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We introduce markup equilibrium—an extension of Walrasian equilibrium in which
consumers pay a fixed percentage markup over producer prices. In quasilinear markets,

markup equilibria exist despite non-convexities. They are resource-feasible and envy-
free, incur no budget deficit, and require little more communication and computation

than ordinary Walrasian equilibrium. The associated markup mechanism is asymptotically

incentive-compatible. We also introduce a Bound-Form First Welfare Theorem, which states
that for any feasible allocation, the welfare loss compared to the first-best is bounded, using

any price vector, by the sum of the resulting (i) budget surplus and (ii) rationing losses

suffered by the participants. Using producer prices, this bound implies that any markup
equilibrium with a small markup and few unallocated goods is nearly efficient.
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1. INTRODUCTION

Walrasian equilibrium has long served as a standard benchmark for economic outcomes
due to its many desirable properties: its allocations are feasible, efficient, and envy-free;
its balanced budget requires no subsidies from any third party; and these properties
apply to markets with any number of products. Walrasian equilibrium was formulated
as a model of an entire competitive economy, but its associated mechanisms are also
a useful conceptual guide for organizing multi-product markets, such as electric power
(where products may be distinguished by location and time of day) and fishing rights
(where products vary by location and species).

From an implementation perspective, price systems offer two advantages. The first,
emphasized by Hayek (1945), is that they economize on communication: when a
Walrasian equilibrium exists, its prices provide the minimal information agents require

The editor in charge of this paper was Andrea Galeotti.
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2 REVIEW OF ECONOMIC STUDIES

to verify their proposed allocations are part of an efficient plan.1 The second is that they
provide helpful incentives: the Walrasian mechanism allows participants to misreport
profitably only to the extent that they can affect prices. However, implementing even an
approximate Walrasian mechanism poses multiple challenges.

The first challenge is existence. The aforementioned applications entail fixed costs
of production and other non-convexities, which create the possibility that no Walrasian
equilibrium exists. We extend Walrasian equilibrium, ensuring existence by adding a
single parameter to obtain a new equilibrium concept. A Walrasian equilibrium with
markups or just a markup equilibrium is a triple (x,p,α) where x is a feasible allocation
for buyers and sellers, p is a price vector that determines payments to sellers, and α≥
0 is a markup paid by buyers, so that buyer payments are determined by the price
vector (1+α)p. In a markup equilibrium, all buyers and sellers are assigned their most
preferred bundles at the prices they face, and α is chosen so that total payments by
buyers weakly exceed payments to sellers. A minimal markup equilibrium is a markup
equilibrium with the smallest markup α. If there are finite, nonzero choke prices for both
supply and demand, then a minimal markup equilibrium always exists. Since (x,p) is a
Walrasian equilibrium if and only if (x,p,0) is a markup equilibrium, the minimal markup
equilibrium is an extension of Walrasian equilibrium: it selects a Walrasian allocation
and prices whenever they exist.

Next are challenges related to feasibility and efficiency. A Walrasian equilibrium
allocation balances supply and demand, and payments to sellers equal payments from
buyers, ensuring it is always resource- and budget-feasible. In contrast, notions of
approximate Walrasian equilibrium, including pseudo-equilibrium and quasi-equilibrium
studied by Starr (1969), can specify plans that are not fully feasible. In our markup
equilibrium, each firm and consumer is allocated its preferred bundle given the prices,
the total production of each good weakly exceeds consumption, and the total revenue
from buyers weakly exceeds payments to sellers. The markup equilibrium outcome is
therefore always feasible and envy-free for both producers and consumers. Moreover,
just as Walrasian allocations are efficient, markup equilibrium allocations with small
markups and little excess production are nearly efficient.

