, x)− βϕ(a′, x′))⊺

]−1
En [ϕ(a, x)z(a, x)] . (3.4)

Using ω̂, we estimate h(·) as ĥ(a, x) = ϕ(a, x)⊺ω̂.

We now turn to the estimation of g(·). As with h(·), we approximate g(·) using basis

functions r(a, x), which may generally be different from ϕ(a, x). Let Pr denote the pro-

jection operator onto the space {r(a, x)⊺ξ : ξ ∈ Rkr}, where kr = dim(r). The limit of

the semi-gradient iterations is g∗(a, x) := r(a, x)⊺ξ∗, defined as the fixed point of PrΓe[·].

We thus obtain the following characterization of ξ∗ in analogy with (3.3):

ξ∗ = E
[
r(a, x) (r(a, x)− βr(a′, x′))⊺

]−1
E [βr(a, x)e(a′, x′)] . (3.5)

11



In the above, e(a, x) = γ − lnP (a|x) is a function of unknown choice probabilities.

Denote η(a, x) := P (a|x). Suppose that we have access to a non-parametric estimator η̂

of η, e.g., through series or kernel regression. We can then use this estimate to obtain

e(a, x; η̂) := γ − ln η̂(a, x). This in turn enables us to estimate ξ∗ using ξ̂, computed as

ξ̂ = En

[
r(a, x) (r(a, x)− βr(a′, x′))⊺

]−1
En [βr(a, x)e(a′, x′; η̂)] . (3.6)

Using the above, we estimate g(·) as ĝ(a, x) = r(a, x)⊺ξ̂. Algorithm 3 in Online Appendix

D describes the estimation steps for both ω̂ and ξ̂.

Interestingly, estimation of ξ∗ is unaffected to a first order by the estimation of η̂, even

though the latter converges to the true η at non-parametric rates (see Section 4 for a

formal statement). This is because of an orthogonality property for the estimation of ξ:

∂ηE [βr(a, x)e(a′, x′; η)] = 0, (3.7)

where ∂η· denotes the Fréchet derivative with respect to η. To show (3.7), expand

E [βr(a, x)e(a′, x′; η)] = E [βr(a, x)E [e(a′, x′; η)| x′]]

= E [βr(a, x)E [γ − ln η(a′, x′)| x′]] , (3.8)

where the first equality follows from the Markov property. Consider the functional

M(η̃) := E [ ln η̃(a′, x′)| x′] at different candidate values η̃(·, ·). At the true conditional

choice probability, η, M(η̃) becomes the conditional entropy of P (a|x′) and attains its

maximum. Hence, ∂ηE [ ln η(a′, x′)| x′] = 0 and (3.7) follows from (3.8). Consequently, ξ̂

is a locally robust estimator for ξ.

Computation of ω̂ and ξ̂ is very cheap as it only involves solving linear equations of

dimension dim(ϕ) and dim(r), respectively. Using ĥ(a, x) and ĝ(a, x), we can in turn

estimate θ∗ in many different ways. For instance, we can use the PMLE estimator

θ̃ = arg max
θ

Q̂(θ); Q̂(θ) :=
n∑

i=1

T −1∑
t=1

ln
exp

{
ĥ(ait, xit)θ + ĝ(ait, xit)

}
∑

a exp
{
ĥ(a, xit)θ + ĝ(a, xit)

} . (3.9)

However, such plug-in estimates are sub-optimal. In Section 4.2, we suggest a locally

robust version of (3.9).

Suppose that the underlying states and actions are discrete, and that our algorithm

uses the set of all discrete elements of x, a as basis functions. We show in Online Appendix

12



B.1 that the resulting estimate of h(a, x) is identical to that obtained from the standard

CCP estimators, if the choice and transition probabilities were estimated using cell values.

A limitation of the linear semi-gradient method is that it requires one to choose a series

basis and also does not allow for high-dimensional state spaces (i.e., dim(x) ∝ n). The

AVI method, described below, does not share this limitation.

3.2. Approximate Value Iteration (AVI). For a feasible estimation procedure using

AVI, we can replace E[·] by En[·] in (3.2). The procedure builds a sequence of approxi-

mations {ĥj; j = 1, . . . , J} for h, where

ĥj+1 = arg min
f∈F

En

[∥∥∥z(a, x) + βĥj(a′, x′)− f(a, x)
∥∥∥2
]
. (3.10)

The process can be started with an arbitrary initialization, e.g., ĥ1(a, x) = z(a, x). The

maximum number of iterations, J , is only limited by computational feasibility.9

The minimization problem (3.10) is equivalent to a prediction problem using the func-

tional class F , where the outcomes are z(a, x) + βĥj(a′, x′). Hence, the estimation target

for ĥj+1 is the conditional expectation E[z(a, x)+βĥj(a′, x′)|a, x] ≡ Γz[ĥj](a, x), i.e., each

ĥj+1 is a non-parametric approximation to Γz[ĥj], and in this manner AVI builds a series

of approximate value function iterations.

The interpretation of (3.10) as a prediction problem enables us to employ any machine

learning method devised for prediction, including (but not limited to) LASSO, Random

Forests and Neural Networks. Our theoretical results show that it is possible to estimate

h at suitably fast rates under very weak assumptions on the non-parametric estimation

rates of machine learning methods.

The estimation procedure for g(·) is similar: we construct a sequence of approximations

{ĝj, j = 1, . . . , J} for g as

ĝj+1 = arg min
f∈F

En

[
∥βe(a′, x′; η̂) + βĝj(a′, x′)− f(a, x)∥2]

. (3.11)

As in Section 3.1, it will be shown that the estimation error of η is first-order ignorable

for the estimation of g. Using ĥ(a, x) and ĝ(a, x), we can, as before, estimate θ∗ in many

different ways, including the PMLE estimator (3.9).

Compared to the semi-gradient approach, AVI is computationally more expensive as

it requires solving J prediction problems (in Section 4.1 we show that in the worst case
9In practice, we suggest monitoring ε2

j := En

[
∥ĥj+1−ĥj∥2]

/En

[
∥ĥj−En[ĥj]∥2], the L2 distance between

successive iterations scaled by the variance of ĥj . We could keep increasing J until εJ goes below a
pre-determined threshold, say 0.01.
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J ≈ lnn, but this can be substantially reduced through good initializations). However,

semi-gradient methods require differentiable classes of functions (e.g., Random Forests

are not allowed) and it appears difficult to characterize their theoretical properties beyond

the case of linear basis functions.

A note on implementing (3.10): Since z(a, x) is known, we recommend running a non-

parametric regression of only ĥj(a′, x′) on (a, x) at each step. We can then multiply the

resulting non-parametric estimator by β and add back z(a′, x′) to obtain the next estimate

ĥj+1(·). A similar comment applies to (3.11). Algorithm 1 describes the estimation steps.

Algorithm 1 AVI using Random Forest
Require: Non-parametric estimate η̂; initial values ĥ1, ĝ1; J (# iterations)

1: for j = 1, 2, . . . , J − 1: do

2: Predict βĥj(a′, x′) and βe(a′, x′, η̂)+βĝj(a′, x′) using (a, x) with Random Forest, obtain prediction

functions h̃j+1(·) and ĝj+1(·)

3: ĥj+1(·)← h̃j+1(·) + z(·)

4: end for

5: Return ĥ(a, x) = h̃J(a, x) + z(a, x) and ĝ(a, x) = ĝJ(a, x)

Notes: We recommend estimating η with a logit model using a 2nd or 3rd order polynomial in x, and
setting ĥ1 = (1− β)−1En[z(a, x)], ĝ1 = β(1− β)−1En[e(a′, x′; η̂)] and J = 20 as defaults (or else, employ
the procedure set out in Footnote 9 for J). The Random Forest tuning parameters ntree and mtry can
be kept at default values, but we suggest checking whether the results change meaningfully if mtry varies
by ±1 (if they do, a cross-validation function can be used to determine mtry, e.g., rfcv in R).

3.3. Tuning parameters. Both the semi-gradient and AVI methods require choosing

tuning parameters. For AVI this is straightforward: as each iteration is a non-parametric

estimation problem, the tuning parameters can be chosen in the usual manner, e.g.,

through cross-validation. In the case of linear semi-gradient methods, the tuning param-

eters are the dimensions kϕ = dim(ϕ) and kr = dim(r) of the basis functions. In analogy

with AVI, we propose selecting both through a procedure akin to cross-validation. The

value of ω is estimated using a training sample and its performance evaluated on a

hold-out or test sample, where the performance is measured in terms of the empirical

mean-squared TD error En,test[δ2
z(a, x, a′, x′; ĥ)] on the test dataset. The values of kϕ, kr

are chosen to minimize the mean squared TD error (see Section 6.2.1 for an example).

3.4. Unobserved heterogeneity. In Online Appendix C, we incorporate permanent

unobserved heterogeneity by pairing our TD methods with the sequential Expectation-

Maximization (EM) algorithm (Arcidiacono and Jones, 2003). This algorithm can handle
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discrete heterogeneity in both individual utilities and transition densities. Monte Carlo

evidence suggests that the algorithm works well in practice (see Online Appendix E.2).

4. Theoretical Properties of TD estimators

4.1. Estimation of non-parametric terms. We characterize rates of convergence for

estimation of h(·) and g(·) under both semi-gradients and AVI.

4.1.1. Linear semi-gradients. We impose the following assumptions for estimation of h(·).

Assumption 1. (i) The basis vector ϕ(a, x) is linearly independent (i.e., ϕ(a, x)⊺ω

= 0 for all (a, x) if and only if ω = 0). Additionally, the eigenvalues of E[ϕ(a, x)

ϕ(a, x)⊺] are uniformly bounded away from zero for all kϕ := dim(ϕ).

(ii) |ϕ(a, x)|∞ ≤M for some M <∞.

(iii) There exists C <∞ and α > 0 such that ∥h− Pϕ[h]∥2 ≤ Ck−α
ϕ .

(iv) The domain of (a, x) is a compact set, and |z(a, x)|∞ ≤ L for some L <∞.

(v) kϕ →∞ and k2
ϕ/n→ 0 as n→∞.

Assumption 1(i) rules out multi-collinearity in the basis functions. This is easily sat-

isfied. Assumption 1(ii) ensures that the basis functions are bounded. This is again a

mild requirement and is easily satisfied if either the domain of (a, x) is compact, or the

basis functions are chosen appropriately (e.g., a Fourier basis). Assumption 1(iii) is a

standard condition on the rate of approximation of h(a, x) using a basis approximation.

The value of α is related to the smoothness of h(·). Newey (1997) shows that for splines

and power series, α = r/d, where r is the number of continuous derivatives of h(a, ·)

and d is the dimension of x. Similar results can also be derived for other approximating

functions such as Fourier series, wavelets and Bernstein polynomials. The smoothness

properties of h(a, ·) are discussed in Online Appendix B.3.2, where we provide primitive

conditions on z(a, x), K(x′|a, x) that ensure existence of r continuous derivatives of h(a, ·)

for each a ∈ A. Assumption 1(iv) requires z(a, x) to be bounded. Finally, Assumption

1(v) specifies the rate at which the dimension of the basis functions is allowed to grow.

