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Abstract

An important class of structural models studies the determinants of skill formation and the

optimal timing of interventions. In this paper, I provide new identification results for these

models and investigate the effects of seemingly innocuous scale and location restrictions on

parameters of interest. To do so, I first characterize the identified set of all parameters

without these additional restrictions and show that important policy-relevant parameters

are point identified under weaker assumptions than commonly used in the literature. The

implications of imposing standard scale and location restrictions depend on how the model

is specified, but they generally impact the interpretation of parameters and may affect coun-

terfactuals. Importantly, with the popular CES production function, commonly used scale

restrictions fix identified parameters and lead to misspecification. Consequently, simply

changing the units of measurements of observed variables might yield ineffective investment

strategies and misleading policy recommendations. I show how existing estimators can eas-

ily be adapted to solve these issues. As a byproduct, this paper also presents a general and

formal definition of when restrictions are truly normalizations.
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1 Introduction

Structural models are key tools of economists to simulate changes in the economic environ-

ment and evaluate and design policies. An important class of such models deals with skill

and human capital formation. Human capital formation is a main part of many structural

models and is an important driver of economic growth and inequality (Murphy and Topel

2016), making policies that target skill formation particularly vital. This growing literature,

originating from the seminal papers of Cunha and Heckman (2008) and Cunha, Heckman,

and Schennach (2010), estimates production functions of various skills of children, studies

how past skills, parental skills, and investments affect future skills, and links the skills to

adult outcomes. The results provide valuable insights into determinants of skill formation,

timing of investments, and the design of optimal interventions for disadvantaged children.

A major challenge in these models is that skills are not directly observable, lack a natural

scale, and can only be approximated through measurements, such as test scores. The early

literature has provided sufficient conditions for identification of parametric and nonparamet-

ric versions of these complex models, which is often achieved using a two-step approach.

First, the distribution of skills is identified from the measurements, and the production func-

tion is then identified in the second step (see e.g. Cunha et al. (2010), Attanasio, Meghir,

Nix, and Salvati (2017), and Attanasio, Meghir, and Nix (2020)). To obtain point iden-

tification in the first step, it is necessary to fix the unknown scales and locations of skills.

However, it remains unclear whether these restrictions are still required when combined with

common parametric assumptions on the production function in the second step.

This paper presents a new identification analysis for skill formation models and investigate

the consequences of seemingly innocuous normalizations. Instead of providing sufficient

conditions for point identification using multi-step arguments, I start by pooling all parts

of the model and characterize the identified set of all parameters without the scale and

location restrictions. This approach reveals which parameters are point identified or partially

identified and how the additional restrictions affect the identified set. Notably, I show that

many critical features of these models are invariant to scale and location restrictions, point-

identified without them, and identified under less restrictive assumptions than previously
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considered. These results apply to both parametric and nonparametric versions of the model.

The exact implications of imposing scale and location restrictions on parameters and

counterfactuals depend on the model specification and the object of interest. Specifically, a

restriction could be a harmless normalization with one production function, but could impose

strong assumptions with a different one. I thus analyze two popular specifications, namely

the trans-log and the CES production functions. For the trans-log case, it turns out that

standard scale and location restrictions do not impose additional testable restrictions, simply

select an element of the identified set, and many objects of interest are invariant to them.

However, they still affect production function parameters and certain counterfactuals. Since

such restrictions are often arbitrary and tied to the units of measurement of the data, these

features can be hard to interpret, difficult to compare across different studies, and potentially

mislead policy recommendations. More importantly, for the CES case, I show that commonly

restricted scale parameters are in fact identified and setting them to specific values is typically

inconsistent with the data. Consequently, with these restrictions, simply changing the units

of a skill measure (e.g. from years to months) can impact estimated dynamics, persistence

of skills, effects of parental investments, and optimal investment strategies.

In addition to these identification results, I demonstrate how existing estimators can

be modified to estimate all identified parameters. While some parameters remain diffi-

cult to interpret, the modified estimator enables the calculation of point identified features

and counterfactuals that are invariant to scale and location restrictions and to the units of

measurement. I illustrate these results through Monte Carlo simulations and an empirical

application based on the framework and estimator of Attanasio et al. (2020).

A broader takeaway is that researchers should carefully verify whether imposed restric-

tions are in fact normalizations (as formally defined in Definition 1). This is particularly

crucial in structural models where identification often proceeds in multiple steps, and suppos-

edly innocuous restrictions in one step may unintentionally affect results in subsequent steps.

By focusing on features of the model that are invariant to these restrictions, researchers can

ensure that their findings remain interpretable and comparable across different studies.

Literature: Following the influential work of Cunha and Heckman (2008) and Cunha

et al. (2010), a growing body of literature has studied the development of latent variables.
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For example, Helmers and Patnam (2011) study the determinants of children’s cognitive and

non-cognitive skills using Indian data, Fiorini and Keane (2014) investigate how time alloca-

tion affects both cognitive and non-cognitive development using Australian data, Attanasio

et al. (2020) and Attanasio et al. (2017) estimate the effects of health and cognition on

human capital with data from India and Ethiopia/Peru, respectively, and Attanasio et al.

(2020) study which intervention led to gains in cognitive and socio-emotional skills using

Colombian data. This literature provides important insights into the nature of persistence,

dynamic complementarities, and the optimal targeting of interventions.1

In these studies, the measurement system has a factor structure that requires scale and

location restrictions to identify the distribution of latent variables. In particular, Cunha and

Heckman (2008) study a model where the production function is log-linear. They utilize the

two-step identification arguments described above, except that they impose the scale and

location restrictions using an adult outcome to obtain well-defined units of measurement

(“anchoring”). They also discuss which parameters depend on the anchor or its units of

measurement. In this model, I demonstrate that certain policy-relevant parameters, such as

optimal investment sequences, may depend on the specific scales and units of measurements

of the observed variables. I further derive a set of features that is identified under weaker

restrictions on the measures and the production function and without anchoring the skills or

fixing their scales. Importantly, I also provide identification results for alternaive production

technologies, such as the widely used CES production function, where standard restrictions

are unnecessary for identification. In these case, imposing them through an initial period

normalization or through anchoring leads to misspecification.

Common restrictions are to fix the scales and locations of each latent factor in each

time period by setting parameters in the measurement system.2 If the same values are

1See also Cunha and Heckman (2007), Cunha and Heckman (2009), Cunha (2011), Heckman, Pinto,
and Savelyev (2013), Aucejo and James (2021), Hernández-Alava and Popli (2017), Attanasio, Cattan, and
Meghir (2022) and references therein.

2For example, Cunha and Heckman (2008) and Cunha et al. (2010) set the scale of the first skill measure
to 1 in each period - see the discussion around equations (7) – (8) of Cunha and Heckman (2008) and the
first paragraph on page 891 of Cunha et al. (2010). In addition, as discussed in footnote 17 of Cunha and
Heckman (2008), their identification results rely on either setting one of the location parameters to 0 in each
time period or setting the mean of the skill to 0 in each time period. These restrictions have also been used
in subsequent papers such as Attanasio et al. (2020). The nonparametric identification results in Cunha
et al. (2010) impose analogous restrictions in their Assumption (v) of Theorem 2.
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used across all time periods, Agostinelli and Wiswall (2016a, 2016b, 2024) refer to this as

an age-invariance assumption (see Assumption 3(a) for a formal definition or Definition 1

of Agostinelli and Wiswall (2024)). In important contributions, Agostinelli and Wiswall

(2016a, 2016b, 2024) demonstrate that imposing this assumption can yield a misspecified

model when the production function has a known scale and location. They also propose re-

laxations of production functions with age-invariant measures and show that, even without

age-invariance, production function restrictions can yield point identification (see Corollary

1 below and the related discussion). However, in both cases, they impose scale and loca-

tion restrictions in the first period, arguing that these are necessary for point identification.

While this is true for the trans-log production function used in their application, I show

that the scale restriction is not required for the CES production function. Furthermore, I

demonstrate for different specifications that while production function parameters, certain

counterfactuals, and estimated dynamics may depend on specific scales and units of mea-

surements, many key parameters are invariant to these restrictions, including age-invariance,

and are in fact point identified without them.

In independent research, Del Bono, Kinsler, and Pavan (2022) show that with a trans-log

production function, anchored treatment effects are invariant to scale and location restric-

tions and are identified without age-invariance. Through simulations, they also show that

standard restrictions lead to inconsistent estimated treatment effects with the CES produc-

tion function. In the trans-log case, these results aligns with part 4 of Theorem 2 below.

While their proof is specific to the trans-log production function with a log-linear measure-

ment system, my results extend to other cases. Additionally, I show that only skill measures

in the first period are needed to identify anchored treatment effects, reducing the data re-

quirements and assumptions considerably. I also consider other policy-relevant features.

Additionally, for the CES case, I show why standard restrictions can cause misspecification

and describe how existing estimators can be adapted to resolve this issue.

Table 1 of Attanasio et al. (2022) provides a selective overview of specifications and

estimation methods used in well-cited papers in the literature. It shows that with the

exception of Cunha et al. (2010), earlier work predominantly employed the Cobb-Douglas

specification, likely due to the simplicity of the corresponding estimator. Since Attanasio
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et al. (2020), there has been increasing adoption of the (nested) CES production function,

facilitated by their computationally simple two-step estimator (compared to the MLE of

Cunha et al. (2010)). Next to the papers in this table, recent contributions using this

approach include Adhvaryu et al. (2023), Bolt et al. (2024), and Gallipoli and Gomez (2023).

The trans-log production function proposed by Agostinelli and Wiswall (2024) is nonnested

with the CES specification and can also be estimated using an IV/GMM approach.

The consequences of normalizations have been discussed in various contexts. In factor

models, while certain restrictions are necessary for point identification (see e.g. Anderson

and Rubin (1956) or Madansky (1964)), Williams (2020) shows that certain features, such

as variance decompositions, can be identified without them. I combine a factor model with

a production function, which provides additional restrictions. Many studies argue and show

in specific examples that critical features should not depend on normalizations, see e.g.

Freyberger (2018) and Komarova et al. (2018). Similar to this paper, but in a very dif-

ferent context, Aguirregabiria and Suzuki (2014) discuss restrictions that were considered

normalizations, but are restrictive assumptions. Kalouptsidi et al. (2021) show that certain

counterfactuals in dynamic discrete choice models are identified, even when the model itself

is not. Rubio-Ramı́rez et al. (2010) define a normalization in vector autoregressive models to

pin down unidentified signs; see end of Section 2 for more details. Matzkin (1994, 2007) dis-

cusses several examples of normalizations, some of which are motivated by economic theory.

Lewbel (2019) provides an informal discussion of normalizations, which is conceptually very

similar to the formal definition I provide below. When normalizing restrictions are needed

for point identification, there are often multiple ways to impose them when estimating the

model. Good choices can then yield particularly convenient restrictions on the parameter

space (as in Gao and Li (2021)) or even faster rates of convergence (as in Chiappori et al.

(2015)). See also Hamilton et al. (2007) for a discussion on estimation with normalizations.

Structure: In Section 2, I provide a formal definition of a normalization, which to the

best my knowledge currently does not exist in the literature, as well as illustrative examples.

Section 3 contains the identification analysis of different parametric skill formation models.

A nonparametric version is discussed in Appendix D. Sections 4 and 5 contain the Monte

Carlo simulations and the empirical application, respectively. All proofs are in the appendix.
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2 Normalizations

I begin by providing a formal definition of a normalization, which serves as a basis for the

subsequent analysis. I illustrate the definition and potential problems using a probit model

and a simple version of the skill formation model.