A third set of challenges, emphasized by the mechanism design perspective, concerns
the incentives for participation and truthful reporting. If producers have fixed costs,
then marginal cost pricing may not cover some producers’ total costs, violating their
participation constraints. To address this, real-world mechanisms sometimes modify the
Walrasian mechanism by adding “uplift” payments to cover producers’ total costs, but
these can incentivize producers to exaggerate their fixed costs. In a markup mechanism,
there are no uplift payments: linear pricing with markups suffices to eliminate the
participation problem without creating new incentive problems. In a markup equilibrium,
production can strictly exceed consumption, but no budget deficit arises because the
markups paid by consumers cover the costs of any excess production.

Fourth are challenges related to communication and computation. In convex markets,
if the market operator announces a Walrasian equilibrium allocation and prices,
then participants can verify that their allocations are part of an efficient plan. In
nonconvex markets, if the planner announces the allocation, prices, and one additional
parameter—the markup—then participants can verify that their allocations are part

1. See also Nisan and Segal (2006) and Segal (2007), who prove that any decentralized

communication system that implements efficient allocations must communicate a vector of supporting

prices to the agents.
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of an approximately efficient plan. In the quasilinear environments studied in this
paper, a Walrasian equilibrium for convex markets can be computed by solving a
convex optimization problem and its dual. While calculating exactly efficient allocations
in nonconvex economies can be hard, computing an approximately efficient markup
equilibrium is generally easier: it entails solving a series of convex optimizations and
their duals, as detailed below.

Our analysis of markup mechanisms employs a new extension of the First Welfare
Theorem for quasilinear markets, developed in this paper. We call it the Bound-Form
First Welfare Theorem because it provides an upper bound on the welfare loss of any
feasible allocation x using any price vector p, and it delivers a bound of zero when the
pair (x,p) is a Walrasian equilibrium.

To describe the theorem, we first define several terms. The welfare of a feasible
allocation x is the sum of the values enjoyed by consumers minus the sum of the costs
incurred by firms; the welfare loss of x is the welfare of the first-best allocation minus
the welfare of x. Given an allocation and price vector (x,p), the rationing loss of firm f
is the difference at prices p between its maximum profit and the profit from its assigned
allocation xf ; we define the rationing loss for consumers similarly. The theorem states
that for any price vector p and any feasible allocation x, the welfare loss of x is bounded
above by the sum of two terms: (i) the value at prices p of any excess of production over
consumption, plus (ii) the sum at prices p of the rationing losses incurred by consumers
and firms. For any Walrasian equilibrium (x,p), both terms are zero.

Given any markup equilibrium (x,p,α), we can apply the Bound-Form First Welfare
Theorem to allocation x and price vector p to bound the welfare loss of allocation x.
Because firms produce their most preferred bundles at p, producer rationing losses are
zero. Consumer rationing losses at price vector p can be positive because, although each
consumer n’s bundle xn is her most preferred bundle at the prices (1+α)p, the consumer
may prefer a different bundle at prices p. However, the envelope theorem (Milgrom and
Segal, 2002) implies that each consumer’s rationing loss is of an order smaller than
α. The final term in the welfare loss is the value of excess production at prices p. By
the Bound-Form First Welfare Theorem, this implies that the total welfare loss is small
whenever both the markup α and any overproduction are small.

To compute a markup equilibrium with a small α and little excess production
in a tractable way, we suggest an approach that begins with two changes to the
standard Walrasian welfare maximization problem for convex economies: one affecting
the constraints and the other the objective function. Our change to the constraints
requires that the total production of the firms weakly exceed the total consumption
plus an operating reserve, specified to depend on the largest nonconvexity but not on
the number of producers or consumers. For a fixed markup α, the objective to be

maximized is Total Utility
1+α −Total Costs. These two changes distinguish our simple markup

mechanism calculation from that for the standard Walrasian mechanism.
Next, if the specified objective is not concave, we concavify it to make the problem a

convex program. Solving its dual program yields the producer price vector p; solving the
primal problem yields an approximate markup allocation x̂. If the approximate allocation
of a producer lies outside its actual supply set at a price p, then it is rounded to a point in
its supply set (and similarly for buyers at prices (1+α)p), yielding the markup allocation
x. The Shapley-Folkman Lemma (Starr, 1969) implies that this rounding can be done
so that the total supply in the markup allocation always weakly exceeds demand. By
construction, the operating reserve is sufficient to replace any supply reductions resulting
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4 REVIEW OF ECONOMIC STUDIES

from the rounding process. If the resulting plan is budget-feasible, meaning that total
payments by consumers (calculated by applying price vector (1+α)p to their rounded
allocations) weakly exceed those to producers (calculated by applying price vector p to
their rounded allocations), then (x,p,α) is a markup equilibrium. We use a line search to
approximate the smallest α outputting a markup equilibrium, with each search candidate
requiring a convex optimization and the other steps described above.