The rate requirements are mild, and are the same as those employed for standard series

estimation. For the theoretical properties, the exact rate of kϕ is not relevant up to a

first order since we propose estimators of θ∗ that are locally robust to estimation of h(·).

We then have the following theorem on the estimation of h(a, x):

Theorem 1. Under Assumption 1, the following holds:
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(i) Both ω∗ and ω̂ exist, the latter with probability approaching one.

(ii) ∥h(a, x)− ϕ(a, x)⊺ω∗∥2 ≤ (1− β)−1 ∥h− Pϕ[h]∥2 ≤ C(1− β)−1k−α
ϕ .

(iii) The L2 error for the difference between h(a, x) and ϕ(a, x)⊺ω̂ is bounded as

∥h(a, x)− ϕ(a, x)⊺ω̂∥2 = Op

(
(1− β)−1

{
kϕ√
n

+ k−α
ϕ

})
.

We prove Theorem 1 in Appendix A.1 by adapting the results of Tsitsiklis and Van Roy

(1997). Part (i) ensures that the population and empirical TD fixed points exist. Parts

(ii) and (iii) imply that the approximation bias and MSE of linear semi-gradients are

analogous to those of standard series estimation apart from a (1− β)−1 factor.

For the estimation of ξ̂ we make use of cross-fitting as a technical device to obtain easy-

to-verify assumptions on the estimation of η. This entails the following: we randomly

partition the data into two folds. We estimate ξ̂ separately for each fold using η̂ estimated

from the opposite fold. The final estimate of ξ∗ is the weighted average of ξ̂ from both the

folds. For specific estimation methods, e.g., series estimation, it is possible to derive our

theoretical results without cross-fitting; the latter may then be unnecessary in practice.

We impose the following assumptions for the estimation of g(a, x).

Assumption 2. (i) The basis vector r(a, x) is linearly independent, and the eigenvalues

of E[r(a, x)r(a, x)⊺] are uniformly bounded away from zero for all kr := dim(r).

(ii) |r(a, x)|∞ ≤M for some M <∞.

(iii) There exists C <∞ and α > 0 such that ∥g − Pr[g]∥2 ≤ Ck−α
r .

(iv) The domain of (a, x) is a compact set, and |e(a, x)|∞ ≤ L <∞.

(v) kr →∞ and k2
r/n→ 0 as n→∞.

(vi) ξ̂ is estimated from a cross-fitting procedure described above. The conditional choice

probability function satisfies η(a, x) > δ > 0, where δ is independent of a, x. Additionally,

∥η − η̂∥∞ = op(1) and ∥η − η̂∥2
2 = op(n−1/2).

Assumption 2 is a direct analogue of Assumption 1, except for the last part which pro-

vides regularity conditions when η(·) is estimated. These conditions are typical for locally

robust estimates and only require the non-parametric function η(a, x) to be estimable at

faster than n−1/4 rates. This is easily verified for most non-parametric estimation meth-

ods such as kernel or series regression. Under these assumptions, we have the following

analogue of Theorem 1, which we prove in Appendix A.2 .

Theorem 2. Under Assumption 2, the following holds:
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(i) Both ξ∗ and ξ̂ exist, the latter with probability approaching one.

(ii) ∥g(a, x)− r(a, x)⊺ξ∗∥2 ≤ (1− β)−1 ∥g − Pr[g]∥2 ≤ C(1− β)−1k−α
r .

(iii) The L2 error for the difference between g(a, x) and r(a, x)⊺ξ̂ is bounded as

∥∥∥g(a, x)− r(a, x)⊺ξ̂
∥∥∥

2
= Op

(
(1− β)−1

{
kr√
n

+ k−α
r

})
.

4.1.2. Approximate Value Iteration. We can expand the estimation error
∥∥∥h− ĥJ

∥∥∥
2

in

terms of the non-parametric estimation errors
∥∥∥Γz[ĥj−1]− hj

∥∥∥
2

for j = 1, . . . , J . In par-

ticular, since Γz[h] = h and Γz[·] is a β-contraction, we have
∥∥∥h− ĥj

∥∥∥
2
≤
∥∥∥Γz[h]− Γz[ĥj−1]

∥∥∥
2

+
∥∥∥Γz[ĥj−1]− ĥj

∥∥∥
2

≤ β
∥∥∥h− ĥj−1

∥∥∥
2

+
∥∥∥Γz[ĥj−1]− ĥj

∥∥∥
2
.

Iterating the above gives

∥∥∥h− ĥJ

∥∥∥
2
≤ βJ−1

∥∥∥h− ĥ1

∥∥∥
2

+
J∑

j=2
βJ−j

∥∥∥Γz[ĥj−1]− ĥj

∥∥∥
2
. (4.1)

Equation (4.1) is a special case of error propagation (Munos and Szepesvári, 2008).

Recall that ĥ1 is an arbitrary initialization. It is thus straightforward to provide con-

ditions under which
∥∥∥h− ĥ1

∥∥∥
2

is bounded by some constant M1. As for the second term

in (4.1), recall from the discussion in Section 3.2 that the minimization problem (3.10)

corresponds to non-parametric estimation of Γz[ĥj−1]. Most machine learning methods

come with guarantees on the non-parametric estimation rate
∥∥∥Γz[ĥj−1]− ĥj

∥∥∥
2
.

We now describe our assumptions for AVI. Let X denote the d-dimensional space of x,

and define Wγ,∞
M (X ) as the Hölder ball with smoothness parameter γ:

Wγ,∞
M (X ) :=

{
f : max

0<|p|≤γ
sup
x∈X
|Dpf | < M

}
.

Assumption 3. There exist M0,M <∞ such that:

(i) The domain, X , of x is compact, |h|∞ ≤M0 and h(a, ·) ∈ Wγ,∞
M (X ) for each a.

(ii)
∣∣∣ĥ1

∣∣∣
∞
≤M0 and

∥∥∥h− ĥ1

∥∥∥
2
≤M1 for some M1 <∞.

(iii) |Γz[f ]|∞ ≤M0 and Γz[f ](a, ·) ∈ Wγ,∞
M (X ) for all a ∈ A and {f : |f |∞ ≤M0}.

(iv) The candidate class of functions F is such that |f |∞ ≤M0 for all f ∈ F . Addition-

ally, consider the non-parametric estimation problem (with i.i.d. observations i = 1, . . . , n

and T fixed): f̂ = arg minf̃∈F
∑n

i=1
∑T −1

t=1 (yit − f̃(ait, xit))2, where yit is compactly sup-

ported and E[yit|ait, xit] = f(ait, xit) for some f ∈ Wγ,∞
M (X ). Then, uniformly over all
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f ∈ Wγ,∞
M (X ), E

[∥∥∥f − f̂∥∥∥
2

]
≤ Cn−c for constants C < ∞, c > 0 independent of n, but

C may depend on M,M0, γ and c on γ.

Assumption 3(i) is not needed to obtain a convergence rate for the AVI estimator,

but we state it here as it is useful for subsequent results. The assumption of γ-Hölder

continuity is taken from Farrell et al. (2021). Assumption 3(ii) is a mild condition on the

initialization ĥ1. Assumption 3(iii), which is novel to this paper, is a crucial smoothness

condition requiring the operator Γz[·](a, ·) to map all bounded f ontoWγ,∞
M (X ). In Online

Appendix B.3.2, we show that both requirements in Assumption 3(iii) are satisfied if

z(a, ·) and K(x′|a, ·) are γ-Hölder continuous.

Assumption 3(iv) is a high-level condition on the machine learning (ML) method F .

The requirement of bounded f implies that the ML method cannot diverge in the l∞ sense,

see Farrell et al. (2021) for a discussion of this in the context of multi-layer perceptrons

(MLPs). The second part of Assumption 3(iv) implies that the ML method is able to

non-parametrically approximate all functions in Wγ,∞
M (X ) at the rate of at least n−c.

Most ML methods are proven to satisfy this. Consider, for instance, the class F of MLPs

of width W and depth L; MLPs and, more generally, Neural Networks are widely used

in RL. Farrell et al. (2021) show that for W ≍ n
d

2(γ+d) ln2 n and L ≍ lnn,

sup
f∈Wγ,∞

M (X )
E
[∥∥∥f − f̂∥∥∥

2

]
≤ C

n− γ
2(γ+d) ln4 n+

√
ln lnn
n

 .
Thus, Assumption 3(iv) is satisfied for MLPs. See Biau (2012) for related results on

Random Forests. Note that Assumption 3(iv) is also the only way in which the dimension

of x enters our estimation. Through a suitable choice of the ML method, e.g., Random

Forests or LASSO, we can allow dim(x) to be proportional to, or even bigger than n.

Assumptions 3(iii) and 3(iv) imply that one can estimate Γ[f ] for any |f |∞ ≤ M0 at

the n−c rate, i.e., supj E
[∥∥∥Γz[ĥj−1]− ĥj

∥∥∥
2

]
≤ Cn−c. Combined with (4.1), this proves:

Theorem 3. Suppose Assumptions 3(ii) to 3(iv) hold. Then, for all n large enough,

E
[∥∥∥h− ĥJ

∥∥∥
2

]
≤ C(1− βJ−1)

1− β n−c +M1β
J−1.

See Online Appendix B.3.3 for a formal proof of Theorem 3. The first term in the

expression for E
[∥∥∥h− ĥJ

∥∥∥
2

]
from Theorem 3 is the statistical rate of estimation of h.

The second term is the numerical error, which is seen to decline exponentially with the

number of iterations J . Setting J ≍ lnn will ensure the numerical error is smaller than
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the statistical rate of convergence. The number of iterations can be further reduced using

a good initialization, ĥ1, that makes M1 small. For instance, initializing using the linear

semi-gradient estimator, which is fast to compute, ensures M1 = op(1). Incidentally,

Theorem 3 justifies the use of Neural Networks for batch RL; to the best of our knowledge

this appears to be new even in the RL literature.

Turning to estimation of ĝ, we again assume cross-fitting is employed as in Theorem 2,

i.e., η̂ is computed from one half of the data, and ĝ is computed using AVI on the other

half, taking η̂ as given. Define Γe,η̃[f ](a, x) := βE[e(a′, x′; η̃) + f(a′, x′)|a, x], where η̃ is

any candidate function for η.

Assumption 4. (i) Let η̃(a, x) ∈ [0, 1] be any function such that infa,x η̃(a, x) > δ > 0.

Then, there exist M1,M,C < ∞, that may depend on δ but are otherwise indepen-

dent of η̃(·), such that Assumptions 3(i) - 3(iv) hold after replacing (h, ĥ1,Γz[·]) with

(g, ĝ1,Γe,η̃[·]).

(ii) ĝ is estimated from a cross-fitting procedure. The true conditional choice probability

function satisfies infa,x η(a, x) > δ > 0. Additionally, ∥η − η̂∥2
2 = op(n−1/2) and with

probability approaching one, infa,x η̂(a, x) > δ > 0.