2.1 General definition and illustration

Suppose we have a model where τ0 ∈ T denotes the true values of the parameters and T is

the parameter space. Here τ0 could be the coefficients in a regression model or the parameters

in a skill formation model. If the model is semiparametric, τ0 could also contain unknown

functions. Let Z contain all observed random variables, such as Y and X, with distribution

P (Z). For any τ ∈ T , the model generates a joint distribution of the data Z, denoted by

P (Z, τ). Since the model is assumed to be correctly specified, the true distribution of Z

is P (Z, τ0). The model typically contains certain assumptions, such as functional form or

independence assumptions, but suppose that so far none of the normalizations are imposed.

The identified set for τ0 is T0 = {τ ∈ T : P (Z, τ) = P (Z, τ0)}. If T0 is a singleton, τ0 is point

identified. We say that τ1, τ2 ∈ T are observationally equivalent if they generate the same

distribution of the data: P (Z, τ1) = P (Z, τ2). Let g(τ0) be a function of interest, such as a

counterfactual. The identified set for g(τ0) is Tg0 = {g(τ) : τ ∈ T0}. Notice that g(τ0) could

be point identified (i.e. Tg0 is a singleton) even if τ0 is not.

In models with normalizations, T0 is typically not a singleton. A normalization is a

restriction of the form τ ∈ TN , where TN ⊆ T is a known set. Hence, a normalization

restricts the feasible values of τ , such as setting an element to 1. I define a restriction to be

a normalization with respect to a function g(τ0) if it does not change the identified set of

g(τ0).

Definition 1. The restriction τ ∈ TN is a normalization with respect to g(τ0) if {g(τ) : τ ∈

T0 ∩ TN} = {g(τ) : τ ∈ T0} for all τ0 ∈ T .

Typically, T0 ∩ TN is a singleton. That is, we achieve point identification with the addi-

tional restrictions. Definition 1 then implies {g(τ0)} = {g(τ) : τ ∈ T0∩TN} = {g(τ) : τ ∈ T0}

7



and thus, that g(τ0) is point identified, even without the restriction τ ∈ TN . Since these

restrictions are often arbitrary, τ0 is usually not in TN in which case the restriction τ ∈ TN is

not a normalization with respect to τ0, but it can be a normalization with respect to partic-

ular functions of interest. Moreover, the restriction can be a normalization for some function

and not for others. Hence, researchers need to argue that normalizations hold with respect to

all functions of interest, such as all counterfactuals. Finally, a normalization cannot impose

any additional overidentifying restrictions in the sense that if T0 ̸= ∅, then T0 ∩ TN ̸= ∅.

As a simple example, consider the probit model where Y = 1(β0,1+β0,2X ≥ U), var(X) >

0, U | X ∼ N(µ0, σ
2
0) and σ

2
0 > 0. The true parameter vector is τ0 = (β0,1, β0,2, µ0, σ0)

′ and

Z = (Y,X). Now notice that

P (Y = 1 | X = x) = Φ

(
β0,1 − µ0

σ0
+
β0,2
σ0

x

)
,

where Φ denotes the standard normal cdf. Since var(X) > 0, β0,1−µ0
σ0

and β0,2
σ0

are point

identified. It is also well known and easy to see that

T0 =

{
τ ∈ R3 × R>0 :

β1 − µ

σ
=
β0,1 − µ0

σ0
and

β2
σ

=
β0,2
σ0

}

because all values in T0 imply the same joint distribution of (Y,X).

Since τ0 is not point identified, it is common to set µ = 0 and σ = 1. Using the previous

notation, this means that TN = R2 × 0 × 1 and T0 ∩ TN =
(
β0,1−µ0
σ0

, β0,2
σ0
, 0, 1

)
. Clearly, this

restriction is not a normalization with respect to β0,1 or β0,2, which are typically not objects

of interest. In fact, in general τ0 /∈ T0 ∩ TN unless µ0 = 0 and σ0 = 1. However, this

restriction is a normalization with respect to (potentially counterfactual) probabilities

P (Y = 1 | X = x) = Φ

(
β0,1 − µ0

σ0
+
β0,2
σ0

x

)

or, when X is continuous, marginal effects ∂
∂x
P (Y = 1 | X = x). Clearly, these features are

point identified even though τ0 is not.

Normalizations may help to provide useful structural interpretations of other parameters.

As an example, suppose there are two covariates, Y = 1(β0,1 + β0,2X1 + β0,3X2 ≥ U), and
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β0,2 > 0 . Instead of setting µ = 0 and σ = 1, we could impose β0,1 = 0 and β0,2 = 1, which

are also normalizations with respect to marginal effects. In addition, we then obtain a model

of the form Y = 1(X1 + β̃0,3X2 ≥ Ũ) with β̃0,3 = β0,3/β0,2, which can then be interpreted as

a relative effect (which is also identified without scale and location restrictions).

In the context of vector autoregressive models, Rubio-Ramı́rez et al. (2010) define a

normalization as a restriction on the parameter space that pins down unidentified signs of

coefficients. These restrictions are imposed in addition to other assumptions, such as long run

restrictions. Just like above, their restrictions do not impose additional testable assumptions

and they can help to provide structural interpretations of certain parameters. Unlike my

definition, it is not clear from theirs whether these restrictions are without loss of generality

in the sense that they do not affect functions of interest. If they do, one would have to argue

why they are reasonable.

2.2 Simple skill formation model

As a more involved example, I now discuss a very simple skill formation model, which imposes

very restrictive assumptions, but illustrates the previous definition and points out the types

of problems that occur in more general models.

Let θt denote skills at time t and let It be investment at time t, where t = 0, 1, . . . , T .

We are interested in the roles of investment and past skills in the development of future

skills. Instead of skills, the data only contains measurements of them, denoted by Zθ,t,m. In

this section, I first consider the simplest possible model without measurement error and a

single measure Zθ,t,1 that takes the form Zθ,t,1 = λθ,t,1 ln θt, where {λθ,t,1}Tt=0 are unknown

parameters with λθ,t,1 ̸= 0 for all t. In other words, in each period, we observe a scaled

version of log-skills. I also assume that there are three periods (T = 2) and that investment

is observed. Finally, for simplicity, I parameterize the marginal distribution of skills in the

initial period as ln θ0 ∼ N(0, s20), which implies that E[Zθ,0,1] = 0 and V ar(Zθ,0,1) = λ2θ,0,1s
2
0.

I consider two simple production functions without unobserved random variables. First

suppose skills evolve based on the Cobb-Douglas production function:

ln θt+1 = at + γ1t ln θt + γ2t ln It.
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Define the vector containing the true values of all ten parameters as

τ0 = (τ0,1, τ0,2, . . . , τ0,10) = (λθ,0,1, λθ,1,1, λθ,2,1, a0, a1, γ10, γ20, γ11, γ21, s
2
0).

Without further assumptions, τ0 is not point identified. To see the restrictions imposed by

the obervables, notice that ln θt = Zθ,t,1/λθ,t,1 and therefore

Zθ,t+1,1 = λθ,t+1,1at +
λθ,t+1,1

λθ,t,1
γ1tZθ,t,1 + λθ,t+1,1γ2t ln It.

Hence, the joint distribution of {Zθ,t+1,1, Zθ,t,1, It}1t=0 identifies (a) the scaled intercepts of the

production function λθ,t+1,1at, (b) the scaled slope coefficients
λθ,t+1,1

λθ,t,1
γ1t and λθ,t+1,1γ2t, and

(c) the scale variance λ2θ,0,1s
2
0. The identified set can be shown to consist of all parameters

that imply the same values of these identified features as the true parameters. Formally,

T0 =
{
τ ∈ T : τ2τ4 = τ0,2τ0,4, τ3τ5 = τ0,3τ0,5,

τ2
τ1
τ6 =

τ0,2
τ0,1

τ0,6,
τ3
τ2
τ8 =

τ0,3
τ0,2

τ0,8, τ2τ7 = τ0,2τ0,7, τ3τ9 = τ0,3τ0,9,

τ 21 τ10 = τ 20,1τ0,10

}
where the three rows correspond to the three sets of features above. To achieve point identifi-

cation, we could set λθ,t,1 = 1 for all t, in which case the intersection of T0 and the additional

restrictions is the singleton
{(

1, 1, 1, τ0,2τ0,4, τ0,3τ0,5,
τ0,2
τ0,1
τ0,6, τ0,2τ0,7,

τ0,3
τ0,2
τ0,8, τ0,3τ0,9, τ

2
0,1τ0,10

)}
.

As a simple numerical example, suppose Zθ,t,1 = 12 ln θt and

ln θt+1 = 0.5 ln θt + 0.5 ln It

for all t, and ln θ0 ∼ N(0, 1). Here τ0 = (12, 12, 12, 0, 0, 0.5, 0.5, 0.5, 0.5, 1). If we set λθ,t,1 = 1,

even though the true value is 12, we essentially treat ln θ̃t ≡ Zθ,t,1 = 12 ln θt as the skills and

the corresponding production function is

ln θ̃t+1 = 0.5 ln θ̃t + 6 ln It.
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The intersections of the identified set and set of additional restrictions is then the singleton

{(1, 1, 1, 0, 0, 0.5, 6, 0.5, 6, 144)} which would be the parameter estimated in practice (instead

of τ0). The coefficients in front of investment are thus hard to interpret. For example, using

τ0 (or setting λθ,t,1 = 12) one might conclude that increasing investment by 1% increases

skills by 0.5%, but with the restriction λθ,t,1 = 1 that effect changes to 6%. Hence, λθ,t,1 = 1

is not a normalization with respect to these parameters. The coefficient in front of log-skills

is invariant to the scale restrictions, but only because here λθ,t,1 = λθ,t+1,1 for all t. Notice

that Zθ,t,1 is simply a scaled version of ln θt. If we had an alternative measure with a different

scale (say Zθ,t,2 = λθ,t,2 ln θt), we would generally obtain different parameters if we replaced

Zθ,t,1 with Zθ,t,2. This alternative measure could for example result from changing the units

of measurements of Zθ,t,1, such as using years instead of months of education.

Even though the production function parameters are not identified, there are potential

interpretations that adapt to the units of measurements. For example, the identified param-

eter λθ,t+1,1γ2t tells us the effect of a one unit increase in ln(It) on skills, measured in the

units of Zθ,t+1,1 (see Section 5 for a specific example). It can also be shown that

Fln θt+1(at + γ1t lnQα(θt) + γ2t ln it) = Fλθ,t+1,1 ln θt+1(λθ,t+1,1(at + γ1t lnQα(θt) + γ2t ln it))

= FZθ,t+1,1

(
λθ,t+1,1at +

λθ,t+1,1

λθ,t,1
γ1tQα(Zθ,t,1) + λθ,t+1,1γ2t ln it

)

where it is a fixed level of investment, Fln θt+1 is the cdf of ln θt+1, and Qα(θt) is the α-quantile

of θt. Since the right hand side only depends on identified parameters, similar to marginal

effects in the probit model, we can identify how exogenous changes in someones investment

affects her rank in the skill distribution at time t+ 1 for a given skill quantile at time t.