The incentives for truthful reporting in the simple and minimal markup mechanisms
are conceptually similar to those for the Walrasian mechanism in convex markets. Both
mechanisms are strategy-proof in the large (Azevedo and Budish, 2019) and share the
property that a participant can benefit from a false report only to the extent that the
report affects the prices used to compute its payments. As a result, as the number of
participants grows, the benefit to a single buyer or seller from misreporting their values
or costs becomes vanishingly small.

Following an earlier draft of this paper, Ahunbay et al. (2024) performed computa-
tional tests to assess the potential of a markup mechanism for European wholesale spot
electricity markets. That paper compared markup equilibrium computations to a widely
used mechanism that optimizes allocations using mixed-integer programming, computes
prices using the dual of that problem’s relaxation (omitting the integer constraints), and
uses “uplift” payments to ensure total payments cover producers’ fixed costs. The paper
found that (1) markup computations “are considerably faster for relevant problem sizes”
(even on a standard office laptop), (2) uplift compensation in the alternative mechanism
results in substantial budget shortfalls, and (3) the markup allocation incurs only a small
welfare loss relative to the full optimum. This comparison assumes that both mechanisms
have access to true reports, omitting the additional losses the uplift mechanism may suffer
because of its incentives for producers to exaggerate their fixed costs.

The remainder of this paper is organized as follows. Section 1.1 presents a simple
single-product example illustrating how markup equilibrium can be computed and
highlighting its properties, and Section 1.2 reviews the related literature. Section 2
introduces the quasilinear model and several preliminaries, including the measures
of nonconvexity used. Section 3 develops the Bound-Form First Welfare Theorem.
Section 4 introduces the markup equilibrium, covering its computation, feasibility,
incentive properties, and efficiency guarantee. Section 5 concludes.

1.1. A single-product example

This section illustrates markup equilibrium using a single-product example of a market
with nonconvexities in production but not in consumption.

Each firm f can produce zero units at zero cost or any positive quantity qf up to
its capacity Kf by incurring a fixed cost Ff . Its marginal cost of production is zero
up to its capacity. If firm f produces at capacity, its average cost is af =Ff/Kf . Let

K=maxfKf be the largest capacity among the firms. At price p, firm f ’s supply Sf (p) is
zero if p<af , Kf if p>af , and {0,Kf} if p=af , leading to a discontinuous total supply
correspondence S(p)=

∑
f Sf (p).

Total consumer values V (q) are strictly concave in total quantity q, leading to a
continuous, downward-sloping demand function D(p).

Walrasian equilibrium requires that there exists a price p such that D(p)=S(p). As
illustrated in Figure 1, discontinuities in the supply correspondence may imply that
no Walrasian equilibrium exists. Indeed, when considering a parameterized family of
demand functions b+D(p), intervals of the b parameter exist for which b+D(p) and
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S(p) are disjoint. This demonstrates that there are robust examples of demand functions
for which Walrasian equilibrium does not exist.

quantity
0

price

a1

p=a2

a3

a4

a5

(1+α)p

S(·)

D(·)

K1 K1+K2
∑

f≤3Ki
∑

f≤4Ki
∑

f≤5Ki

Figure 1

Five-firm example of Walrasian equilibrium nonexistence (here, firms are indexed in order of af ). A

markup equilibrium exists with total consumption and production equal to K1, price p=a2 paid to

firms, and markup α on prices paid by consumers chosen so D((1+α)p)=K1.