Assumption 4(i) requires analogues of Assumption 3 to hold. In Online Appendix

B.3.2, we show that analogues of Assumptions 3(i) and 3(iii) are satisfied as long as

K(x′|a, ·) is γ-Hölder continuous (the other assumptions simply place restrictions on the

initial value and the ML method used). Assumption 4(ii) is similar to Assumption 2(vi).

Theorem 4. Suppose Assumption 4 holds. Then, with probability approaching one,

∥g − ĝJ∥2 ≤
C(1− βJ−1)

1− β n−c +M1β
J−1 + o(n−1/2).

See Online Appendix B.3.4 for a formal proof of Theorem 4.

4.2. Estimation of structural parameters. Estimation of h(a, x) and g(a, x) is inher-

ently non-parametric because these functions depend on two non-parametric terms: the

choice probabilities η(a, x), and the transition densities K(x′|a, x). The TD estimators

implicitly take both into account. Under the PMLE criterion, the estimates for K(x′|a, x)

and θ∗ are not orthogonal to each other and this extends to the lack of orthogonality be-

tween the estimates ĥ, ĝ and θ∗.10 We allow θ∗ to be vector-valued for the remainder of

this section.
10For discrete states, this lack of orthogonality implies an additional variance term for the structural
parameter estimates, though the rates of convergence are still parametric. With continuous states,
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We can recover
√
n-consistent estimation by adjusting the PMLE criterion to account

for the first-stage estimation of h and g. Denote (ã, x̃) := (a, x, a′, x′) andm(a, x; θ, h, g) :=

∂θ ln π(a, x; θ, h, g), where

π(a, x; θ, h, g) := exp {h(a, x)⊺θ + g(a, x)}∑
ă exp {h(ă, x)⊺θ + g(ă, x)} .

The PMLE estimator with plug-in estimates solves En[m(a, x; θ, ĥ, ĝ)] = 0, but this is

not robust to estimation of h, g. Let V (a, x; θ, h, g) := h(a, x)⊺θ + g(a, x) denote the

continuation value given (a, x). Also, define λ(a, x; θ) as the fixed point of the ‘backward’

dynamic programming operator

Γ†[f ](a, x) := ψ(a, x; θ, h, g) + βE
[
f(a−′, x−′)|a, x

]
, (4.2)

where (a−′, x−′) denotes the past actions and states preceding (a, x), and

ψ(a, x; θ, h, g) := −m(a, x; θ, h, g) = −
∑
ă∈A
{I(a = ă)− π(ă, x; θ, h, g)}h(ă, x). (4.3)

In Online Appendix B.4, we show that the locally robust moment corresponding to

m(a, x; θ, h, g) is given by

ζ(ã, x̃; θ, h, g, η, λ, θ∗) := m(a, x; θ, h, g) + λ(a, x; θ∗) {z(a, x)⊺θ∗ + βe(a′, x′; η)

+ βV (a′, x′; θ∗, h, g)− V (a, x; θ∗, h, g)} . (4.4)

Crucially, the correction term is not required to be a function of θ (though if we replaced

θ∗ in (4.4) with θ, that would be a valid correction term too).

The construction of the locally robust moment (4.4) is new. But it is infeasible since

θ∗, λ(·), h(·), g(·) and η(·) are unknown. However, we can replace these quantities with

consistent estimates. We have already described how to estimate η(·), h(·), g(·). Recall

that θ̃ denotes the plug-in estimator of θ∗ using (3.9); note that θ̃ consistently estimates

θ∗ but is not efficient. An estimator, λ̂(·), of λ(·) can then be obtained by applying either

of our TD estimation methods on (4.2), with θ̃, ĥ, ĝ, η̂ replacing θ∗, h, g, η. For instance,

using AVI, we could obtain iterative approximations {λ̂(j), j = 1, . . . , J} for λ(·) using

λ̂j+1 = arg min
f∈F

En

[∥∥∥ψ(a, x; θ̃, ĥ, ĝ) + βλ̂j(a−′, x−′)− f(a, x)
∥∥∥2
]
. (4.5)

however, the PMLE estimator with plug-in values of ĥ and ĝ will converge at slower than parametric
rates.
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Plugging in λ̂(·), ĥ, ĝ, η̂ into (4.4), we obtain the feasible locally robust moment

ζ(ã, x̃; θ, ĥ, ĝ, η̂, λ̂, θ̃) := m(a, x; θ, ĥ, ĝ) + λ̂(a, x; θ̃)
{
z(a, x)⊺θ̃ + βe(a′, x′; η̂)

+ βV (a′, x′; θ̃, ĥ, ĝ)− V (a, x; θ̃, ĥ, ĝ)
}
. (4.6)

Using the above, we can obtain a locally robust estimator, θ̂, as the solution to En[ζ(ã, x̃; θ, ĥ, ĝ, η̂, λ̂, θ̃)]

= 0. We recommend obtaining this using cross-fitting, see Section 4.2.1 for details. Com-

pared to the plug-in estimate (3.9), our locally robust estimator requires computation of

λ(·), but when linear semi-gradients are used to estimate h, g, we can even derive a closed-

form expression for λ(·), see Online Appendix B.5. Solving En[ζ(ã, x̃; θ, ĥ, ĝ, η̂, λ̂, θ̃)] = 0 is

also computationally easy; the correction term is a constant, and∇θζ(ã, x̃; θ, ĥ, ĝ, η̂, λ̂, θ̃) =

∇θm(a, x; θ, ĥ, ĝ) is negative definite (as the PMLE criterion is concave), so solving this

is no harder than solving the original moment condition without a correction term.

4.2.1.
√
n-consistent estimation. We focus on the general construction of the locally ro-

bust estimator, θ̂, using (4.6). As mentioned in the previous sub-section, we advocate

cross-fitting to obtain this estimator. Algorithm 2 describes the estimation steps.

Algorithm 2 Structural parameter estimation
Require: Non-parametric estimate η̂; initial values ĥ1, ĝ1; J (# iterations)

1: Split the data into two equal folds N1,N2

2: for each Nk, k = {1, 2}: do

3: Run Algorithm 1 to obtain ĥ(k), ĝ(k)

4: Obtain preliminary estimates θ̃(k) := arg maxθ(k) Q̂(θ(k)) as in (3.9)

5: Run Algorithm 5 (Online Appendix D) with ĥ(k), ĝ(k) and θ̃(k) as inputs to obtain λ̂(k)

6: Using plug-in quantities θ̃(−k), ĥ(−k), ĝ(−k), η̂(−k), λ̂(−k) from the other fold N−k, obtain θ̂(k) by

solving E(k)
n [ζ(ã, x̃; θ, ĥ(−k), ĝ(−k), η̂(−k), λ̂(−k), θ̃(−k))] = 0, as in (4.6), where E(k)

n [·] denotes the em-

pirical expectation using only observations from Nk

7: end for

8: Obtain the final estimate θ̂ = (θ̂(1) + θ̂(2))/2

Notes: We recommend estimating η with a logit model using a 2nd or 3rd order polynomial in x, and
setting ĥ1 = (1− β)−1En[z(a, x)], ĝ1 = β(1− β)−1En[e(a′, x′; η̂)] and J = 20 as defaults (or else, employ
the procedure set out in Footnote 9 for J). The Random Forest tuning parameters ntree and mtry can
be kept at default values, but we suggest checking whether the results change meaningfully if mtry varies
by ±1 (if they do, a cross-validation function can be used to determine mtry, e.g., rfcv in R).

Following the analysis of Chernozhukov et al. (2022), it can be shown that this estimator

has the same limiting distribution as the one based on (4.4). In particular, it achieves

parametric rates of convergence. We state the regularity conditions below:
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Assumption 5. (i) θ∗ ∈ Θ, a compact set, and E [m (a, x; θ, h, g)] = 0 ⇐⇒ θ = θ∗.

(ii) There exists a neighborhood, N , of θ∗ such that uniformly over θ ∈ N and

for ∥ h̃ − h ∥, ∥ g̃ − g ∥ sufficiently small,
∥∥∥∇θm(a, x; θ, h̃, g̃) −∇θm(a, x; θ∗, h̃, g̃)

∥∥∥ ≤
d(a, x) ∥θ − θ∗∥, where E[d(a, x)] < ∞. Furthermore, G := E [∇θm(a, x; θ∗, h, g)] is in-

vertible.

(iii)
∥∥∥ĥ− h∥∥∥

2
= op(n−1/4), ∥ĝ − g∥2 = op(n−1/4) and ∥η̂ − η∥2 = op(n−1/4). Further-

more, h, g are continuous,
∥∥∥ĥ∥∥∥

∞
, ∥ĝ∥∞ ≤ M < ∞ and there exists δ > 0 such that

infa,x η(a, x) > δ and infa,x η̂(a, x) > δ with probability approaching one.

(iv)
∥∥∥λ̂(·, ·; θ̃)− λ(·, ·; θ∗)

∥∥∥
2

= op(n−1/4).

Assumption 5(i) implies θ∗ is identified. When h, g are exactly known, m(·) is just the

derivative of the pseudo-log-likelihood (2.1); the latter is always concave. Assumption

5(i) is satisfied if E [∇θm (a, x; θ, h, g)] is strictly positive-definite at θ∗. This is essentially

equivalent to the requirement for identification in the discrete state space regime, which

previous work e.g., Aguirregabiria and Mira (2002), has also assumed.11 For instance,

when the action space is binary (a ∈ {0, 1}), direct computation shows that a sufficient

condition for Assumption 5(i) is:

E [η(1, x)η(0, x) {h(1, x)− h(0, x)} {h(1, x)− h(0, x)}⊺] ≻ 0,

where η(a, x) := π(a, x; θ∗, h, g) is the true conditional choice probability, and ‘≻ 0’ indi-

cates that the matrix in question is strictly positive-definite. In fact, under our assump-

tions (continuity of h, g and compactness of x), η(a, x) > δ > 0 independently of a, x, so

we can further rewrite the sufficient condition as Ω := E [{h(1, x)− h(0, x)} {h(1, x)− h(0, x)}⊺] ≻

0. This holds as long as h(1, x)−h(0, x) is not linearly dependent at (almost surely) every

x. For β = 0, it is equivalent to linear independence of z(1, x)− z(0, x).12

Assumption 5(ii) is a mild regularity condition that is similar to Assumption 4 in

Chernozhukov et al. (2022). The first part of Assumption 5(iii) follows from Theorems

1-4 under suitable conditions on the degree of smoothness of h, g. For instance, it is

satisfied for AVI with Neural Networks if γ ≥ d. The second part of Assumption 5(iii)

is mild, and is satisfied as long as ĥ, ĝ, η̂ are continuous (given that the support of x
11When the error distribution is unspecified, Buchholz et al. (2021) show that identification of θ∗ is
feasible only when β is sufficiently smaller than 1. Their findings do not directly apply to our setting as
we assume the errors follow a Type I Extreme Value distribution; however, we do also require β < 1.
12More generally, under the ergodic distribution, Ω = (1 − β2)−1{Ψ0 +

∑∞
j=0 β

2j(Ψj + Ψ⊺
j )}, where

Ψj := E [{z(1, xt)− z(0, xt)} {z(1, xt+j)− z(0, xt+j)}⊺]. One can then posit various conditions on β and
{Ψj}j such that Ω ≻ 0. For instance, if Ψj + Ψ⊺

j is positive semi-definite and Ψ0 ≻ 0, we have Ω ≻ 0 for
any β < 1. However, β = 1 is never possible. We leave open the discussion of alternative conditions.
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is compact). In fact, we also directly impose this restriction in the context of the AVI

estimator. Importantly Assumption 5(iii) only requires L2-convergence of ĥ, ĝ, η̂, and not

uniform convergence. This is due to the use of a locally robust moment together with

cross-fitting; see Chernozhukov et al. (2022) for a discussion of how they enable very mild

assumptions on the convergence rates of ML estimators.13

Assumption 5(iv) requires λ(·, ·; θ∗) to be estimable at faster than n−1/4 rates as well.