As another example, first combine the production functions from two periods, write

ln θ2 = a1 + γ11a0 + γ11γ10 ln θ0 + γ11γ20 ln I0 + γ21 ln I1,

and for a given investment sequence (i0, i1) define

ln θ2(i0, i1) = a1 + γ11a0 + γ11γ10 ln θ0 + γ11γ20 ln i0 + γ21 ln i1
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We can rewrite this equation in terms of identified features as

λθ,2,1 ln θ2(i0, i1) = λθ,2,1a1 + λθ,2,1γ11a0 +

(
λθ,2,1
λθ,1,1

γ11

)(
λθ,1,1
λθ,0,1

γ10

)
λθ,0,1 ln θ0

+

(
λθ,2,1
λθ,1,1

γ20

)
(λθ,1,1γ11) ln i0 + (γ21λθ,2,1) ln i1

showing that we can identify the distribution of λθ,2,1 ln θ2(i0, i1), which we can interpret as

a counterfactual measure for a given investment sequence. Using this result, we can also

identify the sequence of investment which maximizes expected log-skills. That is, consider

g(τ0) ∈ R2 defined as

g(τ0) = argmax
(i0,i1)∈I

E [ln θ2(i0, i1)] ,

where I is a set of feasible investments. Since the maximizer is invariant to changes in scales

and locations of the objective function, g(τ0) = argmax(i0,i1)∈I E [λθ,2,1 ln θ2(i0, i1)], showing

that g(τ0) is identified. All the identified features above are invariant to the restriction

λθ,t,1 = 1, implying that λθ,t,1 = 1 is a normalization with respect to these features.

Next to primitive parameters, some counterfactuals reported in applications are not be

invariant to λθ,t,1 = 1 either. As an example, suppose the production function for ln θ1 also

includes an additive interaction term, γ30 ln θ0 ln I0, in which case it can be shown that

λθ,2,1 ln θ2(i0, i1) = ζ0 + ζ1 ln θ0 + ζ3 ln i0 + ζ4 ln i1 + ζ5 ln θ0 ln i0

for identified parameters {ζj}5j=1. Using ln θ0 ∼ N(0, s20) it follows that

E[θ2(i0, i1)
λθ,2,1 ] = exp

(
ζ0 + ζ3 ln i0 + ζ4 ln i1 + (ζ1 + ζ5 ln i0)

2 s20
)

but

E[θ2(i0, i1)] = exp

(
1

λθ,2,1

(
ζ0 + ζ3 ln i0 + ζ4 ln i1 + (ζ1 + ζ5 ln i0)

2 s20
λθ,2,1

))
which implies that generally argmax(i0,i1)∈I E [θ2(i0, i1)] ̸= argmax(i0,i1)∈I E[θ2(i0, i1)

λθ,2,1 ]

Hence, using different scaled versions of log-skills (or different fixed values of λθ,t,1) results
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in different optimal investment sequences when studying the skill level.

Finally, consider the CES production function

θt+1 = (γ1tθ
σt
t + γ2tI

σt
t )1/σt

The parameter vector is now τ0 = (λθ,0,1, λθ,1,1, λθ,2,1, σ0, σ1, γ10, γ20, γ11, γ21, s
2
0) and we can

write the production function in terms of observables as

exp(Zθ,t+1,1) = (γ1t exp(Zθ,t,1)
σt/λθ,t,1 + γ2tI

σt
t )λθ,t+1,1/σt

Due to the functional form restrictions of the CES production function, it can be shown that

τ0 is point identified without any additional restrictions.

Thus, the commonly imposed scale restrictions (λθ,t,1 = 1 for all t) lead to misspecifica-

tion unless the true values are all 1. Consequently, imposing this restriction yields different

conclusions for different scaled versions of log-skills (or different fixed values of λθ,t,1) irre-

spective of the counterfactual. Similar as in the trans-log case, many important features are

identified without additional restrictions and are invariant to scaling of the measures.

These results generalize to more complicated settings as discussed in the next section.

3 Skill formation models

3.1 Model

I now discuss issues arising from normalizations in a general class of skill formation models.

As before, θt and It denote skills and investment at time t, respectively. Now neither skills

nor investment are directly observed and we denote the observed measurements by Zθ,t,m

and ZI,t,m, respectively. Specifically, I consider the model:

θt+1 = f(θt, It, δt, ηθ,t) t = 0, . . . , T − 1(1)

Zθ,t,m = µθ,t,m + λθ,t,m ln θt + εθ,t,m t = 0, . . . , T,m = 1, 2(2)

ZI,t,m = µI,t,m + λI,t,m ln It + εI,t,m t = 0, . . . , T − 1,m = 1, 2(3)
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The first equation describes the production technology with a production function f that

depends on skills and investment at time t, a parameter vector δt, and an unobserved shock

ηθ,t. The second and the third equation describe the measurement system for unobserved

(latent) skills θt and unobserved investment It, respectively. Observed investment is a special

case with µI,t,m = 0, λI,t,m = 1, and εI,t,m = 0 for all m and t in which case ZI,t,m = ln It.

Next, I introduce two equations to allow for endogenous investment and anchoring at an

adult outcome. If investment is exogenous, in the sense that ηθ,t is independent of It, then

these equations are not needed for the main identification results. That is, let

ln It = β0t + β1t ln θt + β2t lnYt + ηI,t t = 0, . . . , T − 1(4)

Q = ρ0 + ρ1 ln θT + ηQ(5)

Here Yt is parental income (or another exogenous variable that affects investment) and Q

is an adult outcome, such as earnings or education. An adult outcome does not necessarily

have to be available and we can simply use a skill measure in period T in its place.

In summary, the observed variables are income {Yt}T−1
t=0 , the measures {Zθ,t,m}t=0,...,T,m=1,2

and {ZI,t,m}t=0,...,T−1,m=1,2, and the adult outcome Q, but we neither observe skills {θt}Tt=0

nor investment {It}T−1
t=0 . We also do not observe any of the errors/shocks in the five equa-

tions. The parameters are {µθ,t,m, λθ,t,m}t=0,...,T,m=1,2, {µI,t,m, λI,t,m}t=0,...,T−1,m=1,2, {δt}T−1
t=0 ,

{β0t, β1t, β2t}T−1
t=0 , and (ρ0, ρ1).

In the following analysis, I consider the two most commonly used forms for the production

technology in the empirical literature, namely the trans-log production function with

(6) ln θt+1 = at + γ1t ln θt + γ2t ln It + γ3t ln θt ln It + ηθ,t

and parameter vector δt = (at, γ1t, γ2t, γ3t) and the CES production function with

(7) θt+1 = (γ1tθ
σt
t + γ2tI

σt
t )ψt/σt exp(ηθ,t)

and parameter vector δt = (γ1t, γ2t, σt, ψt). When γ3t = 0, the trans-log reduces to the

Cobb-Douglas production function.

14



I now state several additional assumptions that are common in the literature.

Assumption 1.

(a) {{εθ,t,m}t=0,...,T,m=1,2, {εI,t,m}t=0,...,T−1,m=1,2, ηQ} are jointly independent and independent

of {{θt}Tt=0, {It}T−1
t=0 } conditional on {Yt}T−1

t=0 .

(b) All random variables have bounded first and second moments.

(c) E[εθ,t,m] = E[εI,t,m] = E[εQ] = 0 for all t and m.

(d) λθ,t,m, λI,t,m ̸= 0 for all t and m.

(e) For all t ∈ {0, . . . , T}, cov(ln θt, ln Is) ̸= 0 for some s ∈ {0, . . . , T−1} or cov(ln θt, ln θs) ̸=

0 for some s ∈ {0, . . . , T}\t . For all t ∈ {0, 1, . . . , T − 1}, cov(ln It, ln θs) ̸= 0 for some

s ∈ {0, . . . , T} or cov(ln It, ln Is) ̸= 0 for some s ∈ {0, . . . , T − 1}\t.

(f) For all t and m the real zeros of the characteristic functions of εθ,t,m are isolated and

are distinct from those of its derivatives. Identical conditions hold for the characteristic

functions of εI,t,m and ηQ.

(g) The support of (θt, It, Yt) includes an open ball in R3 for all t.

(h) E[ηI,t | θt, Yt] = 0 and E[ηθ,t | θt, ηI,t, Yt] = κtηI,t for all t.

Part (a) imposes common independence assumptions on the measurement errors. Im-

portantly, It and θt are not independent and It may be endogenous and contemporaneously

correlated with ηθ,t. Part (b) is a standard restriction, part (c) is needed because all measure-

ment equations contain an intercept, and part (d) ensures that the skills actually affect the

measures. Part (e) requires that skills and investment are correlated in some time periods.

Sufficient conditions are that cov(ln θt+1, ln θt) ̸= 0 and cov(ln It+1, ln It) ̸= 0 for all t. Under

parts (a) and (d) zero covariances of the latent variables are identified because, for example,

cov(ln θt, ln θs) = 0 if and only if cov(Zθ,t,1, Zθ,s,1) = 0. Notice that I only require two mea-

sures in each period. One can drop part (e) by assuming that three measures are available.

Part (f) contains weak regularity conditions needed for nonparametric identification of the
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distributions of skills and investment and that hold for most common distributions. Part (g)

is a mild support condition that ensures sufficient variation of (θt, It, Yt). Part (h) implies

that Yt can serve as an instrument with identification based on a control function argument,

as in Attanasio et al. (2020). Linearity of the conditional mean function can be relaxed to

allow for more flexible functional forms. Exogenous investment is a special case with κt = 0.

Under parts (a)–(f) of Assumption 1 we get the following result.

Lemma 1. Suppose that parts (a)–(f) of Assumption 1 hold. Then the joint distribution of

({µθ,t,m + λθ,t,m ln θt}t=0,...,T,m=1,2, {µI,t,m + λI,t,m ln It}t=0,...,T−1,m=1,2, ρ0 + ρ1 ln θT )

is point identified conditional on {Yt}T−1
t=0 .

The proof follows from an extension of Kotlarski’s Lemma (Evdokimov and White 2012).

Lemma 1 shows that under Assumption 1, the distribution of linear combinations of log-

skills and investments is identified. However, Assumption 1 does not imply identification

of the parameters in equations (1)–(3), such as δt. Below I discuss additional assump-

tions, which have been used in the literature, to achieve point identification of two sets of

parameters: (i) the primitive parameters of the model (1)–(5): {µθ,t,m, λθ,t,m}t=0,...,T,m=1,2,

{µI,t,m, λI,t,m}t=0,...,T−1,m=1,2, {δt}T−1
t=0 , {β0t, β1t, β2t}T−1

t=0 , and (ρ0, ρ1) and (ii) “policy relevant”

parameters, such as how changes in investment or income affect Q. I consider various com-

binations of assumptions and I discuss in what sense restrictions are normalizations.

There are two separate issues concerning identification and normalizations in this model.

First, the previous literature has focused on sufficient conditions for point identification,

which includes scale and location restrictions. However, it is unclear whether these re-

strictions are necessary. If they instead restrict identified parameters, the model may be

misspecified and estimators are generally inconsistent. Second, even if the restrictions sim-

ply select an element of the identified set, it is important to understand which features are

invariant to arbitrary scale and location restrictions. Although the implications in the CES

case are more interesting, I start with the more transparent trans-log case where only the

second issue arises. As pointed out before, whether or not a restriction is a normalization

depends on the model, and parameters may be invariant in some settings, but not in others.
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3.2 Trans-log production function

In this section I consider the trans-log production function given in equation (6). I first

introduce additional assumptions that are commonly used in the literature.

Assumption 2. λθ,0,1 = 1 and µθ,0,1 = 0.

Assumption 3.

(a) λθ,t,1 = λθ,t+1,1 and µθ,t,1 = µθ,t+1,1 for all t = 0, . . . , T − 1

(b) at = 0 and γ1t + γ2t + γ3t = 1 for all t = 0, . . . , T − 1.

Assumption 4.

(a) λI,t,1 = 1 and µI,t,1 = 0 for all t = 0, . . . , T − 1.