The markup equilibrium, our extension of the Walrasian equilibrium, consists of a
triple (x,p,α), where x is the allocation, p the price per unit paid to producers, and
(1+α)p the price per unit paid by consumers. The price and markup are chosen to
avoid rationing and budget deficits. In the example in Figure 1, one markup equilibrium
involves total production and consumption of K1 units with the price p=a2 paid to
producers and a markup α chosen so that demand matches supply: D((1+α)p)=K1.

2

This paper proposes a computational approach to identify a nearly-efficient markup
equilibrium in large markets with many goods. We illustrate this approach in our single-
product example. In the inner loop of our computational algorithm, we fix a candidate
markup α≥0 and solve a modified welfare maximization problem, incorporating
adjustments to both the constraints and the objective. We modify the feasibility
constraint to require total production to exceed total consumption by at least K. We
modify the objective by rescaling consumer values to obtain V̂ (q)=V (q)/(1+α) and

convexifying firms’ cost functions, which means setting Ĉf (q)=af q for production up

to capacity, leading to convexified total costs Ĉ(q) and supply Ŝ(p). We then solve

for q maximizing V̂ (q−K)−Ĉ(q). The problem’s first-order condition yields a price p

such that Ŝ(p)=D((1+α)p)+K. At this price, firms with af >p produce nothing, firms
with af <p produce at capacity, and one marginal firm f ′ with af ′ =p may produce a
fraction of its capacity. We assign firm f ′ to produce nothing and leave other allocations

2. In general with one good and continuous demand, the minimal markup equilibrium sets

p=sup{p′|D(p′)≥s for some s∈S(p′)}; firms’ allocations are chosen as sf ∈Sf (p) with D(p)≥∑
sf ; α

satisfies D((1+α)p)=
∑

f sf ; and consumers’ allocations are in D((1+α)p). While the minimal markup

equilibrium is simple to compute in this case, with more goods and discontinuities in both demand and
supply, the minimal markup equilibrium is generally hard to compute, necessitating the computational
approach developed in this paper.
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6 REVIEW OF ECONOMIC STUDIES

unchanged. Since Kf ′ ≤K, total production is at least D((1+α)p), implying that the
allocation is resource-feasible. In the outer loop of the computation, we perform a binary
search over α≥0 to find the smallest markup for which the plan budget-feasible, so that
pŜ(p)≤(1+α)D((1+α)p).3

In our example, if there are many firms, no single firm has a significant incentive to
exaggerate its cost or understate its capacity in the markup mechanism, as such reports
have only a limited effect on the firm’s price. Moreover, misreporting is risky: if the
firm reports an excessively high fixed cost, its allocation will be zero. With suitable
penalties for non-performance, firms are also deterred from overstating their capacities.
At a markup equilibrium, no further gains from trade exist among consumers or among
firms, because each group faces a single price. By the envelope theorem, adjusting the
total output q yields little gain. The welfare loss in markup equilibrium stems mainly
from the unconsumed portion of production, an amount less than k, independent of the
number of participants in the market. As a percentage of the trading volume, the total
welfare loss decreases to zero as market participation grows.

Although this one-dimensional example offers insights, it includes two simplifying
assumptions that must be relaxed for a more general theory. Nonconvexities do not
always take the form of fixed costs, requiring us to use more general measures of set
nonconvexity and determine the operational reserve accordingly. In the one-dimensional
problem, rounding the approximate markup allocation involves simply rounding an
output up or down, but this becomes subtler in higher dimensions. For example, a firm
that can produce one unit of good 1 or good 2 could be allocated (12 ,

1
2 ) in the convexified

optimization. Then, to avoid rationing, the output of one good may need to be rounded
up while the production of the other is rounded down.