If h, g are known, it is straightforward to derive n−1/4 rates as in Theorems 1-4. For plug-

in estimation, we would need additional assumptions. For instance, we could employ

three-way sample splitting as in Chernozhukov et al. (2018) where the first third of the

sample is used to compute ĥ, ĝ, η̂, θ̃, and these estimates are then plugged into the second

third of the sample to estimate λ. Lemma 8 in Online Appendix B.6 then shows that

Assumption 5(iv) holds under the previous assumptions and some mild conditions on the

AVI estimator (4.5) as long as ĥ(a, ·), ĝ(a, ·) ∈ Wγ,∞
M (X ) for some M <∞ at each a ∈ A

and γ is sufficiently large. It is possible to verify Assumption 5(iv) without three-way

sample splitting as well, but this requires much stronger regularity conditions.

We are now ready to state the main result of this section.

Theorem 5. Suppose that either Assumptions 1, 2 & 5 (for linear semi-gradients) or

3-5 (for AVI) hold. Then the estimator, θ̂ of θ∗, based on (4.6) is
√
n-consistent, and

satisfies
√
n(θ̂ − θ∗) =⇒ N(0, V ),

where V = (G⊺Ω−1G)−1, with Ω := E [ζ(ã, x̃; θ∗, h, g, η, λ, θ∗)ζ(ã, x̃; θ∗, h, g, η, λ, θ∗)⊺].

The proof of the above theorem follows by verifying the regularity conditions of Cher-

nozhukov et al. (2022, Theorem 9), see Appendix A.3 for the details. For inference on θ̂,

the covariance matrix V can be estimated as V̂ = (V̂1 + V̂2)/2, where V̂1 =
(
Ĝ⊺

1Ω̂−1
1 Ĝ1

)−1

with (a similar expression holds for V̂2)

Ĝ1 = E(1)
n

 ∂ζ
(
ã, x̃; θ, ĥ(2), ĝ(2), η̂(2), λ̂(2), θ̃(2)

)
∂θ⊺

∣∣∣∣∣∣
θ=θ̂(2)

 , and

Ω̂1 = E(1)
n

[
ζ
(
ã, x̃; θ̂(2), ĥ(2), ĝ(2), η̂(2), λ̂(2), θ̃(2)

)
ζ
(
ã, x̃; θ̂(2), ĥ(2), ĝ(2), η̂(2), λ̂(2), θ̃(2)

)⊺]
.

In Online Appendix B.10, we show that V̂ is consistent for V under our stated assump-

tions.
13The intuitive reason for this is that cross-fitting ensures only the prediction properties of the non-
parametric estimator are relevant.
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4.2.2. On the relative efficiency of TD estimation. The TD estimator from (4.6) is robust

to non-parametric estimation of transition densities. When the transition density has a

parametric form, it is less efficient than the full-MLE estimator that jointly estimates

the structural and transition density parameters. However full-MLE is seldom, if ever,

used. Standard approaches such as NFXP and NPL are equivalent to partial-MLE, which

employs a plug-in estimate of the transition density. For this reason, neither NFXP nor

NLP are fully efficient: if we make the model for the transition density richer, while

still keeping it parametric, the performance of NFXP and NLP will start to degrade and

become worse than TD estimation. In the non-parametric regime, these methods lose
√
n-consistency. On the other hand, when the transition density is fully known, NFXP

and NPL are equivalent to full-MLE, and therefore more efficient than TD estimation.

Between these two extremes, whether or not TD estimation is more efficient than NFXP

will depend on the statistical complexity of the model used for the transition density.

An interesting open question is whether our estimator attains the semi-parametric

efficiency bound when the transition density is unknown. The GMM formulation of the

problem in (B.9)-(B.10) suggests this may be the case, but we leave this as a conjecture.

5. Estimation of dynamic discrete games

Our setup for dynamic games is based on Aguirregabiria and Mira (2010). We assume

a single Markov-Perfect-Equilibrium setup where multiple players i = 1, 2, . . . , n play

against each other in M different markets. Each player chooses among A mutually

exclusive actions to maximize an infinite horizon objective. We observe the state of play

for T time periods, where both T and the number of players n are fixed, while M →∞.

Utility of the players in any time period is affected by the actions of all the others, and

a set of states x that are observed by all players. The per-period utility is denoted by

zi(ai, a−i, x)⊺θ∗ + ei for each player i, for some finite-dimensional parameter θ∗, where

ai denotes player i’s action, a−i denotes the actions of all other players and ei is an

idiosyncratic error term. As in Section 3, we take θ∗ to be scalar to simplify the notation;

all our results continue to hold for vector-valued θ∗, as long as each dimension is treated

separately. Evolution of the states in the next period is determined by the transition

density K(x′|a, x) where a := (a1, . . . , an) denotes the actions of all the players. We

denote by xtm the state at market m in time period t, by atm the vector of actions by all

players at time t in market m, and by aitm the action of player i at time t in market m.

24



We also let Pi(ai|xt) denote the choice probability of player i taking action ai when the

state is xt , and define ei(ai, x) := γ − lnPi(ai|x).

As in the single-agent case, the parameter θ∗ can be obtained as solutions to the

pseudo-log-likelihood function:

Q(θ) =
n∑

i=1

M∑
m=1

T −1∑
t=1

ln exp {hi(aitm, xtm)θ + gi(aitm, xtm)}∑
a exp {hi(a, xtm)θ + gi(a, xtm)} , (5.1)

where hi(.) and gi(.) are now player-specific, and given by

hi(ai, x) = E[zi(a, x)|ai, x] + βE [hi(a′, x′)|ai, x] , (5.2)

gi(ai, x) = E [ei(a′, x′) + βgi(a′, x′)|ai, x] .

In contrast to (2.2), the expectation averages over the actions of the other players as well.

Previous literature estimates θ∗ using a two-step procedure: In the first step, the

conditional choice probabilities Pi(ai|xt) are calculated non-parametrically. These, along

with estimates of K(.) are then used to recursively solve for hi(.) and gi(.) using equation

(5.2). This step requires integrating over the actions of all the other players. Finally,

given the estimated values of hi(.) and gi(.), the parameter θ∗ is estimated through either

pseudo-maximum-likelihood (PML; Aguirregabiria and Mira, 2007), minimum distance

estimation (MDE; Pesendorfer and Schmidt-Dengler, 2008) or iterative versions of these

(Bugni and Bunting, 2021). By contrast, our algorithm is a straightforward extension

of those suggested in earlier sections for single-agent models. Let η̂i(ai, x) denote a non-

parametric estimate of the choice probabilities for player i and denote e(ai, x; η̂i) = γ −

ln η̂i(ai, x). We apply our TD methods on the recursion (5.2), separately for each player.

The linear semi-gradient estimates are given by ĥi(ai, x) = ϕ(ai, x)⊺ω̂i and ĝi(ai, x) =

r(ai, x)⊺ξ̂i, where

ω̂i = En

[
ϕ(ai, x) (ϕ(ai, x)− βϕ(a′

i, x
′))⊺

]−1
En [ϕ(ai, x)zi(ai, a−i, x)] ,

ξ̂i = En

[
r(ai, x) (r(ai, x)− βr(a′

i, x
′))⊺

]−1
En [βr(ai, x)e(a′

i, x
′; η̂i)] , (5.3)

and for any function f(·), we define

En[f(a, x, a′, x′)] := 1
M(T − 1)

M∑
m=1

T −1∑
t=1

f(atm, xtm, at+1m, xt+1m). (5.4)
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Similarly, the AVI iterations for hi(·), gi(·) are given by

ĥ
(j+1)
i = arg min

f∈F
En

[∥∥∥zi(ai, a−i, x) + βĥ
(j)
i (a′

i, x
′)− f(ai, x)

∥∥∥2
]
,

ĝ
(j+1)
i = arg min

f∈F
En

[∥∥∥βe(a′
i, x

′; η̂i) + βĝ
(j)
i (a′

i, x
′)− f(ai, x)

∥∥∥2
]
. (5.5)

If the players are symmetric (zi(ai, a−i, x) does not depend on player i) we can obtain

computationally faster and more precise estimates by pooling across players.

Importantly, neither of the estimation strategies (5.3) nor (5.5) require partialling out

other players’ actions, leading to a tremendous reduction of computation. The non-

parametric estimates ĥi, ĝi can be plugged into the PMLE criterion (5.1) to obtain an

estimate for θ∗ as

θ̃ = arg max
θ

∑
i

Q̂i(θ), where

Q̂i(θ) :=
M∑

m=1

T −1∑
t=1

ln
exp

{
ĥi(aitm, xtm)θ + ĝi(aitm, xtm)

}
∑

a exp
{
ĥi(a, xtm)θ + ĝi(a, xtm)

} . (5.6)

It is straightforward to construct a locally robust estimator for θ∗ in analogy with that

for single-agent models. We describe this in Online Appendix B.7. The convergence

properties of the locally robust estimators for games are also similar to those for single-

agent models; a formal statement is provided in Online Appendix B.8.

The PMLE criterion (5.6) with plug-in estimates for hi(.) and gi(.) is not efficient even

with discrete states, as discussed by Aguirregabiria and Mira (2007). However the values

of hi(.) and gi(.) can be plugged into other, more efficient objectives, such as the MDE

criterion with an efficient weighting matrix; Bugni and Bunting (2021) show that the

latter is more efficient than even iterated PMLE estimation. With continuous states,

however, one would need to employ locally robust corrections even for MDE to recover

parametric rates of convergence for estimation of θ∗. The locally robust correction term

can be constructed in a similar way as that for the PMLE criterion.

6. Simulations

In this section, we run two Monte Carlo simulations to test our methods, and compare

them to alternative approaches. Our first simulation is based on the firm entry problem

in Aguirregabiria and Magesan (2018). In the second set of Monte Carlo simulations, we
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test our estimation method for dynamic discrete games. The latter simulations are based

on the dynamic firm entry game used in Aguirregabiria and Mira (2007).14

Online Appendices E.2 and E.3 report additional simulations based on the famous Rust

(1987) bus engine replacement problem. Using this model, we provide results for a case

with permanent unobserved heterogeneity and also compare our methods to the estimator

proposed by Chernozhukov et al. (2018) for DDC models with finite dependence.