(b) β0t = 0 and β1t + β2t = 1 for all t = 0, . . . , T − 1.

Assumption 2 is usually thought of as a normalization, which is commonly imposed since

log-skills are only identified up to scale and location. Here, I impose the restrictions on

the first measure, which is without loss of generality. Instead of fixing the intercept and

the slope coefficient in equation (2) for t = 0, one could set ρ0 = 0 and ρ1 = 1 and thus

“anchor” the skills at Q. Assumption 2 anchors the skills at Zθ,0,1, but analogous issues

discussed here arise with anchoring at Q (see Section 3.2.4). Without such an assumption,

the parameters are not point identified. Assumption 3(a) states that the skill measures are

age-invariant (using the terminology of Agostinelli and Wiswall (2024) – see their Definition 1

and footnote 10). Assumption 3(b) imposes restrictions on the technology, which Agostinelli

and Wiswall (2024) refer to as a known scale and location assumption in a more general

context. Assumption 4(a) says that an investment measure is age-invariant. Assumption

4(b) states constant return to scale in equation (4), which is a strong assumption and used

for point identification without age-invariant investment measures. If investment is observed

(i.e. ZI,t,m = ln It), Assumption 4(a) is automatically satisfied.

I now characterize the identified set of the primitive parameters under Assumption 1 only.

I then discuss point identification under different combinations of Assumptions 1–4 and show
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that several policy relevant parameters are invariant to the restrictions in Assumption 2 and

are in fact point identified under Assumption 1. Finally, I illustrate why Assumption 2 is

generally not a normalization for the primitive as well as some policy relevant parameters.

3.2.1 Identification

Define Ĩt = exp(µI,t,1)I
λI,t,1
t and θ̃t = exp(µθ,t,1)θ

λθ,t,1
t so that

ln θ̃t = µθ,t,1 + λθ,t,1 ln θt and ln θt =
ln θ̃t − µθ,t,1

λθ,t,1
.

We can then rewrite the production function in terms of θ̃t and Ĩt because

ln θ̃t+1 − µθ,t+1,1

λθ,t+1,1

= at+ γ1t
ln θ̃t − µθ,t,1

λθ,t,1
+ γ2t

ln Ĩt − µI,t,1
λI,t,1

+ γ3t
ln θ̃t − µθ,t,1

λθ,t,1

ln Ĩt − µI,t,1
λI,t,1

+ ηθ,t.

After rearranging, we can then rewrite equations (1)–(5) as

ln θ̃t+1 = ãt + γ̃1t ln θ̃t + γ̃2t ln Ĩt + γ̃3t ln θ̃t ln Ĩt + η̃θ,t t = 0, . . . , T − 1(8)

Zθ,t,m = µ̃θ,t,m + λ̃θ,t,m ln θ̃t + εθ,t,m t = 0, . . . , T,m = 1, 2(9)

ZI,t,m = µ̃I,t,m + λ̃I,t,m ln Ĩt + εI,t,m t = 0, . . . , T − 1,m = 1, 2(10)

ln Ĩt = β̃0t + β̃1t ln θ̃t + β̃2t lnYt + η̃I,t t = 0, . . . , T − 1(11)

Q = ρ̃0 + ρ̃1 ln θ̃T + ηQ(12)

where

γ̃1t =
λθ,t+1,1

λθ,t,1

(
γ1t −

µI,t,1
λI,t,1

γ3t

)
, γ̃2t =

λθ,t+1,1

λI,t,1

(
γ2t −

µθ,t,1
λθ,t,1

γ3t

)
, γ̃3t =

λθ,t+1,1

λθ,t,1λI,t,1
γ3t

and expressions for all other parameters in (8)–(12) are provided in Appendix A.1. Impor-

tantly, by construction, µ̃θ,t,1 = µ̃I,t,1 = 0 and λ̃θ,t,1 = λ̃I,t,1 = 1 and Lemma 1 implies that the

joint distribution of ({ln θ̃t}Tt=0, {ln Ĩt}Tt=0) is point identified conditional on {Yt}T−1
t=0 , which

then yields identification of all parameters in (8)–(12). These parameters are functions of

the primitive parameters in (1)–(5). The next theorem, which characterizes the identified
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set, states that the identified set consists of all primitive parameters that imply the same

values in (8)–(12) as the true parameters, which is very similar to the probit model.

Theorem 1. Suppose Assumption 1 holds.

1. The identified set of {µθ,t,m, λθ,t,m}t=0,...,T,m=1,2, {µI,t,m, λI,t,m}t=0,...,T−1,m=1,2, (ρ0, ρ1),

{β0t, β1t, β2t}T−1
t=0 , {at, γ1t, γ2t, γ3t}T−1

t=0 consists of all vectors that yield the same values

of {µ̃θ,t,m, λ̃θ,t,m}t=0,...,T,m=1,2, {µ̃I,t,m, λ̃I,t,m}t=0,...,T−1,m=1,2, (ρ̃0, ρ̃1), {β̃0t, β̃1t, β̃2t}T−1
t=0 ,

and {ãt, γ̃1t, γ̃2t, γ̃3t}T−1
t=0 as the true parameter vectors.

2. Let {µ̄θ,t,1, λ̄θ,t,1}Tt=0, {µ̄I,t,1, λ̄I,t,1}T−1
t=0 , be fixed constants with λ̄θ,t,1, λ̄I,t,1 ̸= 0 for all t. If

in addition {µθ,t,1, λθ,t,1}Tt=0 = {µ̄θ,t,1, λ̄θ,t,1}Tt=0 and {µI,t,1, λI,t,1}T−1
t=0 = {µ̄I,t,1, λ̄I,t,1}T−1

t=0 ,

then the identified set is a singleton.

Part 2 of the theorem shows that the parameters are indeed not point identified under

Assumption 1 only and that the sources of underidentification are the ambiguous scales and

locations of skills and investments. For example, without additional assumptions, equations

(1)–(5) and (8)–(12) are observationally equivalent, and we cannot distinguish between the

skills θt and θ̃t and the corresponding production functions. Even if investment was observed

(and µI,t,1 = 0 for all t), we can then only identify (λθ,t+1,m/λθ,t,m)γ1t, but not λθ,t,m and γ1t

separately. Hence, we cannot distinguish between changes in the quality of the measurements

(λθ,t+1,m/λθ,t,m) and changes in the technology (γ1t). For example, suppose Zθ,t,m are test

scores. We then cannot distinguish between all children getting smarter or tests becoming

easier. Similarly, we can at best identify γ2t up to scale, even with observed investment.

The following corollary states that all parameters are point identified under additional

assumptions. These results are an extension of those in Agostinelli and Wiswall (2024), who

assume that investment is exogenous (in the sense that it is uncorrelated with ηθ,t).

Corollary 1. Suppose Assumptions 1 and 2 hold. Suppose either Assumption 3(a) or As-

sumption 3(b) holds. Suppose either Assumption 4(a) or Assumption 4(b) holds. Then all

parameters are point identified.

The corollary also immediately implies that Assumptions 3(a) and 3(b) together impose

additional testable restrictions, which is one of the main contributions of Agostinelli and
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Wiswall (2016a, 2016b, 2024). Contrarily, as shown in Theorem A.1 in the appendix and

illustrated in examples below, if the model is correctly specified and Assumption 1 holds,

then there always exist sets of parameters which are consistent with the data and satisfy

Assumptions 1, 2, either 3(a) or 3(b), and either 4(a) or 4(b). These different sets of assump-

tions therefore impose no additional restrictions on the distribution of observables. While

different sets of assumptions yield point identification and are observationally equivalent, the

estimated primitive parameters are usually quite different, as illustrated in Section 3.2.3.

3.2.2 Invariant parameters

I now show that many interesting features are point identified under Assumption 1 only

because they can all be rewritten in terms of the identified parameters in (8)–(12), as in

Section 2.2. They include summaries of the productions functions and effects of investment

and income on skills and adult outcomes. These features do not constitute an exhaustive

list and there may be many others. To state the formal results, recall that Qα(θt) is the α

quantile of the skill distribution at time t and Fln(θt+1)(·) is the cdf of log-skills at time t+1.

Define s1t(α1, α2, α3) = at+γ1t lnQα1(θt)+γ2t lnQα2(It)+γ3t lnQα1(θt) lnQα2(It)+Qα3(ηθ,t)

which are the log-skills in period t+1 for specific quantiles of the inputs in period t. Similarly,

let s2t(α1, α2, α3, y) = at+γ1t lnQα1(θt)+γ2t ln It(y)+γ3t lnQα1(θt) ln It(y)+Qα2(ηθ,t), where

ln It(y) = β0t + β1t lnQα1(θt) + β2t ln y + Qα3(ηI,t), which are log-skills and log-investment,

that depend on a specific exogenously set value of Y .

Theorem 2. Suppose Assumption 1 holds.

1. Fln θt+1(s(α1, α2, α3)) and µθ,t+1,m+λθ,t+1,ms1t(α1, α2, α3)+Qα4(εθ,t+1,m) are point iden-

tified for all {αj}4j=1 ∈ (0, 1).
∂λθ,t+1,m ln θt+1

∂λθ,t,m′ ln θt
|It=Qα2 (It) and

∂λθ,t+1,m ln θt+1

∂λI,t,m′ ln It
|θt=Qα1 (θt) are

point identified for all m,m′.

2. Fln θt+1(s2t(α1, α2, α3, y)) and µθ,t+1,m+λθ,t+1,ms2t(α1, α2, α3, y)+Qα4(εθ,t+1,m) are point

identified for all {αj}4j=1 ∈ (0, 1).

3. P
(
Q ≤ q | θs = Qα1(θs), {It = Qα2t(It)}T−1

t=0 , {ηθ,t = Qα3t(ηθ,t)}T−1
t=s

)
is point identified

for all α1, {α2t, α3t}T−1
t=s ∈ (0, 1).
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4. P
(
Q ≤ q | θs = Qα(θs), {Yt = yt}T−1

t=s

)
is point identified for all α ∈ (0, 1).

5. Suppose Assumption 3(a) also holds. Then γ1t + γ3t lnQα(It) is point identified for all

α and P (γ1t + γ3t ln It ≤ q) is point identified for all q ∈ R.

The function Fln θt+1(at+γ1t lnQα1(θt)+γ2t lnQα2(It)+γ3t lnQα1(θt) lnQα2(It)+Qα3(ηθ,t))

measures how changes in skills and investment changes the relative standing in the skill

distribution. For example, consider an individual with θt = Q0.1(θt), meaning that the person

is at lowest 10% of the skill distribution at time t. Then, given investment It = Q0.25(It)

and a median production function shock, ηθ,t = Q0.5(ηθ,t), Fln θt+1(s(0.1, 0.25, 0.5)) tells us

the relative rank (or the quantile) in the skill distribution at time t + 1. We can then for

example vary the investment quantile and analyze how future skill ranks are affected. This

feature is identified because I show in the appendix that

Fln θt+1 (at + γ1tQα1 ln(θt) + γ2tQα2(ln It) + γ3tQα1 ln(θt)Qα2(ln It) +Qα3(ηθ,t))

= Fln θ̃t+1
(ãt + γ̃1t lnQα1(θ̃t) + γ̃2t lnQα2(Ĩt) + γ̃3t lnQα1(θ̃t) lnQα2(Ĩt) +Qα3(η̃θ,t))

Thus, one can estimate the model based on (8)–(12) and calculate the feature using θ̃t instead

of θt. The estimand then corresponds to the true effect, even if Assumptions 2–4 do not hold.