1.2. Related literature

The problem of nonconvexity for the existence of competitive equilibrium was discussed
in a series of papers by Farrell (1959), Rothenberg (1960), Koopmans (1961) and Bator
(1961). Much of the subsequent classical literature on nonconvexity in general equilibrium
theory focused on concepts of approximate equilibria, which replace aggregate feasibility
requirements with approximate feasibility—measured by distance in commodity space
between aggregate supply and demand—while requiring that individual agents act
optimally given the prices. Starr (1969) demonstrated the construction of such an
approximate equilibrium in nonconvex production economies, where the maximum
imbalance is proportional to the number of goods and a measure of nonconvexity.
Heller (1972) proved a similar result using an alternative measure of nonconvexity. More
recently, Nguyen and Vohra (2024) proved a bound for markets with indivisible goods
that depends only on a measure of preference complementarity of agents. We build on
some of these results (summarizing the key results we employ in Appendix B.1) but
depart from this literature by requiring a feasible mechanism to always specify a feasible
outcome. Influenced by computer scientists’ approaches to approximations in mechanism
design, we focus on approximate efficiency and truthfulness rather than approximate
feasibility.4

3. To ensure a compact search space, a binary search for α can search over β :=1/(1+α) which
lies in [0,1].

4. Scarf (1967) also includes an approximate efficiency objective.
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A substantial literature identifies various conditions on preferences in markets
with indivisibilities under which competitive equilibria exist despite nonconvexities.
Contributors include Henry (1970), Kelso and Crawford (1982), Bikhchandani and
Mamer (1997), Gul and Stacchetti (1999), Danilov et al. (2001), Sun and Yang (2006),
Milgrom and Strulovici (2009), Hatfield et al. (2013), Baldwin and Klemperer (2019),
Baldwin et al. (2023), and Nguyen and Vohra (2024). Milgrom (2009) and Klemperer
(2010) emphasize reporting languages used when goods are substitutes. None of these
papers address markets with fixed costs, such as those described above, where competitive
equilibria do not generally exist. Our analysis develops practical mechanisms for those
settings.

An alternative approach to equilibrium existence in nonconvex economies studies
the large market limit with a continuum of agents. Aumann (1966) showed that
nonconvexities at the individual firm or consumer level pose no barrier to equilibrium
existence in an economy with a continuum of traders and divisible goods, while Azevedo
et al. (2013) demonstrated a similar result for quasilinear economies with indivisibilities.
Our markup mechanism exists and is nearly efficient even in finite markets. Another
approach permits nonlinear or personalized pricing rules, as explored by Wilson (1993),
Chavas and Briec (2012), Azizan et al. (2020), and others, but mechanisms using
anonymous linear prices may be preferred for other reasons, including those related
to communication, computation, familiarity, and perceived fairness.

Two recent papers propose alternative solutions to equilibrium nonexistence by
specifying allocations that may not be envy-free. Feldman et al. (2022) consider one-
sided markets in which buyers allocated a good face one price, while those not allocated
a good face a different price for the same good. The role of the two prices in their
mechanism is to deter buyers from wanting to change their allocated bundle of goods.
Goeree (2023) introduces an alternative equilibrium concept for nonconvex economies,
“Yquilibrium,” which involves computing an allocation and prices that minimize the
difference between economic welfare and its dual. Unlike our markup equilibrium, the
“Yquilibrium” can result in agents receiving allocations different from those demanded,
creating an additional incentive for agents to misreport.

Our analysis of the incentive properties of markup mechanisms adapts results
regarding the incentive properties of Walrasian mechanisms in large markets. Roberts
and Postlewaite (1976) initiated the formal literature on this subject by studying a
sequence of exchange economies with the number of agents tending to infinity, showing
that continuity of the Walrasian price correspondence at the continuum limit implies
that each agent’s influence on the price tends to zero; that is, truthful reporting is
almost optimal in large markets. Jackson (1992) showed in the same model that optimal
reporting is almost truthful, that is, an agent’s optimal report converges in the L∞ norm
to the agent’s true demand. Watt (2025) studied the rate of convergence of price-taking
incentives, showing that strong monotonicity of the demand and supply correspondences
implies that the benefit to an agent of deviating from truthful reporting is approximately
inversely proportional to the number of agents. While these results characterize ex post
incentives, Azevedo and Budish (2019) studied interim incentives and showed that the
Walrasian mechanism is strategy-proof in the large, implying that the benefit to any
agent of misreporting against any full-support, independent and identically-distributed
distribution of agent types (with finite support) tends to zero at a rate approximately
inversely proportional to the square root of the number of agents in the economy.