6.1. Firm entry problem. Consider the following dynamic firm entry problem de-

scribed in Aguirregabiria and Magesan (2018). A firm decides whether to enter (at = 1)

or not enter (at = 0) in a market for t = 1, ..., T time periods. The payoff when entering

is given by Πt = V Pt−FCt−ECt + εt, where V Pt, FCt and ECt denote the firm’s vari-

able profit, fixed cost and entry cost, and εt is a transitory shock that follows a logistic

distribution. Variable profit is given by V Pt = (θV P
0 + θV P

1 z1t + θV P
2 z2t) exp(ωt), where ωt

denotes the firm’s productivity shock, and z1t, z2t are exogenous state variables affecting

the price-cost margin in the market. The fixed cost is given by FCt = θF C
0 + θF C

1 z3t,

and the entry cost is given by ECt = (θEC
0 + θEC

1 z4t)(1− at−1), where z3t, z4t are further

exogenous state variables, and at−1 denotes the entry decision in period t− 1 which is an

endogenous state variable. The payoff of not entering is normalized to zero. The param-

eters θ∗ ≡
{
θV P

0 , θV P
1 , θV P

2 , θF C
0 , θF C

1 , θEC
0 , θEC

1

}
are the structural parameters of interest.

The exogenous state variables zjt, j ∈ {1, 2, 3, 4}, and ωt are continuous and follow AR(1)

processes, where zjt = γj
0 + γj

1zjt−1 + ejt, and ωt = γω
0 + γω

1 ωt−1 + eωt. The error terms

ejt, eωt follow normal N(0, 1) distributions. The discount factor β is 0.95.

To carry out the simulations, we choose values for the structural parameters θ∗ (θV P
0 =

0.5, θV P
1 = 1.0, θV P

2 = −1.0, θF C
0 = 1.5, θF C

1 = 1.0, θEC
0 = 1.0, θEC

1 = 1.0) and for

the autoregressive processes of zjt and ωt (γj
0 = 0.0, γj

1 = 0.6, γω
0 = 0.2, γω

1 = 0.6),

and discretize the exogenous state variables to obtain a transition matrix with a 6-point

support following Tauchen (1986). The resulting dimension of the state space is 2× 65 =

15, 552. The discretization of the support is for simulations only; our methods treat these

variables as continuous and do not require any prior knowledge of how they evolve (the

knowledge of AR(1) dynamics is also not used). We iterate on the value function to

obtain the vector of choice probabilities for each combination of the states, and use these

to derive the ergodic, i.e., steady-state distribution of the state variables. Using this

distribution, we generate data for 3000 firms, with T = 2 time periods.
14R code for all simulations is made available as part of the replication package.
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6.1.1. Simulation results - firm entry problem. Table 1 shows the results based on 1000

simulations using the linear semi-gradient and AVI methods. For the linear semi-gradient

method, we parameterize h(a, x) and g(a, x) using a first order polynomial in the state

variables.15 For AVI, we approximate h(a, x) and g(a, x) using a Random Forest, and

iterate the AVI procedure 20 times for each round of the simulations. For both the linear

semi-gradient and the AVI methods, we estimate the choice probabilities η that enter

e(a′, x′; η) using a logit model where the explanatory variables are the state variables,

their squares and interactions up to the second order.

We present results generated with and without the locally robust correction. For the

results without correction, we obtain estimates for θ∗ using (3.9). To generate the locally

robust estimates, we use moment equation (B.12) for the linear semi-gradient method,

and moment equation (4.6) for the AVI method where we employ a Random Forest to

derive an estimate for the λ(a, x, θ̃) term contained in the locally robust moment. As

before, the AVI method for estimation of λ(·) is iterated 20 times. We also use the

sample splitting method described in Section 4.2.1 for the locally robust estimators, and

we obtain the final θ̂ as weighted average of the θ∗ estimates from the two samples.

Both the linear semi-gradient and AVI estimates are closely centered around the true

values, but the latter is clearly preferable in terms of mean squared error (MSE). While

the locally robust estimator should in theory be preferable, we find that it produces

results which are similar and if anything have slightly higher MSE than the non-robust

versions. In fact, we find that there is very little bias to begin with, and the distribution

of the estimates under the non-robust versions are already very close to normal, see

Online Appendix E.1 for the plots of the finite sample distributions. The lower bias may

be due to the specific nature of the example, which falls under a special class of DDC

models called ‘dynamic-logit models’ (see Section 6.1.2). On the flip side, the locally

robust methods are associated with higher variance due to cross-fitting. So, overall, there

appears to be no gain from using the locally robust method in this example. Presumably,

the variability of locally robust estimators can be lowered by using more folds in the

cross-fitting procedure (we use two folds in all our examples); this would, however, come

at the expense of slower computation times.
15For the ω’s relating to parameters θV P

0 , θV P
1 , θV P

2 , θF C
0 , θF C

1 , and for ξ, the terms include a constant,
the exogenous state variables, the player’s binary choice at and the interactions of at with all terms in
the exogenous states. Given the set-up of the model, we also include the interactions z1t exp(ωt) and
z2t exp(ωt) as state variables. In addition to the terms included above, the ω’s relating to parameters
θEC

0 and θEC
1 also contain the terms (1 − at−1) and (1 − at−1)z4t, respectively. The total number of

terms included is 16 (17 for θEC
0 and θEC

1 ).
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6.1.2. Comparison with existing methods. Table 1 compares our methods to the two-step

Euler Equation (EE) approach of Aguirregabiria and Magesan (2018). As given in Aguir-

regabiria and Magesan (2018, eq. 30), the EE estimator is not universally applicable; it

can only be employed on the restricted class of ‘dynamic-logit models’ where the only

endogenous variable is the past action and all the other variables are exogenous.16 Our

estimation strategy, unlike EE, does not exploit this special feature of the model (which

is satisfied by the simulation study but is otherwise restrictive). Nevertheless, the linear

semi-gradient method without locally robust corrections is three times faster than EE,

albeit at the expense of a somewhat higher MSE.

On the other hand, the MSE of AVI is slightly lower than that of EE, but it is also

much slower. However, we think raw computation times do not paint the full picture here.

The reason AVI is slower is because we employ Random Forest (RF). The computational

time can be made an order of magnitude smaller using other ML techniques such as series

estimation, Ridge, LASSO or MARS, but that is not necessarily a reason to choose these

over RF. An analogy can be drawn here with prediction: despite being slower, RF is often

used in moderate and high-dimensional prediction problems as its predictive performance

is superior, and more importantly, it is less sensitive to how the state variables are

transformed. By contrast, both linear semi-gradient and EE approaches require choosing

a specification; we need to choose the family of basis functions for the former, and the

level and type of discretization for the latter. In practice, one typically runs specification

checks to ensure robustness, but this takes up significantly more computational time, and

in truly high-dimensional scenarios (e.g., when dim(x) ∝ n), finding the right specification

(e.g., the level of discretization) may not even be feasible. A major advantage of RF,

then, is that it does not require a specification and is also remarkably robust to tuning

parameter choices (Hastie et al., 2009, p.590). In many practical applications, we think

this advantage trumps the additional computational time that it involves.

Our locally robust corrections also make computations more time consuming, but are

needed to achieve
√
n-consistency under continuous states. The EE estimator is only

√
n-

consistent if the states are discrete, but for continuous states, discretization bias would

imply a loss of
√
n-consistency. A fair comparison of computational times would thus

require comparing the locally robust estimator with a locally robust version of EE, but

constructing the latter is beyond the scope of this paper.

16While we presume that an EE estimator can also be derived for more general models, the construction
and computation of the EE mapping with endogenous state variables is much more involved.
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Table 1. Simulations: Firm entry problem

Linear semi-gradient AVI 2-step EE

not locally robust locally robust not locally robust locally robust

DGP TDL MSE TDL MSE TDL MSE TDL MSE EE MSE
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

θV P
0 0.5 0.5028 0.0058 0.5087 0.0068 0.4877 0.0035 0.4844 0.0053 0.5052 0.0031

(0.0760) (0.0821) (0.0582) (0.0711) (0.0555)
θV P

1 1.0 0.9831 0.0050 1.0049 0.0058 1.0045 0.0034 1.0118 0.0051 1.0105 0.0034
(0.0689) (0.0762) (0.0581) (0.0704) (0.0572)

θV P
2 -1.0 -0.9839 0.0055 -1.0061 0.0065 -1.0059 0.0037 -1.0136 0.0053 -1.0119 0.0034

(0.0725) (0.0805) (0.0602) (0.0719) (0.0574)
θF C

0 1.5 1.5066 0.0220 1.5254 0.0257 1.5379 0.0166 1.5433 0.0232 1.5136 0.0150
(0.1482) (0.1583) (0.1231) (0.1460) (0.1218)

θF C
1 1.0 0.9746 0.0157 0.9916 0.0180 1.0090 0.0101 1.0041 0.0145 1.0044 0.0088

(0.1228) (0.1342) (0.1001) (0.1206) (0.0939)
θEC

0 1.0 0.9973 0.0101 1.0132 0.0117 0.9864 0.0103 0.9982 0.0145 1.0030 0.0104
(0.1003) (0.1076) (0.1007) (0.1203) (0.1018)

θEC
1 1.0 0.9948 0.0260 1.0163 0.0303 0.9645 0.0199 1.0082 0.0291 0.9081 0.0240

(0.1613) (0.1735) (0.1365) (0.1705) (0.1248)
Total MSE 0.0901 0.1050 0.0674 0.0970 0.0681

Time per round 0.33 3.70 44.69 76.55 0.99
(in sec)

Notes: The table reports results based on 1000 simulations with 3000 firms. Column (1) shows the true parameter values in the model. Columns (2),
(4), (6), (8), (10) report the empirical mean and standard deviation (in parentheses) for the estimated parameters for each of the estimation methods.
Columns (3), (5), (7), (9), (11) report the mean squared errors.
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For a second comparison, we compare our estimators to a standard CCP estimator

where the state variables are discretized and the transition and choice probabilities are

estimated using cell values. We discretize the state space by creating dummy variables

for each state variable z1t, z2t, z3t, z4t and exp(ωt) based on whether they are above or

below their median. However, even this results in empty cell values, so the state space

needs to be restricted further. A common approach is to use K-means clustering, but

this is not appropriate in the current setting where the state variables are independent

by construction. We therefore restrict the state space grid by combining variables z1t and

z2t into a binary variable taking value one whenever both individual dummies take value

one. The resulting state space consists of four binary variables, implying 16 cells in the

exogenous state space grid. We tried alternative feasible ways of discretizing the state

space, but found that these do not lead to improvements over the chosen method. We

run 1000 simulations, and the results are shown in Table 2.

Compared to the results from Table 1, the discretized CCP estimator leads to sub-

stantially larger bias in some of the estimated parameters. Column (4) shows that the

corresponding MSEs are large and generally exceed those obtained using our estimators.