Once we know the rank at time t+ 1 and fix investment and production shock quantiles

in that period, we can identify the skill rank at time t + 2. Using recursive arguments, we

can identify the relative rank in period T , given investment and production shock quantiles

in all period and a skill quantile in period 0. We could then make statements such as: “A

person at lowest 10% of the skill distribution in period 0 would end up at the 30% quantile

of the original skill distribution in the final period with a particular investment strategy

and median production function shocks.” These statements would allow comparisons of

investment strategies, assessing heterogeneous effects, and choosing optimal investments.

Instead of considering ranks of skills, one can interpret the effects in the units of any

of the measures. For example, changing investment from Qα2(It) to Qα′
2
(It) changes skills

at time t + 1 such that skill measure m changes by λθ,t+1,m(s1(α1, α
′
2, α3) − s1(α1, α2, α3))

(holding everything else equal). We can also identify that a change in investment, which
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corresponds to a 1 unit increase in investment measure m′ at time t, affects skills at time

t + 1 in a way that skill measure m changes by
∂λθ,t+1,m ln θt+1

∂λI,t,m′ ln It
|θt=Qα1 (θt) (see Section 5 for

specific examples).

The second part is very similar, but it also considers exogenous changes in income.

Instead of considering the skill rank in the final period, we could also look at the dis-

tribution of the adult outcome Q (or, alternatively, one of the skill measures in the final

period). Notice that it is important to condition on the production function shocks, because

investment in endogenous. We can either fix a quantile or average over its marginal distri-

bution since we obtain identification for all quantiles. The fourth part focuses on the effect

of income on skills. Again, we can point identify averages and features of the distribution

such as
∫
E
(
Q | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ (which differs from E

(
Q | {Yt = yt}T−1

t=s

)
due

to a potential dependence between {Yt = yt}T−1
t=s and skills). Also notice that

∫
E
(
Q | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ = ρ0 + ρ1

∫
E
(
ln θT | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ

Thus, we can identify the sequence {Yt = yt}T−1
t=s that maximizes the conditional expected

value of ln θT . For this sequence, we do not necessarily need to observe an adult outcome

because we can instead use one of the skill measures in period T . To identify these features,

one only has to identify the joint distribution of (Q, Y1, . . . , YT−1, θ̃s). For example, when

s = 0, we do not require any skill measures in periods 1, 2, . . . , T .3 Importantly objects

such as
∫
E
(
θT | θs = θ, {Yt = yt}T−1

t=s

)
fθs(θ)dθ are not point identified without the scale

and location restrictions and are sensitive to the specific values used (see Example 2 below).

Remark 1. To summarize the production technology, Del Bono, Kinsler, and Pavan (2022)

show that standardizing skills can lead to features that are invariant to scale and location

3Part 4 of Theorem 2 also implies identification of∫ ∫ (
∂

∂ys
E(Q | θs = θ, {Yt = yt}T−1

t=s )

)
fθs,Ys,...,YT−1

(θ, ys, . . . , yT−1)dθdys · · · dyT−1

which Del Bono et al. (2022) refer to as “anchored treatment effects”. Del Bono et al. (2022) show that these
effects are identified without age-invariant measures. My results show that one in fact does not even need
any measures of investments or measures of skills in periods s+1, 2, . . . , T (and therefore also no assumptions
on the measurement systems, including age-invariance and independence). In addition, my arguments are
not specific to the trans-log production function and carry over to other settings.
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restrictions and age-invariance. In particular, they show identification of the distribution

of
(
∂ ln θt+1

∂ ln It

)
/std(ln θt+1). One can then make statements such as “increasing investment

by 1%, increases log-skills by x × std(ln θt+1)”. Part 1 of Theorem 2 offers an alternative

interpretation in terms of ranks or units of the measures.

Remark 2. Instead of using a two-step approach, where the distribution of a linear combi-

nation of skills and investment is identified first, Agostinelli and Wiswall (2024) substitute

measures into the production function equation and use IV arguments with exogenous invest-

ment (i.e. It and ηθ,t are independent in (4)). Aside from exogenous investment, there are no

substantial differences between the required assumptions, as both approaches are based on

the joint distribution of the measures. My main contributions are to study the roles of the

scale and location restrictions on the parameters of the model, to show which restrictions

select an element of the identified set, and to provide features that are invariant to them and

are identified without age-invariant measures and restrictions on the production function.

3.2.3 Non-invariant parameters

As shown above, under Assumption 1, there exist different sets of observationally equivalent

parameters that cannot be distinguished using the data. I now illustrate with two examples

that the resulting primitive parameters and counterfactuals might differ considerably.

Example 1. For simplicity, I assume that investment is observed and exogenous. In this

case, Assumption 4(a) holds. I first consider a data generating process (DGP) satisfying

Assumptions 1, 3(a), and 3(b), but not Assumption 2. I then construct two alternative

sets of parameters, both of which are observationally equivalent to the original DGP. One

of these sets of parameters satisfies Assumptions 1, 2, and 3(a) and the other set satisfies

Assumptions 1, 2, and 3(b). Specifically, first assume that

ln θt+1 =
1

2
ln θt +

1

2
ln It + ηθ,t

Z̃θ,t,1 = ln θt + ε̃θ,t,1

Here, I set at = µθ,t,m = ρ0 = 0 and focus on the scale restriction in Assumption 2 only. For

brevity, I omit equations for investment, additional measurements, and the adult outcome.
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Measures often do not have a natural scale. For example, we could divide all test scores

by its standard deviation or we could measure education in months rather than years. One

would then hope that changing the units of measurement does not affect the economic

interpretation of the results. As a specific example, suppose we estimate the model using a

scaled version of the measures, namely Zθ,t,1 = 12Z̃θ,t,1. Then for all t

ln θt+1 =
1

2
ln θt +

1

2
ln It + ηθ,t

Zθ,t,1 = 12 ln θt + εθ,t,1

where εθ,t,1 = 12ε̃θ,t,1. Without knowing the true DGP, one would typically impose assump-

tions that yield point identification when estimating the model. By Corollary 1, one could

use either Assumption 3(a) or 3(b) next to Assumptions 1 and 2.

I first construct parameters satisfying Assumptions 1, 2, and 3(b) using Theorem A.1 in

the appendix, which implies that there are {θ̄t}Tt=0 such that

ln θ̄t+1 = γ̄1t ln θ̄t + (1− γ̄1t) ln It + η̄θ,t

Zθ,t,1 = λ̄θ,t,1 ln θ̄t + εθ,t,1

where

(γ̄10, γ̄11, γ̄12, γ̄13, γ̄14, . . .) = (0.077, 0.351, 0.435, 0.470, 0.485, . . .)

(λ̄θ,0,1, λ̄θ,1,1, λ̄θ,2,1, λ̄θ,3,1, λ̄θ,4,1, . . .) = (1, 6.5, 9.25, 10.625, 11.3125, . . .)

Moreover γ̄1t → γ1t = 1/2 and λ̄θ,t,1 → λθ,t,1 = 12 as t → ∞. Imposing the restriction

λ̄θ,0,1 = 1 means that we estimate a model with alternative skills ln θ̄0 = 12 ln θ0 and that we

obtain different parameters and skill distributions. Although these two models suggest very

different dynamics, they generate identical measurements. Since the true DGP is unknown,

the primitive parameters are therefore hard to interpret. For example the coefficient in front

of investment in the original model might be interpreted as: “increasing investment by 1%,

increases skills in the next period by 0.5% and the effect is the same for all time periods” (see

24



e.g. Agostinelli and Wiswall (2024) for these interpretations). Contrarily, one might interpret

the coefficients in the alternative model with Assumption 2 as: “increasing investment by 1%

in period 0, increases skills in period 1 by 0.923% and increasing investment by 1% in period

4, increases skills in period 5 by 0.515%”, suggesting that investment is more beneficial in

early periods. To obtain interpretable parameters, notice that a one unit increase in ln(It)

leads to an increase in skills that corresponds to a λθ,t+1,1γ2t = 6 units increase in Zθ,t+1,1 or

a 1/2 unit increase in Z̃θ,t+1,1. This effect does not depend on the set of restrictions and its

interpretation adapts to the units of measurement.

The consequences of imposing Assumptions 1, 2 and 3(a) are discussed in Section 2.2,

which shows that the production function becomes ln θ̃t+1 =
1
2
ln θ̃t + 6 ln It + η̃θ,t.

Example 2. I now use a more involved DGP from Section 4, which is based on the simula-

tions of Attanasio et al. (2020).4 In this setup T = 2 and Assumptions 1, 2, 3(a), and 4(a)

hold. Importantly, one skill and one investment measure have loadings of 1. Now suppose

Yt represents income, we can exogenously increase the sum of income of each individual in

periods 0 and 1 by two standard deviations, and we want to distribute that income op-

timally across the two periods. Denote the skills in period 2 as a function of income by

θ2(Y0 + wx, Y1 + (1 − w)x), where Y0 and Y1 are the original incomes, x is the additional

amount to be distributed, and w is the share invested in period 0. The left panel of Figure

1 shows
E[θ2(Y0 + wx, Y1 + (1− w)x)]− E[θ2(Y0, Y1)]

sd(θ2(Y0, Y1))

as a function of w. That is, the y-axis shows the increase in the mean measured in standard

deviations. The black line shows the effect using the true parameters, leading to an optimal

income share of around 32% in period 0. Next, I multiply all skill measures Zθ,t,1 by sθ

and reestimate the model. Scaling the measures has identical effects to imposing λθ,0,1 = 1,

when the data is generated with a loading of sθ. The implied effects of increasing income

for sθ = 2/3 and sθ = 2 can be seen in the left panel of Figure 1 as well. Depending on the

scale, we obtain inefficient optimal investment choices or erroneous benefits of investment.

Intuitively, the reason is that we now maximize E[θ̃t(Y0 + wx, Y1 + (1 − w)x)] = E[θt(Y0 +

4In Section 4 I use a CES production function, as do Attanasio et al. (2020), but for this numerical
examples I use a trans-log production function that leads to similar observed data.
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Figure 1: Mean response for different weights
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Notes: This figure shows changes in standardized means of the level (left panel) and the log (right panel)
of skills for different income transfers and different scales of log-skills.

wx, Y1 + (1 − w)x)sθ ] which is not invariant to sθ. While such counterfactuals could be

relevant if a welfare function is a function of the skill level, they are not identified without

fixing the scales and locations and then depend on the units of measurements of the data.

The right panel contains results for the log-skills rather than the level. As discussed below

Theorem 2, in this case, the optimal income sequence does not depend on the scale of the

measures, because the production function is sufficiently flexible in log-skills. In addition,

dividing by the standard deviation, implies that the objective is invariant to the scale.

3.2.4 Anchoring

Consider equations (8)–(12) and recall that µ̃θ,t,0 = µ̃I,t,0 = 0 and λ̃θ,t,0 = λ̃I,t,0 = 1, and the

parameters in this system of equations are point identified by Theorem 1. Now define ϑ̃t

such that ln ϑ̃t = ρ̃0 + ρ̃1 ln θ̃t. We then get

ln ϑ̃t+1 = ρ̃0 + ρ̃1ãt − ρ̃0γ̃1t + γ̃1t ln ϑ̃t + ρ̃1γ̃2t ln It + γ̃3t ln ϑ̃t ln It + ρ̃1η̃θ,t

Zθ,t,m = µ̃θ,t,m − ρ̃0λ̃θ,t,m
ρ̃1

+
λ̃θ,t,m
ρ̃1

ln ϑ̃t + εt

ZI,t,m = µ̃I,t,m + λ̃I,t,m ln Ĩt + εI,t,m

ln Ĩt = β̃0t −
ρ̃0β̃1t
ρ̃1

+
β̃1t
ρ̃1

ln ϑ̃t + β̃2t lnYt + η̃I,t

Q = ln ϑ̃T + ηQ
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Cunha and Heckman (2008) estimate a model for ln ϑ̃t which anchors the skills at Q. Their

identification strategy is equivalent to using Assumptions 2 and 3(a) and imposing ρ0 = 0

and ρ1 = 1 instead of Assumption 2. Anchoring can help with the interpretation of certain

parameters of the model. For example, when E(Q | ln ϑ̃T ) = ln ϑ̃T , then an increase of ln ϑ̃T

by one corresponds to a one unit increase in the conditional expectation of Q. However, as

illustrated in Example 2, investment or income sequences that maximize the expected levels

of skills depend on the units of measurements of the anchor.5

As discussed by Cunha and Heckman (2008), γ̃1t is invariant to the anchor. However,

without Assumption 3(a), γ̃1t is typically not equal to γ1t. The coefficient in front of in-

vestment is hard to interpreted because it depends on the specific anchor and its units of

measurements (as also noted by Cunha and Heckman (2008)). Moreover, skills can be an-

chored at the adult outcome, but not investment, and many of the estimated parameters also

depend on the units of the investment measures. While anchoring makes most sense under

Assumption 3(a), in which case the skills in all periods are in the units of Q, we could instead

use Assumption 3(b) to achieve point identification. In this case different adult outcomes

or different units of measurements lead to different coefficients that possibly suggest very

different dynamics, just as in Example 1.

3.3 CES production function

I now discuss the CES production technology, where

θt+1 = (γ1tθ
σt
t + γ2tI

σt
t )

ψt
σt exp(ηθ,t) t = 0, . . . , T − 1(13)

Zθ,t,m = µθ,t,m + λθ,t,m ln θt + εθ,t,m t = 0, . . . , T,m = 1, 2(14)

ZI,t,m = µI,t,m + λI,t,m ln It + εI,t,m t = 0, . . . , T − 1,m = 1, 2(15)

ln It = β0t + β1t ln θt + β2t lnYt + ηI,t t = 0, . . . , T − 1(16)

Q = ρ0 + ρ1 ln θT + ηQ(17)

5The identification arguments are fundamentally different if the anchoring equations was in levels instead

of logs of the skills. That is, if Q = ρ0 + ρ1θT + ηQ = ρ0 +
ρ1

exp(µθ,T,1)
1/λθ,T,1

θ̃
1/λθ,T,1

T + ηQ. In this case it can

be shown that the joint distribution of (Q, θ̃T ) is identified, which identifies λθ,T,1. Thus, the distribution
of θT is identified up to a scaling factors, which implies that even sequences of income or investment that
maximize the level of skills are identified.
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where σt ̸= 0, γ1t ̸= 0, and γ2t ̸= 0 for all t. The measurement system is linear in ln θt (as in

Cunha et al. (2010) or Attanasio et al. (2020)) to ensure that estimated skills are positive.

3.3.1 Identification

Similar to the trans-log case, define θ̃t = exp(µθ,t,1)θ
λθ,t,1
t so that

θt = exp

(
−µθ,t,1
λθ,t,1

)
θ̃

1
λθ,t,1

t .

Similarly, let Ĩt = exp(µI,t,1)I
λI,t,1
t . We can again rewrite the production technology in terms

of θ̃t and Ĩt. That is, we can rewrite equations (13)–(17) to

θ̃t+1 =

(
γ̃1tθ̃

σt
λθ,t,1

t + γ̃2tĨ
σt

λI,t,1

t

)λθ,t+1,1ψt
σt

exp(η̃θ,t) t = 0, . . . , T − 1(18)

Zθ,t,m = µ̃θ,t,m + λ̃θ,t,m ln θ̃t + εθ,t,m t = 0, . . . , T,m = 1, 2(19)

ZI,t,m = µ̃I,t,m + λ̃I,t,m ln Ĩt + εI,t,m t = 0, . . . , T − 1,m = 1, 2(20)

ln Ĩt = β̃0t + β̃1t ln θ̃t + β̃2t lnYt + η̃I,t t = 0, . . . , T − 1(21)

Q = ρ̃0 + ρ̃1 ln θ̃T + ηQ(22)

where

γ̃1t = γ1t exp

(
σt

(
µθ,t+1,1

λθ,t+1,1ψt
− µθ,t,1
λθ,t,1

))
and γ̃2t = γ2t exp

(
σt

(
µθ,t+1,1

λθ,t+1,1ψt
− µI,t,1
λI,t,1

))

and the other parameters are defined as in the trans-log case. Using the identified joint

distribution of ({ln θ̃t}Tt=0, {ln Ĩt}Tt=0) and the restrictions imposed by the production function,

the following theorem characterizes the identified set of the finite dimensional parameters.

Theorem 3. Suppose Assumption 1 holds.

(a) The identified set of {µθ,t,m, λθ,t,m}t=0,...,T,m=1,2, {µI,t,m, λI,t,m}t=0,...,T−1,m=1,2, (ρ0, ρ1),

{β0t, β1t, β2t}T−1
t=0 , {γ1t, γ2t, σt, ψt}T−1

t=0 consists of all vectors that yield the same values of

{µ̃θ,t,m, λ̃θ,t,m}t=0,...,T,m=1,2, {µ̃I,t,m, λ̃I,t,m}t=0,...,T−1,m=1,2, (ρ̃0, ρ̃1), {γ̃1t, γ̃2t, σt
λθ,t,1

, σt
λI,t,1

}T−1
t=0 ,

{ σtψt
λθ,t+1,1

}T−1
t=0 , and {β̃0t, β̃1t, β̃2t}T−1

t=0 as the true parameter vectors.
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(b) Let {µ̄θ,t,1}Tt=0, {µ̄I,t,1}T−1
t=0 , and {λ̄θ,t,1}Tt=0 be fixed constants with λ̄θ,t,1 ̸= 0 for all t.

Under the additional restrictions {µθ,t,1}Tt=0 = {µ̄θ,t,1}Tt=0 and {µI,t,1}T−1
t=0 = {µ̄I,t,1}T−1

t=0

and {λθ,t,1}Tt=0 = {λ̄θ,t,1}Tt=0 the identified set is a singleton.

An important implications of part (a) is that the fraction
λθ,t,1
λI,t,1

=
λθ,t,1
σt

σt
λI,t,1

is point

identified for all t = 1, . . . , T − 1. Hence, if we restrict λθ,t,1 to a constant, λI,t,1 is identified,

which is very different to the trans-log case. Intuitively, since skills and investment have

the same exponent in the CES production functions, the relative scale is identified by the

functional form restrictions.

As before, I now introduce additional assumptions to achieve point identification.

Assumption 2’. λθ,0,1 = 1 and µθ,0,1 = 0.

Assumption 3’.

(a) µθ,t,1 = µθ,t+1,1 for all t = 0, . . . , T − 1

(b) γ1t + γ2t = 1 for all t = 0, . . . , T − 1.

Assumption 4’.

(a) µI,t,1 = µI,t+1,1 = 0 for all t = 0, . . . , T − 2.

(b) β0t = 0 for all t = 0, . . . , T − 1.

Assumption 5’.

(a) λθ,t,1 = λθ,t+1,1 for all t = 0, . . . , T − 1.

(b) ψt = 1 for all t = 0, . . . , T − 1.

The following result shows how point identification can be established.

Corollary 2. Suppose Assumptions 1 and 2’ hold. Suppose either Assumption 3’(a) or As-

sumption 3’(b) holds. Suppose either Assumption 4’(a) or Assumption 4’(b) holds. Suppose

either Assumption 5’(a) or Assumption 5’(b) holds. Then all parameters are point identified.
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A common restriction with the CES production function is to set ψt = 1 for all t (see e.g.

Cunha et al. (2010) and Attanasio et al. (2020)). In this case, Theorem 3 implies that
λθ,t+1,1

λθ,t,1

is point identified. Hence, assuming age-invariance (i.e. λθ,t+1,1 = λθ,t,1) is not required, and

it is in fact testable. Moreover, with ψt = 1, Corollary 2 implies that the only scale restriction

needed is λθ,0,1 = 1 (or alternatively λI,0,1 = 1). Nevertheless, it is common practice to set

λθ,t,1 = λI,t,1 = 1 for all t, which are not normalizations, but restrictive assumptions (even

if ψt ̸= 1). Setting the scales to different numbers or changing the units of measurement

of the data then affects all estimated parameters, optimal investment sequences, and other

counterfactuals. Similarly, if the scale of investment is fixed, we cannot anchor the skills at

the adult outcome, unless ρ1 = 1, which can only be true for one specific unit of measurements

(see Appendix B.1). The exact consequences of imposing unnecessary restrictions depend

on the estimation methods used, and I discuss specific examples in Sections 4 and 5.

As shown in Theorem A.2 in the appendix and illustrated in examples below, if the model

is correctly specified and Assumption 1 holds, then there always exist sets of parameters

which are consistent with the data and satisfy Assumptions 1, 2’, either 3’(a) or 3’(b),

either 4’(a) or 4’(b), and either 5’(a) or 5’(b). Similar to the trans-log case, different sets of

assumptions yield observationally equivalent models with potentially very different primitive

parameters.

3.3.2 Invariant parameters

As in the trans-log case, important policy relevant parameters are point identified un-

der Assumption 1 only, because they can all be written in terms of identified features.

Similar to before, now define s1t(α1, α2, α3) = (γ1tQα1(θt)
σt + γ2tQα2(It)

σt)
ψt
σt exp(Qα3(ηθ,t))

and s2t(α1, α2, α3, y) = (γ1tQα1(θt)
σt + γ2tIt(y)

σt)
ψt
σt exp(Qα2(ηθ,t)) where ln It(y) = β0t +

β1t lnQα1(θt) + β2t ln y +Qα3(ηI,t).

Theorem 4. Suppose Assumption 1 holds.

1. Fθt+1

(
s1t(α1, α2, α3)

)
and µθ,t+1,m + λθ,t+1,m ln s1t(α1, α2, α3) + Qα4(εθ,t+1,m) are point

identified for all {αj}4j=1 ∈ (0, 1). Moreover,
∂λθ,t+1,m ln θt+1

∂λθ,t,m′ ln θt
|θt=Qα1 (θt),It=Qα2 (It) and

∂λθ,t+1,m ln θt+1

∂λI,t,m′ ln It
|θt=Qα1 (θt),It=Qα2 (It) are point identified for all m,m′ and {αj}2j=1 ∈ (0, 1).
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2. Fθt+1(s2t(α1, α2, α3, y)) and µθ,t+1,m+λθ,t+1,m ln s2t(α1, α2, α3, y)+Qα4(εθ,t+1,m) are point

identified {αj}4j=1 ∈ (0, 1).

3. P
(
Q ≤ q | θt = Qα1(θt), {Is = Qα2s(Is)}T−1

s=t , {ηθ,s = Qα3s(ηθ,s)}T−1
s=t

)
is point identified

for all α1, {α2s, α3s}T−1
s=t ∈ (0, 1).

4. P
(
Q ≤ q | θ0 = Qα(θ0), {Yt = yt}T−1

t=0

)
is point identified for all α ∈ (0, 1).