This is particularly true for parameters θV P
1 and θV P

2 . Overall, the toal MSE increases

more than 10-fold from 0.067 − 0.105 across all parameters in Table 1 to 1.109 in Ta-

ble 2. At the same time, our linear semi-gradient method is even three times faster

computationally than discretization; this may be related to matrix inversion being more

ill-conditioned under discretization.

6.2. Firm entry game. Consider the following firm market entry game, which is similar

to that described in Aguirregabiria and Mira (2007). There are i = 1, ..., 5 firms (players),

and we observe their decision to enter (aitm = 1) or not enter (aitm = 0) in m = 1, ...,M

different markets for t = 1, ..., T time periods. Denote a firm’s action by j ∈ {1, 0}. The

payoff of each firm i is affected by the decision of all the other firms whether to enter, as

well as firm i’s previous-period entry decision. Current-period profits when entering are

given by

Πitm = θRS ln(Stm)− θRN ln(1 +
∑
j ̸=i

ajtm)− θF C − θEC(1− ai(t−1)m) + εitm,

where ln(Stm) is a measure of consumer market size of market m in period t, and εitm

is a transitory shock that follows a logistic distribution. We assume that ln(Stm) is

continuous and follows an AR(1) process, where the parameters are the same across
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Table 2. Simulations: Firm entry problem - Comparison with
standard CCP

DGP TDL bias MSE
(1) (2) (3) (4)

CCP with
discretized state variables

θV P
0 0.5 0.1391 -0.3609 0.1815

(0.2266)
θV P

1 1.0 0.7968 -0.2032 0.3474
(0.5535)

θV P
2 -1.0 -0.4017 0.5983 0.4154

(0.2396)
θF C

0 1.5 1.3799 -0.1201 0.0313
(0.1300)

θF C
1 1.0 0.8655 -0.1345 0.0374

(0.1392)
θEC

0 1.0 0.7859 -0.2141 0.0538
(0.0891)

θEC
1 1.0 0.9011 -0.0989 0.0425

(0.1809)
Total MSE 1.1093

Time per round 0.94
(in sec)

Notes: The table reports results based on 1000 simulations with 3000 firms.
Column (1) shows the true parameter values in the model. Column (2)
reports the empirical mean and standard deviation (in parentheses) for the
estimated parameters. Column (3) reports the average bias in the estimated
parameters. The mean squared errors are reported in column (4).

markets: ln(Stm) = α + λ ln(S(t−1)m) + utm. The error term utm is assumed to follow a

normal N(0, 1) distribution. The profit of not entering is normalized to zero, and the

discount factor β is 0.95. The parameters θ∗ ≡ {θRS, θRN , θF C , θEC} are the structural

parameters of interest. The state variables in this setting are given by the current market

demand variable Stm, as well as the vector of all firms’ previous entry decisions a(t−1)m ={
ai(t−1)m : i = 1, ..., 5

}
.

To carry out the simulations, we choose values for the structural parameters θ∗ (θRS =

1, θRN = 1, θF C = 1.7, θEC = 1), and for the autoregressive process for log market size

(α = 1.5, λ = 0.5). We discretize ln(Stm) and obtain a transition matrix for the discretized

variable with a 10-point support following the method by Tauchen (1986). As in the

Monte Carlo experiments for the firm entry problem in Section 6.1, the discretization

is for simulations of the data only and we treat the state variables as continuous in our
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estimations. We then solve for the Markov-Perfect-Equilibrium of the game.17 Using the

equilibrium (i.e., ergodic) distribution, we generate data for 1000 and for 3000 markets,

with T = 2 time periods.

6.2.1. Simulation results - firm entry game. We present the results of 1000 simulations

based on the linear semi-gradient method, without employing the locally robust correc-

tion. Each round of the simulations begins by generating new data, where the first-period

state variables are drawn from the steady-state distribution. In order to assess the sensi-

tivity of our algorithm to different specifications for the basis functions, we parameterize

h(a, x) and g(a, x) using different sets of polynomials in the state variables. In particular,

we show results where h(a, x) and g(a, x) are approximated using a second, third or fourth

order polynomial.18 For all simulations, the choice probabilities η that enter e(a′, x′; η)

are estimated using individual logit models for each firm, where we use a third order

polynomial in the state variables as explanatory variables. We then estimate the param-

eters ω and ξ using equation (5.3).19 Finally, we obtain estimates for the θ∗ parameters

as the solutions to the pseudo-log-likelihood function (5.1).

The results are shown in Table 3. Panels A, B and C present simulations for the same

dataset using different basis functions to parameterize the value function terms h(a, x)

and g(a, x). Column (2) shows that even with 1000 markets our algorithm produces

parameter estimates that are closely centered around the true values. The results are

generally similar across Panels A to C, although the bias and MSE tends to be lowest

for the second order polynomial, and highest for the fourth order polynomial. This is

especially the case for the parameter on the number of market entrants, θRN . To assess

these differences formally for the case with 1000 markets, we use the cross-validation

procedure described in Section 3.3. The procedure is applied to ten random samples

of market size 1000, and we find that the TD error criterion consistently selects the

second order polynomial as the optimal set of basis functions. Thus, the proposed cross-

validation method provides useful guidance for choosing the number of basis functions.
17This is done by finding the firms’ conditional value functions νj(Stm, a(t−1)m) for each of the 25×10 =
320 possible combinations of the state variables through repeated iteration, and using these to derive
the equilibrium choice probabilities p(Stm, a(t−1)m). Based on the equilibrium probabilities, we compute
the equilibrium distribution of state variables.
18For the ω’s relating to parameters θRS , θRN , θF C and for ξ, the terms include a constant, terms up
to the second/third/fourth order in the state variables ln(Stm) and ln(1 +

∑
j ̸=i aj(t−1)m), the firm’s

binary choice aitm and the interactions of aitm with all terms in the state variables. The total number of
terms is 12/20/30. In addition to these terms, the ω′s relating to parameter θEC also contain the term
(1− ai(t−1)m)aitm.
19Given the symmetric set-up of the game, we pool the data across players in this application.
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In a similar version of the firm entry game, Aguirregabiria and Mira (2007) use the

NPL algorithm and derive results comparable to ours. Note, however, that for a direct

comparison of our results with those obtained using the NPL algorithm, one would need

to obtain a non-parametric estimate of the transition density when implementing the

latter which is not trivial in practice.

As expected, columns (4) and (5) show that increasing the market size generally reduces

the small sample bias in the estimated parameters, and leads to a fall in the empirical

standard deviations. In addition to being smaller, the MSE across Panels A to C is

also more similar across the three sets of basis functions. As before, we employ the

cross-validation method described above to compare these specifications more formally

for the case with 3000 markets. In line with the estimation results, we find that all three

polynomials now produce very similar sets of mean squared TD errors, even though the

second order polynomial continues to be the one that is selected by the criterion.20 While

we view this as further evidence that the proposed cross-validation method can provide

useful guidance to choose a suitable set of basis functions, more importantly, the small

differences in the results across panels A to C also suggest that our methods prove fairly

robust to this choice in practice.

7. Conclusions

We propose two new estimators for DDC models which overcome previous computa-

tional and statistical limitations by combining traditional CCP estimation approaches

with the idea of TD learning from the RL literature. The first approach, linear semi-

gradient, makes use of simple matrix inversion techniques, is computationally very cheap

and therefore fast. The second approach, Approximate Value Iteration, can be easily

combined with any ML method devised for prediction. Unlike previous estimation meth-

ods, our methods are able to easily handle continuous and/or high-dimensional state

spaces in settings where a finite dependence property does not hold. This is of particular

importance for the estimation of dynamic discrete games. We also propose a locally ro-

bust estimator to account for the non-parametric estimation in the first stage. We prove

the statistical properties of our estimator and show that it is consistent and converges

at parametric rates. A range of Monte Carlo simulations using a dynamic firm entry

problem, a dynamic firm entry game and two versions of the famous Rust (1987) engine

replacement problem show that the proposed algorithms work well in practice.
20As before, we compute the TD criterion for ten random samples.
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Table 3. Simulations: Firm entry game - Linear semi-gradient

DGP TDL MSE TDL MSE
(1) (2) (3) (4) (5)

A. 2nd order polynomial 1000 markets 3000 markets

θRS (market size) 1.0 0.9715 0.0264 0.9845 0.0083
(0.1601) (0.0897)

θRN (n. of entrants) 1.0 0.8956 0.2924 0.9581 0.0860
(0.5309) (0.2904)

θF C (fixed cost) 1.7 1.7221 0.0867 1.6919 0.0262
(0.2938) (0.1617)

θEC (entry cost) 1.0 1.0189 0.0042 1.0225 0.0018
(0.0621) (0.0353)

Total MSE 0.4098 0.1222
Time per round 0.32 0.93

(in sec)
B. 3rd order polynomial 1000 markets 3000 markets

θRS (market size) 1.0 0.9145 0.0289 0.9647 0.0088
(0.1470) (0.0869)

θRN (n. of entrants) 1.0 0.6898 0.3264 0.8857 0.0912
(0.4800) (0.2797)

θF C (fixed cost) 1.7 1.7811 0.0804 1.7134 0.0249
(0.2718) (0.1573)

θEC (entry cost) 1.0 1.0172 0.0042 1.0219 0.0017
(0.0622) (0.0353)

Total MSE 0.4398 0.1266
Time per round 0.50 1.54

(in sec)
C. 4th order polynomial 1000 markets 3000 markets

θRS (market size) 1.0 0.8638 0.0360 0.9455 0.0101
(0.1321) (0.0846)

θRN (n. of entrants) 1.0 0.5067 0.4222 0.8163 0.1070
(0.4231) (0.2707)

θF C (fixed cost) 1.7 1.8335 0.0808 1.7337 0.0245
(0.2510) (0.1530)

θEC (entry cost) 1.0 1.0158 0.0041 1.0212 0.0017
(0.0620) (0.0352)

Total MSE 0.5431 0.1433
Time per round 0.84 2.64

(in sec)
Notes: The table reports results for 1000 simulations. Panels A, B and C use different
sets of basis functions to parameterize h(a, x) and g(a, x). Column (1) shows the true
parameter values in the model. Columns (2) and (4) report the empirical mean and
standard deviation (in parentheses) for the estimated parameters, based on a sample of
1000 and 3000 markets, respectively. The mean squared errors are reported in columns
(3) and (5). All results are based on the estimation method without correction function.
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Data availability statement. The data and code underlying this article are available in

Zenodo, at https://doi.org/10.5281/zenodo.16184776.
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Appendix A. Proofs of main results

For the proofs of Theorems 1-2, we work within a more general setting than in the main

text, by letting the distribution of (ait, xit) be time-varying. Let Pt denote the population

distribution of (a, x) at time t. Also, let P denote the probability distribution of the
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process {(a1, x1), . . . , (aT , xT )}. Note that P ≡ P1 × · · · × PT . Denote the expectation

over P by E[·]. We use the op(·) and Op(·) notations to denote convergence in probability,

and bounded in probability, respectively, under the probability distribution P .