5. If in addition either Assumption 5’(a) or Assumption 5’(b) holds, the distributions of

∂ ln θt+1

∂ ln θt
=

∂

∂ ln θt
ln (γ1tθ

σt
t + γ2tI

σt
t )

1
σt and

∂ ln θt+1

∂ ln It
=

∂

∂ ln It
ln (γ1tθ

σt
t + γ2tI

σt
t )

1
σt

are point identified and

∂ ln θt+1

∂ ln θt

∣∣∣∣
ln θt=Qα1 (ln θt),ln It=Qα2 (ln It)

=
∂

∂ ln θt
ln (γ1tθ

σt
t + γ2tI

σt
t )

1
σt

∣∣∣∣
ln θt=Qα1 (ln θt),ln It=Qα2 (ln It)

and

∂ ln θt+1

∂ ln It

∣∣∣∣
ln θt=Qα1 (ln θt),ln It=Qα2 (ln It)

=
∂

∂ ln It
ln (γ1tθ

σt
t + γ2tI

σt
t )

1
σt

∣∣∣∣
ln θt=Qα1 (ln θt),ln It=Qα2 (ln It)

are point identified for all α1, α2 ∈ (0, 1).

The features in parts (1)–(4) are analogous to those in the trans-log case and can be

used to calculate optimal investment/income strategies and anchored treatment effects, as

discussed after Theorem 2. As opposed to the trans-log case, now the relative scales of

skills and investment are point identified. Consequently, elasticities are identified under

Assumption 1 and either age-invariant skill measures or ψt = 1 only.

3.3.3 Non-invariant parameters

To achieve point identification of all parameters, we need to fix the levels of the logs of skills

and investment, e.g. by setting µθ,0,1 and µ0,I,1 to 0. Similar to the trans-log case, these

restrictions are generally not normalizations for the primitive parameters. In the example

below, I illustrate that with the restriction γ1t+γ2t = 1, setting µθ,0,1 = 0 can imply different
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dynamics. Here µθ,0,1 (and not λθ,0,1) affects the scale because we can identify the distribution

of θ̃t = exp(µθ,t,1)θ
λθ,t,1
t and the production function is in levels rather than logs of θt.

Example 3. The issues with the restriction µθ,0,1 = 0 in the CES case are analogous to the

issues with the restriction λθ,0,1 = 1 in the trans-log case discussed in Example 1. I now

consider a numerical example analogous to Example 1 and focus on the measurement and

the production function only. That is, suppose that

θt+1 =

(
1

2
θt +

1

2
It

)
exp(ηθ,t)

Zθ,t,m = ln(12) + ln θt + εθ,t,m

Notice that Zθ,t,m = ln(12θt) + εθ,t,m. Let θ̃t = 12θt. Just as in Example 1, we get

θ̃t+1 =
(
γ̃1tθ̃t + (1− γ̃1t)It

)
exp(η̃θ,t)

Zθ,t,m = µ̃θ,t,m + ln θ̃t + εθ,t,m

where (γ̃10, γ̃11, γ̃12, γ̃13, . . .) = (0.077, 0.351, 0.435, 0.470, . . .) and

(exp(µ̃0,θ,m), exp(µ̃1,θ,m), exp(µ̃2,θ,m), exp(µ̃3,θ,m), . . .) = (1, 6.5, 9.25, 10.625, . . .).

Just as in Example 1, these two models are observationally equivalent, but suggest very

different dynamics.

4 Monte Carlo simulations

I use a very similar data generating process as Attanasio et al. (2020). In particular, I use

θt+1 = At (γtθ
σt
t + (1− γt) I

σt
t )

1
σt exp(ηθ,t)

for t = 1, 2. Allowing for At ̸= 1 is equivalent to not imposing the restriction that the coeffi-

cients in front of θt and It sum to 1. Since I want to study income transfers as counterfactuals,

I augment the setup of Attanasio et al. (2020) and add ln It = β1t ln θt+β2t lnYt+ηI,t, where
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Y0 = Y1. To simulate data, I first draw (ln(θ0), ln(Y )) from a normal mixture distribution.

Given (ln(θ0), ln(Y )) and normally distributed ηθ,t and ηI,t I then generate I0, θ1, I1, and

θ2 using the model. If ln It was equal to lnYt, the setup would be exactly equal to that of

Attanasio et al. (2020) with parameters as in their Table 9, which are based on their em-

pirical results, and I use σ0 = σ1 = −0.5.6 I deviate slightly from their setting by using the

additional investment equation with β1t = 0.1, β2t = 0.9, and ηI,t ∼ N(0, 0.12). I simulate

three measures each for θt and It, which have a factor structure with µθ,t,m = µI,t,m = 0

for all m, t. In addition λθ,t,1 = λI,t,1 = 1 for all t, which imposes the scale restrictions and

the age-invariance assumptions. In Attanasio et al. (2020), all of these loadings are also

“normalized” to 1 in their estimation procedure. In particular, they first estimate the dis-

tribution of the measures and of log-income using a normal mixture model. Then, assuming

that (ln(θ0), ln(θ1), ln(θ2), ln(I0), ln(I1), ln(Y )) also has a normal mixture distribution, they

use the factor structure and the restrictions to estimate that distribution.7 Lastly, they take

draws from the distribution and estimate the production function parameters by nonlinear

least squares. I implement their estimator and my more flexible approach.

For my approach, I use the estimation procedure explained in Appendix C.2, which

simplifies in this setup because investment is exogenous (and thus, κt = 0). Moreover, to

focus on the scale restriction only, I set µθ,t,m = µI,t,m = 0 for all m and t. Finally, I impose

that the first skill measure and the first investment measure are age-invariant. I then set

λI,t,1 = 1 for all t, and estimate λθ,t,1. I therefore impose Assumptions 2’, 3’(a), and 4’(a), as

well as both parts of Assumption 5’. While only one part of the last assumption is needed

(i.e. age-invariance of the measures could be dropped), they are both satisfied in this setup.

I then estimate λθ = λθ,t,1 along with the production function parameters by solving

argmin
λθ,1,σ1,σ2,γ11,γ21,γ11,γ21

T∑
t=1

J∑
j=1

(
ln θ̃t+1,j − ln(At)λθ −

λθ
σt

ln

(
γ1tθ̃

σt
λθ
t,j + (1− γ2t)Ĩ

σt
t,j

))2

6I use slightly different notation to be consistent with the notation above. Specifically, the periods are
t = 0, 1, 2 instead of t = 1, 2, 3, I use It instead of Xt for the second latent variable, and I use σt instead of
ρt to denote the elasticity of substitution. The distribution of (ln(θ0), ln(Y )) is the same as the distribution
of (ln(θ0), ln(X)) in Attanasio et al. (2020).

7Interestingly, one can see from the DGP that (ln(θ0), ln(θ1), ln(θ2)) does not have a normal mixture
distribution due to the nonlinear production function, but this misspecification bias seems to be relatively
small in this simulation setup.
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where θ̃t,j and Ĩt,j are draws from the estimated distribution of skills and investment using

the estimator of Attanasio et al. (2020). Similarly, we can estimate β1t and β2t from a

regression of Ĩt,j on θ̃t,j and Yj.

In the following, I will investigate the effect of multiplying the skill measures by a single

constant sθ in all periods, which changes the loadings, but not the age-invariance assumption.

For example, the first measure, say Z̃θ,t,1, is generated by

Z̃θ,t,1 = log(θt) + εθ,t,1

but when I estimate the model, I use

Zθ,t,1 = sθZ̃θ,t,1 = sθ log(θt) + sθεθ,t,1,

which is also an age-invariant measure. The estimators still impose that the loadings are

equal to 1 (λI,t,1 = 1 for all t with my estimator and λθ,t,1 = 1 and λI,t,1 = 1 for all t with

the estimator of Attanasio et al. (2020)). Of course, in practice, we do not know the DGP

and there is no reason to believe that the true loading is 1. Ideally, the restriction should be

a normalization in which case the results would be invariant to scaling the data or changing

its units of measurement. However, Corollary 2 implies that the estimator of Attanasio

et al. (2020) is inconsistent. I consider the implications for elasticities and counterfactual

predictions, which are point identified (as shown in Theorem 4) and are invariant to the

scaling when using the new estimator.8 I take sθ = 1, which is the correctly specified model,

as well as sθ = 2/3 and sθ = 2. I report average estimates from 500 simulated data sets.

To summarize the production function estimates I report ∂ ln(θ1)/∂ ln(θ0) as a func-

tion of quantiles of ln(θ0) and evaluated at the 25th and 75th percentile of I0 as well as

∂ ln(θ2)/∂ ln(I1) as a function of quantiles of ln(I1) and evaluated at the 25th and 75th per-

centile of θ1. Figure 2 displays these partial derivatives for the true parameters, the 2-step

estimator of Attanasio et al. (2020) with different values of sθ, and the invariant estimator

that also estimates the scale. In this and the following figures, the results obtained with the

8These features are also invariant to scaling the investment measures with my estimator and I could have
set λθ,t,1 instead of λI,t,1 to 1.
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Figure 2: Partial derivatives
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Notes: This figure shows ∂ ln(θ1)/∂ ln(θ0) as a function of quantiles of ln(θ0) and evaluated at the 25th and
75th percentile of I0 as well as ∂ ln(θ2)/∂ ln(I1) as a function of quantiles of ln(I1) and evaluated at the
25th and 75th percentile of θ1 using different estimators.

invariant estimator are always almost identical to those with the 2-step estimator and sθ = 1

and very similar to those with the true parameter values. Moreover, the invariant estimator

adapts to the scale change. Contrarily, the figure illustrates that small changes in the units

of measurements can have a large effect on the results when using the 2-step estimator. One

interesting finding is that the 2-step estimator underestimates the partial derivative with

respect to ln(θ0) at the 25th percentile of I0 for sθ = 2/3 and overestimates it for sθ = 2.

As a first counterfactual, consider an individual, whose value of θ0 equals Q0.1(θ0) and all

unobservables are 0. I then exogenously change the income sequence of that individual and

check the implied quantile in the skill distribution in period 2. Of course, the larger income,

the higher the relative rank/quantile in the last period. I report results where a feasible

choice of income in each period is a given quantile (that will be varied). Instead of using the
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Figure 3: Response to income changes and optimal shares
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Notes: The figure shows the estimated effects of increases in income on the quantiles of skills in the last
periods using different estimators. The left panel shows the quantiles for different income levels and the
right panels shows the corresponding optimal income shares in period 0.

feasible choices, I distribute the total income among the two periods to maximize the skill

quantile in the last period. The second part of Theorem 4 implies that these counterfactuals

are point identified, can be consistently estimated with the invariant estimator, but the

results with the 2-step estimator of Attanasio et al. (2020) will depend on sθ.

The left panel of Figure 3 shows the quantile as a function of the feasible income quantile

(0.5 is the median, etc.). Using the true parameters, we can see that, even for large income,

the quantile in period 2 is at most around 0.26 and is almost flat below the median. The

right panel of Figure 3 displays the corresponding optimal income shares in period 0. With

the true parameters, income should be similar in both periods. The 2-step estimator with

sθ = 1 and the invariant estimator (irrespective of the scale) yield similar conclusions for

the optimal income sequence, but have a small bias for the estimated quantile in period 2

(due the approximation error of the joint distribution of the measures/skills as mixtures of

normals). Figure 3 also demonstrates that changing the units of measurement can lead to

inefficient income transfers when using the 2-step estimator. For example, with sθ = 2/3

the results suggest that we should mainly invest in t = 0, and with sθ = 2 it appears

that we should mainly invest in t = 1. Moreover, the estimated gains of income transfers are
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misleading in this case. The inconsistent estimates in the left panel suggest that large income

transfers can increase the quantile to almost 0.5 in period 2 when sθ = 2/3. Contrarily, with

sθ = 2 we would underestimate the effect. Importantly, the results for the new estimator are

invariant to changes in the units of measurements.

Next, I consider how exogenous income changes affect the skill distribution. To do so,

I take draws from the estimated joint distribution of income and skills in period 0 (based

on the average of the estimated parameters to get representative results) and consider four

counterfactual marginal income distributions. First, I increase everyone’s income by two

standard deviations in period 0. Second, I increase everyone’s income by two standard

deviations in period 1. Third, I set income to the median for everyone in both periods.

Fourth, I increase income by two standard deviations in both periods, but only if the initial

skill and income quantiles are below 0.5. I set all unobservables to their median values. I

Figure 4: Outcome distributions under different investment sequences
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Notes: The figure shows counterfactual outcome distributions. Each panel displays the distribution with
the original income distribution and a counterfactual income distribution.
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report results for the invariant estimator only.

Figure 4 shows the implied distributions of one of the skill measures in the final period

(which could be a test score or an adult outcome in an application). These results depend

on and should be interpreted relative to the units of measurements of that measures. Figure

4 is based on sθ = 1. One can see that increasing income in either of the first two periods

has very similar effects and leads to an increase in skills. Since everyone’s income increases,

everyone is better off. If everyone receives the mean income, the variance of the outcome

distribution decreases considerably. If we only increase income for people with low initial

skills and income, then predictably only the lower tail of the distribution will be affected.

5 Empirical illustration

In this section, I illustrate the previous findings by replicating some of the estimates of

Attanasio et al. (2020) and showing how changing the units of measurements of the data (or,

equivalently, changing the scale restriction) affects parameter estimates and counterfactuals.

Attanasio et al. (2020) estimate production functions for cognitive skills and health of

children with past skills and health as well as parental investment, health, and skills as

inputs. They use the CES production function with ψt = 1. Theorem 3 and Corollary 2

imply that most scale parameters are identified and one only has to restrict the loading of

one latent variable in one time period to 1. Attanasio et al. (2020) set a loading for each

observed factor in each time period to 1. Specifically, they write on page 2520: “One way to

meet this condition is to normalize each factor on the same measure every period, assuming

that the mapping from measure to factor is invariant with respect to the age of the subject.

Fortunately, our data are sufficiently rich that we are able to do this for our model. For child

cognitive skills, we always normalize the loading on PPVT to one. Similarly, child health is

always normalized on height z scores, investments are normalized on amount spent on books,

parental health is normalized on mother’s weight, parental cognitive skills is normalized on

mother’s years of schooling, and resources are normalized on income.” These restrictions

already take the considerations of Agostinelli and Wiswall (2016a, 2024) into account.

I consider two changes of the units of measurements. First, I scale book expenditures

38



Figure 5: Marginal Product of Investment on Cognition Age t+ 1

(a) AMN scale
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(b) Investment in 100 INR
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(c) Scaled test scores
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Notes: The figure shows marginal products of investment on cognition. The y-axis represents the impact
on cognition, in standard deviation units, of increasing investment by one standard deviation. Panel (a)
corresponds to the left panel of Figure 4(a) of AMN. Panels (b) and (c) are based on book expenditures in
100 INR and scaled test scores, respectively.

used to anchor investment. In the descriptive statistics in their Table 2, Attanasio et al.

(2020) report expenditures in USD, but estimation is based on a standardized version of the

expenditures in INR.9 Since the authors write “we use the same measurements at every age

and we normalize on the amount spent on books” (p. 2524) and “our investment measure is

measured in monetary units, reflecting cost” (p. 2526), it might not be clear to readers which

units the results are based on. Ideally, scaling a measure in this way does not affect the main

results, but I show that some of the main results are sensitive to using these standardized

expenditures instead of book expenditures in 100 INR.10 Second the estimates in the paper

are based on a standardized PPVT test score. I reestimate the model after multiplying all

test scores by 3, which implies a variance of the scaled scores that is still well below the

variance of the actual PPVT test scores. I then compare some of the estimates of Attanasio

et al. (2020) with the ones obtained using the two scaled versions of the data.11

Attanasio et al. (2020) analyze the marginal product of investment on cognition and

9While not discussed in their paper or in the code, their data set contains a standardized book expenditures
variable, which turns out to be expenditures in INR, but standardized such that the mean and the variance
of the pooled expenditures over all time periods are 0 and 1, respectively.

10This transformation amounts to multiplying the standardized test scores by 7.833 and adding 4.802.
11In the first step, Attanasio et al. (2020) estimate the joint distribution of skills and then simulate from

the estimated distribution to estimate production functions and to calculate counterfactuals. This first step
of their code is sensitive to the starting values. To ensure that the results below are based on the same
(local) minimum, I simply rescale the simulated variables instead of reestimating that part of the model.
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write: “When considering the production of cognitive skills (. . . ) the productivity of invest-

ments is much higher at younger ages: investments are more able to affect cognition earlier

on.” This conclusion is based on the left panel of Figure 5 below, which corresponds to

Figure 4(a) of Attanasio et al. (2020).12 The middle panel of Figure 5 shows the results

based on book expenditures in 100 INR. In this case, the marginal effects are higher at age

8 than at age 5 (and even negative in the latter case).13 When I rescale test scores instead

of book expenditures, the estimated effects are much lower, as can be seen in panel (c).

By Theorem 4, there are different, invariant ways to interpret the effect of investment on

skills. For example, here we can conclude: Fixing all variables at their median values,

(i) if we increase someones investment from the 40% quantile to the 60% quantile at age

5, we increase her skills from the 46% quantile to the 51% quantile at age 8, or

(ii) if we increase investment by 1% at age 5, we increase skills by 0.004% at age 8, or

(iii) if we increase investment s.t. book expenditures increase by 1 std (or 783 INR) at age

5, we increase skills at age 8 s.t. the standardized PPVT score increases by 0.26 std

(or 0.23 units).

Although the effect described in interpretation (ii) may appear smaller than that in (i),

the magnitudes are in fact consistent with each other. To understand their relationship,

note that the logs of the latent variables follow mixtures of normal distributions. Here, the

estimated variance of log-investment is substantially larger than that of log-skills. As a result,

a 10% increase in investment at the median corresponds to a shift to the 50.18% quantile.

In contrast, a 0.04% increase in skills at the median corresponds to a shift to the 50.07%

quantile. The relative change in these quantiles (0.0007/0.0018 = 0.39), is comparable to

the effect in interpretation (i), where the relative quantile change is 0.05/0.2 = 0.25.

The authors also study the impact on cognition of an income transfer equal to 25% of

mean income in the entire sample. Specifically, they consider the change in the median level

of cognition in standard deviation units. The results for the different scales are shown in

12When calculating counterfactuals, they exclude the constant in the investment equation and incorrectly
order some columns of the covariate matrix. I correct these issues and thus obtain slightly different estimates.

13I follow Attanasio et al. (2020) and do not restrict the signs of the coefficients (and many of their
specifications result in some negative coefficients as well).
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Figure 6: Estimated effects of income transfers - AMN estimator - skill level

(a) Age 5 - AMN scale
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(b) Age 5 - invest. in 100 INR
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(c) Age 5 - scaled tests
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(d) Age 8 - AMN scale
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(e) Age 8 - invest. in 100 INR

5 8 12

Age

-0.5

0

0.5

1

Le
ve

l L
at

en
t C

og
ni

tio
n

Bottom 25% by Wealth
Middle 50% by Wealth
Top 25% by Wealth

(f) Age 8 - scaled tests
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Notes: The figure shows the impact on cognition of an income transfer equal to 25% of mean income in the
entire sample. The y-axis represents the impact on cognition, measured as the change in the median level of
cognition in standard deviation units, of increasing investment by one standard deviation. In the top three
graphs, the transfer is made before age 5. In the lower three graphs, it is made between ages 5 and 8. Panels
(a) and (d) correspond to the left two panels of Figure 5 of AMN. Panels (b) and (e) are based on book
expenditures in 100 INR. Panels (c) and (e) are based in scaled test scores.

Figure 6. The income transfer is made before age 5 in the upper panels and between ages

5 and 8 in the lower panels. The authors write: “In terms of timing, the largest impact is

obtained if the transfer takes place when the children are between 5 and 8 for cognition”,

which is based on the much larger response in the lower panel at age 12. This conclusion

does not hold when using book expenditures in 100 INR, because the effect of investment is

then estimated to be negative in panel (e). When scaling test scores instead, the effects are

very close to 0 (see panels (c) and (f)).

There are two problems with the counterfactuals reported in Figure 6 using the specifi-

cation of Attanasio et al. (2020). First, identified parameters are set to 1, which leads to

misspecification. Second, this counterfactual does not correspond to those that are invariant
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Figure 7: Estimated effects of income transfers - flexible estimator - log-skills

(a) Age 5 - original scale
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(b) Age 8 - original scale
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Notes: The figure shows the impact on cognition of an income transfer equal to 25% of mean
income in the entire sample. The y-axis represents the impact on cognition, measured as the
change in the median of the log of cognition in standard deviation units, of increasing investment
by one standard deviation. In the left graph, the transfer is made before age 5. In the lower
graph, it is made between ages 5 and 8. Estimates are based on the flexible estimator.

to the scale and location restrictions. To fix the second problem, one can focus on the change

in the median log of skills rather than the level of skills.

The results for the log-skills using the estimator of Attanasio et al. (2020) are shown in

Figure A.1 in Appendix E. Since the estimates are based on setting identified parameters to

1, the results are still sensitive to the scales. Figure A.2 in Appendix E shows the estimates

corresponding to the counterfactual of Attanasio et al. (2020), but based on the estimator

that also estimates the identified scales, which also depend on the the scales of the test scores

(but not investment). Finally, Figure 7 displays the counterfactual in terms of log-skill based

on the flexible estimator, which is invariant to the units of measurements (and therefore, the

other scales are omitted). Based on Figure 7, we can still conclude that investment between

ages 5 and 8 is more beneficial. However, compared to panels (d) of Figure 6, the new

estimates imply much more heterogeneity by wealth. Figure A.3 in Appendix E shows the

effects of income transfers on the entire counterfactual distribution of the test scores.
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6 Conclusion

This paper demonstrates that in an important class of skill formation models, seemingly

innocuous scale and location restrictions may not function as mere normalizations. Instead,

they can constrain identified parameters and influence counterfactuals. The specific impli-

cations depend on the feature of interest, the production function, the measurement system,

and the estimation method. In a new identification analysis, I pool all restrictions of the

model and characterize the identified set without imposing additional scale and location

restrictions. Notably, many key features remain invariant to these restrictions, are identi-

fied under weaker assumptions, yield robust policy implications, and are comparable across

different studies.

Researchers often impose “normalizations” to achieve point identification in models that

are otherwise only partially identified. To avoid unintended consequences and potentially

misleading conclusions, it is critical to clarify which parameters and features are invariant to

these restrictions, ensuring they are genuine normalizations as defined in Definition 1. While

proving such invariance properties theoretically can be challenging, it is typically possible to

demonstrate the robustness of key results to these restrictions.

One example closely related to the model considered here are skill formation models that

explicitly solve household optimization problems to determine optimal investment functions

(see e.g. Del Boca, Flinn, andWiswall (2013) or Caucutt and Lochner (2020)). These models,

which include a production function, are then estimated using the optimality conditions

alongside a measurement system for latent variables. While these models have a different

structure compared to the ones I study and a detailed analysis is left for future research, it

appears that analogous normalization issues may arise, with consequences that depend on

the model specification and the types of counterfactuals examined.

7 Data availability statement

The data and code underlying this research is available on Zenodo at

https://doi.org/10.5281/zenodo.16437164.
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