We also need to extend the definitions of P and E[·]: Let P denote the relative frequency

of occurrence of (a, x, a′, x′) in the data as n→∞, and E[·] the corresponding expectation

over P. Note that P is different from P as the latter is the distribution of (a, x, a, x′) after

dropping the time index. However, the two are related as for any function f , we have

E[f(a, x, a′, x′)] = (T − 1)−1∑T −1
t=1 E[f(ait, xit, ait+1, xit+1)]. These updated definitions of

P and E[·] are applicable whenever we use these notations in the main text.

Note that due to the Markov process assumption, the conditional distribution P (at+1, xt+1|at, xt)

is always independent of t (indeed, one could always include t in x). Hence, P(a′, x′|a, x) ≡

P (at+1, xt+1|at, xt) and E[f(a′, x′)|a, x] ≡ E[f(at+1, xt+1)|at, xt] for all t. Also note that

time stationarity of (ait, xit), if it holds, implies Pt ≡ P and Et[·] ≡ E[·] for all t.

A.1. Proof of Theorem 1. Lemma 1 in Online Appendix B.2 implies ω∗ exists. To

prove that ω̂ exists, it suffices to show that Â := En [ϕ (βϕ′ − ϕ)⊺] is invertible with proba-

bility approaching one. Recall that using our notation, Â = (n(T−1))−1∑
i

∑T −1
t=1 ϕit(βϕit+1−

ϕit)⊺, while A = (T − 1)−1∑T −1
t=1 E[ϕit(βϕit+1 − ϕit)⊺. We can thus write

∣∣∣Â− A∣∣∣ ≤ (T −

1)−1∑T −1
t=1

∣∣∣Ât − At

∣∣∣, where Ât := n−1∑
i ϕit(βϕit+1−ϕit)⊺ and At := E[ϕit(βϕit+1−ϕit)⊺].

By Assumption 1(ii), |ϕ(a, x)|∞ ≤M independent of kϕ, so

E
∣∣∣Ât − At

∣∣∣2 = E

∣∣∣∣∣ 1n∑i

ϕit (βϕit+1 − ϕit)⊺ − E [ϕit (βϕit+1 − ϕit)⊺]
∣∣∣∣∣
2

≤ 1
n

∑
i

E |ϕit (βϕit+1 − ϕit)⊺|2 ≤
k2

ϕM
4

n
.

This proves
∣∣∣Ât − At

∣∣∣ = Op(kϕ/
√
n). But T is fixed, which implies that

∣∣∣Â− A∣∣∣ =

Op(kϕ/
√
n) as well. We thus obtain λ̄(Â) ≤ λ̄(A) +

∣∣∣Â− A∣∣∣ ≤ λ̄(A) + op(1). Since

λ̄(A) < 0, this proves that λ̄(Â) < 0 with probability approaching one, and subsequently,

that Â is invertible. This completes the proof of the first claim.

The second claim follows from Lemma 3 in Online Appendix B.2 and Assumption 1(iii).

To prove the last claim, we first show that with probability approaching one,

|ω̂ − ω∗| ≤ C(1− β)−1

√
kϕ

n
, (A.1)
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for some C <∞. Define b = E[ϕz] and b̂ = En[ϕz]. We then have Aω∗ = b and Âω̂ = b̂.

We can combine the two equations to get

Â(ω̂ − ω∗) = (b̂− b) + (A− Â)ω∗.

The above implies

(ω̂ − ω∗)⊺(−Â)(ω̂ − ω∗) = (ω̂ − ω∗)⊺(b− b̂) + (ω̂ − ω∗)⊺(Â− A)ω∗. (A.2)

We earlier showed
∣∣∣Â− A∣∣∣ = Op(kϕ/

√
n). Hence, λ(−Â) ≥ λ(−A) + op(1), so

(ω̂ − ω∗)⊺(−Â)(ω̂ − ω∗) ≥ c(1− β)λ(E[ϕϕ⊺]) |ω̂ − ω∗|2 , (A.3)

with probability approaching one, for any constant c ∈ (0, 1). Given (A.2) and (A.3),

|ω̂ − ω∗| ≤ 1
c(1− β)λ(E[ϕϕ⊺])

(∣∣∣b̂− b∣∣∣+ ∣∣∣Âω∗ − Aω∗
∣∣∣) ,

with probability approaching one.

It remains to bound
∣∣∣b̂− b∣∣∣ and

∣∣∣Âω∗ − Aω∗
∣∣∣. As before, we can define b̂t = n−1∑

i ϕitzit

and bt = E[ϕitzit] to obtain

E
∣∣∣b̂t − bt

∣∣∣2 = E

∣∣∣∣∣ 1n∑i

{ϕitzit − E [ϕitzit]}
∣∣∣∣∣
2

≤ 1
n
E |ϕitzit|2 .

This proves

E
∣∣∣b̂− b∣∣∣2 ≤ 1

T − 1

T −1∑
t=1

E
∣∣∣b̂t − bt

∣∣∣2 ≤ 1
n
E
[
|ϕz|2

]
≤ kϕL

2M2

n
= Op(kϕ/n).

In a similar vein,

E
∣∣∣Âω∗ − Aω∗

∣∣∣2 = E

∣∣∣∣∣ 1
n(T − 1)

T −1∑
t=1

∑
i

{ϕit (βϕit+1 − ϕit)⊺ ω∗ − E [ϕit (βϕit+1 − ϕit)⊺ ω∗]}
∣∣∣∣∣
2

= Op (kϕ/n) ,

as long as E
[
|ϕ (βϕ− ϕ)⊺ ω∗|2

]
= O(kϕ). The latter holds assuming 1(ii)-(iv) since

E
[
|ϕ (βϕ⊺ω∗ − ϕ⊺ω∗)|2

]
≤ kϕM

2(2 + 2β2)E
[
|ϕ⊺ω∗|2

]
,

E
[
|ϕ⊺ω∗|2

]1/2
≤ ∥ϕ⊺ω∗ − h∥2 + ∥h∥2 ≤ O(k−α

ϕ ) + (1− β)−1L <∞,

where the second inequality uses ∥ϕ⊺ω∗ − h∥2 = O(k−α
ϕ ) (as shown above), and |h(·, ·)|∞ ≤

(1−β)−1|z(·, ·)|∞ < (1−β)−1L (which can be easily verified using (2.2) and Assumption
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1(iv)). Combining the above, there exists C < ∞ such that |ω̂ − ω∗| ≤ C
√
kϕ/n, with

probability approaching one. We have thus shown (A.1).

Now,

∥ϕ⊺ω̂ − h∥2
2 ≤ 2 ∥ϕ⊺ω̂ − ϕ⊺ω∗∥2

2 + 2 ∥ϕ⊺ω∗ − h∥2
2

= 2(ω̂ − ω∗)⊺E[ϕϕ⊺](ω̂ − ω∗) + 2 ∥ϕ⊺ω∗ − h∥2
2

≤ 2λ̄(E[ϕϕ⊺])Op

(
kϕ

n

)
+Op(k−2α

ϕ ),

where the final inequality follows from the second claim of this theorem and (A.1). The

last claim then follows from the above along with the fact that, by Assumption 1(iv),

λ̄(E[ϕϕ⊺]) ≤ ∥ϕ∥2
2 ≤M2kϕ.

A.2. Proof of Theorem 2. The first two claims follow from steps analogous to those

in Theorem 1. We thus need to show that with probability approaching one,
∣∣∣ξ̂ − ξ∗

∣∣∣ ≤ C(1− β)−1
√
kr/n, (A.4)

for some C <∞. The third claim is a straightforward consequence of this.

Recall that we use cross-fitting to estimate ξ∗. Let n1, n2 denote the sample sizes, and

η̂1, ξ̂1 and η̂2, ξ̂2 the estimates of η and ξ∗ in the two folds. We shall show that |ξ̂1− ξ∗| =

Op(
√
kr/n) (and similarly |ξ̂2 − ξ∗| = Op(

√
kr/n)), and therefore |ξ̂ − ξ∗| = Op(

√
kr/n).

To this end, let Ar := E[rr⊺], br := E[r(a, x)e(a′, x′; η)], Â(1)
r := E(1)

n [rr⊺] and b̂(1)
r :=

E(1)
n [r(a, x)e(a′, x′; η̂2)], where E(1)

n [·] denotes the empirical expectation using only the

first fold. Let ς(a, x, a′, x′; η) := r(a, x)e(a′, x′; η) and ςit(η) := r(ait, xit)e(ait+1, xit+1; η).

Based on the above definitions, we have Â(1)
r ξ̂1 = b̂(1)

r , and Arξ
∗ = br. Comparing

with the proof of Theorem 1, the only difference is in the treatment of |b̂(1)
r − br|. As

before, define b̂
(1)
rt := n−1∑

i ςit(η̂2) and brt := E[ςit(η)]. We then have |b̂(1)
r − br| =

(T − 1)−1∑T −1
t=1 |b̂

(1)
rt − brt|. Since T is finite, it suffices to bound |b̂(1)

rt − brt| for some

arbitrary t. Now, by similar arguments as in the proof of Theorem 1, we have

1
n1

n1∑
i=1
{ςit(η)− E [ςit(η)]} = Op

(√
kr/n

)
.

Hence (A.4) follows once we show

b̂
(1)
rt − brt = 1

n1

n1∑
i=1
{ςit(η)− E [ςit(η)]}+ op

(√
kr/n

)
. (A.5)
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We now prove (A.5). Denoting the set of observations in the second fold by N2:

b̂
(1)
rt − brt −

1
n1

n1∑
i=1
{ςit(η)− E [ςit(η)]}

= 1
n1

n1∑
i=1
{(ςit(η̂2)− ςit(η))− (E [ςit(η̂2)|N2]− E [ςit(η)])}︸ ︷︷ ︸

:=R1nt

+ {E [ςit(η̂2)|N2]− E [ςit(η)]}︸ ︷︷ ︸
:=R2nt

.

First consider the term R1nt. Define

δit := (ςit(η̂2)− ςit(η))− (E [ςit(η̂2)|N2]− E [ςit(η)]) .

Clearly, E[δit|N2] = 0. We then have

E
[
|R1nt|2

∣∣∣N2
]

= 1
n1
E
[
|δit|2

∣∣∣N2
]

= 1
n1
E
[
|ςit(η̂2)− ςit(η)|2

∣∣∣N2
]
. (A.6)

Now for any (a, x, a′, x′), from the definition of ς(·), with probability approaching one,

|ς(a, x, a′, x′; η̂2)− ς(a, x, a′, x′; η)| ≤ |r(a, x)|| ln η̂2 − ln η|

≤M
√
kr| ln η̂2 − ln η| ≤ 2M

√
krδ

−1|η̂2 − η|, (A.7)

where the second inequality follows from Assumption 2(ii), and the third follows from

2(v).21 In view of (A.6) and (A.7), there exists C <∞ such that

E
[
|R1nt|2

∣∣∣N2
]
≤ Ckr

n1
E
[
|η̂2(ait+1, xit+1)− η(ait+1, xit+1)|2

∣∣∣N2
]

≤ CkrT

n1
∥η̂2 − η∥2

2 = op(kr/n),

where the last equality follows by Assumption 2(v). This proves

|R1nt| = op(
√
kr/n). (A.8)

Next consider the term R2nt. Note that E[ςit(η)] is twice Fréchet differentiable. Indeed,

in the main text we have shown that ∂ηE[ςit(η)] = 0, where ∂η· denotes the Fréchet

differential of E[ςit(η)] (cf. equation (3.7)). Furthermore, ln η is an infinitely differentiable

function of η(a, x) with second derivatives bounded by δ−2 (since 1 > η(a, x), η̂(a, x) > δ

under Assumption 2(vi)). This implies ς(a, x, a′, x′; η) is also infinitely differentiable with

respect to η(a, x), with second derivatives bounded by δ−2|r(a, x)| > δ−2√kr, where the

‘≲’ is due to Assumption 1(ii) which implies |r(·)|∞ is bounded. The above facts imply,
21In particular, we have used the fact η̂2 > δ + op(1) which follows from η > δ and |η̂2 − η| = op(1).
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through a second order Taylor expansion, that

|E [ςit(η̂2)− ςit(η)| N2]| ≤ C1krE
[
|η̂2(ait+1, xit+1)− η(ait+1, xit+1)|2

∣∣∣N2
]
,

for some C1 <∞. Hence,

E
[
|R2nt|2

∣∣∣N2
]
≤ C1krE

[
|η̂2(ait+1, xit+1)− η(ait+1, xit+1)|2

∣∣∣N2
]

= C1Tkr ∥η̂2 − η∥2
2 = op(kr/n). (A.9)

(A.8) and (A.9) imply (A.5), leading to the desired claim (A.4).

A.3. Proof of Theorem 5. Define

ϕ(ã, x̃;h, g, η, λ, θ) = λ(a, x; θ) {z(a, x)⊺θ + βe(a′, x′; η) + βV (a′, x′; θ, h, g)− V (a, x; θ, h, g)} .

Denote by θ̃(l) the preliminary estimator of θ∗ from the l-th data fold under cross-fitting.

By similar arguments as in Newey and McFadden (1994), θ̃(l) is consistent for θ∗ under

Assumptions 1-5. We now prove the stronger statement that

θ̃(l) − θ∗ = op(n−1/4). (A.10)

Without loss of generality, take l = 1. By a first order Taylor expansion using the

definition of θ̃(1),

θ̃(1) − θ∗ = E(1)
n

[
∇θm(a, x; θ̆(1), ĥ(1), ĝ(1))

]−1
E(1)

n

[
m(a, x; θ∗, ĥ(1), ĝ(1))

]
,

for some θ̆(1) such that
∥∥∥θ̆(1) − θ∗

∥∥∥ ≤ ∥∥∥θ̃(1) − θ∗
∥∥∥. Now, E(1)

n

[
∇θm(a, x; θ̆(1), ĥ(1), ĝ(1))

]−1
=

Op(1) by Assumption 5(ii). Furthermore,

E(1)
n

[
m(a, x; θ∗, ĥ(1), ĝ(1))

]
= E(1)

n [m(a, x; θ∗, h, g)] + E(1)
n

[
m(a, x; θ∗, ĥ(1), ĝ(1))−m(a, x; θ∗, h, g)

]
= Op(n−1/2) + E(1)

n

[
m(a, x; θ∗, ĥ(1), ĝ(1))−m(a, x; θ∗, h, g)

]
︸ ︷︷ ︸

:=R1

,

where the second equality follows from Chebyshev’s inequality as m(a, x; θ∗, h, g) is uni-

formly bounded under the stated assumptions (continuity of h, g; compactness of the

support X of x). It remains to bound R1. To this end, we use (B.5) in Online Appendix

B.4. Note that the Riesz representers ψh(·, ·; θ∗, h, g), ψg(·, ·; θ∗, h, g) (defined in B.4.2)

are uniformly bounded under compactness of X and smoothness of h. It therefore follows

that

R1 ≲
∥∥∥ĥ(1) − h

∥∥∥
2

+
∥∥∥ĝ(1) − g

∥∥∥
2

= op(n−1/4), (A.11)
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where the last equality uses Assumption 5(iii).

To complete the proof of the theorem, it suffices to verify Assumptions 1-3 and 5 in

Chernozhukov et al. (2022).

Assumption 1 of Chernozhukov et al. (2022) requires

E
[
∥ζ(ã, x̃; θ∗, h, g, η, λ, θ∗)∥2

]
<∞, (A.12)∥∥∥m(·, ·; θ∗, ĥ, ĝ)−m(·, ·; θ∗, h, g)

∥∥∥2

2
= op(1), (A.13)∥∥∥ϕ(·, ·; ĥ, ĝ, η̂, λ, θ∗)− ϕ(·, ·;h, g, η, λ, θ∗)

∥∥∥2

2
= op(1), and (A.14)∥∥∥ϕ(·, ·;h, g, η, λ̂, θ̃)− ϕ(·, ·;h, g, η, λ, θ∗)

∥∥∥2

2
= op(1). (A.15)

We first note that the smoothness conditions on h, g, η (imposed in Assumptions 1-3)

along with the compactness of the domain X , ensure z(·), e(·, ·; η), h(·), g(·),m(a, x; θ∗, h, g)

and ψ(a, x; θ∗, h, g) are all uniformly bounded in (a, x). By standard dynamic program-

ming arguments, they also imply λ(a, x; θ∗) is uniformly bounded in (a, x).22 These

bounds lead to ∥ζ(·, ·; θ∗, h, g, η, λ, θ∗)∥∞ ≤ M < ∞. This shows that the first require-

ment (A.12) holds. Next, we show (A.13): by the form of m(a, x; θ, h, g) and the fact

that
∣∣∣π(ă, x; θ∗, ĥ, ĝ)− π(ă, x; θ∗, h, g)

∣∣∣ ≤ ∑
ā∈A

{∣∣∣θ∗⊺ĥ(ā, x)− θ∗⊺h(ā, x)
∣∣∣+ |ĝ(ā, x)− g(ā, x)|

}
for all ă, x, some straightforward algebra gives
∣∣∣m(·, ·; θ∗, ĥ, ĝ)−m(·, ·; θ∗, h, g)

∣∣∣ ≤ ∑
ă∈A

∑
ā∈A

{∣∣∣θ∗⊺ĥ(ā, x)− θ∗⊺h(ā, x)
∣∣∣+ |ĝ(ā, x)− g(ā, x)|

}
|h(ă, x)|

+
∑
ă∈A

∣∣∣ĥ(ă, x)− h(ă, x)
∣∣∣ .

Observe that |h(ă, ·)|∞ <∞ for each ă by the assumptions of compact support for x and

continuity of h. We thus obtain
∥∥∥m(·, ·; θ∗, ĥ, ĝ)−m(·, ·; θ∗, h, g)

∥∥∥
2

> E1/2

∑
ă∈A

∣∣∣ĥ(ă, x)− h(ă, x)
∣∣∣2
+ E1/2

∑
ă∈A
|ĝ(ă, x)− g(ă, x)|2


> δ−1E1/2

∑
ă∈A

π(ă, x; θ∗, h, g)
∣∣∣ĥ(ă, x)− h(ă, x)

∣∣∣2
+ δ−1E1/2

∑
ă∈A

π(ă, x; θ∗, h, g) |ĝ(ă, x)− g(ă, x)|2


>
∥∥∥ĥ− h∥∥∥

2
+ ∥ĝ − g∥2 = op(1), (A.16)

22Note that |λ(·, ·; θ∗)|∞ ≤ (1− β)−1 |ψ(·, ·; θ∗, h, g)|∞ by the fixed point definition of λ(·).
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where the second inequality employs π(a, x; θ∗, h, g) ≡ η(a, x) > δ > 0, as stated in As-

sumption 5(iii), and the last equality also follows from the same assumption. This proves

(A.13). The third requirement (A.14) follows from the boundedness of λ(·, ·; θ∗) together

with Assumption 5(iii). Finally, (A.15) follows from the boundedness of z(·), h, g, ln η−1

(all of which hold under Assumption 5(iii)), along with the consistency of θ̃ and Assump-

tion 5(iv).

Assumption 2 of Chernozhukov et al. (2022) requires

√
nE

[
∆̃(ã, x̃)

]
= op(1), and E

[∣∣∣∆̃(ã, x̃)
∣∣∣2] = op(1), where (A.17)

∆̃(ã, x̃) :=
{
ϕ(ã, x̃; ĥ, ĝ, η̂, λ̂, θ̃)− ϕ(ã, x̃;h, g, η, λ̂, θ̃)

}
−
{
ϕ(ã, x̃; ĥ, ĝ, η̂, λ, θ∗)− ϕ(ã, x̃;h, g, η, λ, θ∗)

}
.

To this end, observe that

∆̃(ã, x̃) =
(
λ̂(a, x; θ̃)θ̃⊺ − λ(a, x; θ∗)θ∗⊺

) (
β∆̂h(a′, x′)− ∆̂h(a, x)

)
+
(
λ̂(a, x; θ̃)− λ(a, x; θ∗)

) (
β∆̂g(a′, x′)− ∆̂g(a, x)

)
+

−
(
λ̂(a, x; θ̃)− λ(a, x; θ∗)

)
β∆̂ln η(a′, x′)

where ∆̂h := ĥ− h, ∆̂g := ĝ− g and ∆̂ln η := ln η̂− ln η. In view of the n−1/4 consistency

of θ̃ along with Assumptions 5(iii)-(iv), straightforward algebra shows E
[∣∣∣∆̃(a, x)

∣∣∣] =

op(n−1/2). This proves the first part of (A.17). The second part follows immediately from

the consistency of θ̃ and Assumption 5(iv) after noting that ∆̂h(·, ·), ∆̂g(·, ·) and ∆̂ln η(·, ·)

are all uniformly bounded (due to Assumption 5(iii) and the compactness of X ).

Assumption 3 of Chernozhukov et al. (2022) requires existence of some C < ∞ inde-

pendent of h̃, g̃ and η̃ such that

E
[
ϕ(ã, x̃;h, g, η, λ̂, θ̃)

]
= 0 and

E[ζ(ã, x̃; θ∗, h̃, g̃, η̃, λ, θ∗)] ≤ C
{∥∥∥h̃− h∥∥∥2

2
+ ∥g̃ − g∥2

2 + ∥η̃ − η∥2
2

}

for all
∥∥∥h̃− h∥∥∥

2
, ∥g̃ − g∥2 , ∥η̃ − η∥2 small enough and where the space of η̃ is {η̃ : infa,x η̃(a, x) >

δ > 0}.23 These requirements are verified in Section B.4 in Online Appendix B.

Finally, Assumption 5 of Chernozhukov et al. (2022) is directly equivalent to Assump-

tion 5(ii).

23The assumption in Chernozhukov et al. (2022) also requires L2 consistency of ĥ, ĝ, η̂ which is directly
stated as Assumption 5(iii).
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