Our study is motivated by several important applications of linear pricing mechanisms
in markets with nonconvex production. We draw inspiration from the novel market design
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8 REVIEW OF ECONOMIC STUDIES

for fisheries rights in New South Wales, Australia, introduced by Bichler et al. (2018,
2019), where the need to implement sustainable catches led to the exit of fishing boats
and an associated loss of fixed costs.5 Other markets with nonconvexities that have used
linear prices include electricity generation (where firms have large start-up and ramping
costs) and radio spectrum (where geographical complementarities can cause exposure
problems).6

2. MODEL AND PRELIMINARIES

2.1. Model

There is a set of buyers N and a set of firms or sellers F , both finite. Together, A=N∪F
is the set of agents. There are L varieties of goods and a numeraire, money.

Each buyer n∈N chooses a bundle xn=(x1n,··· ,xLn) in X, a compact subset of RL
+

containing 0, called the consumption possibility set. Buyer n has quasilinear preferences7

over bundles in X with valuation function un :X→R, so that the buyer’s utility
associated with receiving allocation xn and paying t is Un(xn,t) :=un(xn)−t. We assume
that the valuation functions are bounded, upper semicontinuous, monotone, and satisfy
un(0)=0.

Each seller f ∈F chooses a production bundle yf =(y1f ,··· ,yLf ) in the production

possibility set Y , a compact subset of RL
+ containing 0. Seller f has cost function8

cf :Y →R+, so that seller f ’s profit from producing yf ∈Y and receiving payment t is
πf (yf ,t) := t−cf (yf ). The cost functions are bounded, lower semicontinuous, monotone,
and normalized so that cf (0)=0.

An economy E comprises buyers with their valuation functions and sellers with
their cost functions, denoted E=⟨N,(un)n∈N ,F,(cf )f∈F ⟩. When it is clear, we use the
shorthand E=⟨N,F ⟩.

Throughout, we assume that agent types—the valuation functions un of buyers and
the cost functions cf of sellers—are private information, not directly observable by the
mechanism designer. The designer knows |N | and |F |, as well as a space of possible
valuation functions for the buyers, U , and a space of cost functions for the sellers, C,
both assumed to be admissible in the sense of Aumann (1963).9 Let the normalized

5. We discuss the relationship between our markup mechanisms and a mechanism proposed by
Bichler et al. (2018) in Appendix B.2.

6. See Liberopoulos and Andrianesis (2016) for a summary of pricing mechanisms used in electricity

markets with nonconvexities which often include “uplift” (or side-payments) alongside linear pricing and

Ausubel and Milgrom (2002) for a discussion of complementarities in spectrum auctions.
7. The quasilinearity assumption abstracts from income effects, as is standard in mechanism

design. For discussion of the role of income effects see, for example, Luenberger (1992) and Morimoto

and Serizawa (2015).
8. Sellers could be formulated as buyers with valuations −cf (yf ) and payments −t. However, to

accommodate mechanisms that charge buyers and sellers different prices, we distinguish the two groups.
9. That is, one can define a measure on U , equipped with an appropriate σ-algebra. For example,

admissible sets include the set of bounded, continuous functions on a compact subset of RL; the set of

bounded functions with discontinuities of the first kind; or, more generally, any subset of a Baire class
(Aumann, 1963).
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counting measures µ on U and ν on C be defined by

µ(un) :=
# of buyers in E with valuation function un

|N |

χ(cf ) :=
# of sellers in E with cost function cf

|F | ,

and let ϕ :=
|F |
|N | , so that ⟨N,µ,ϕ,χ⟩ is an alternative specification of economy E .

Allocations and efficiency. An allocation x=((xn)n∈N ,(yf )f∈F ) is an assignment
of consumption bundles xn∈X to each buyer n∈N and production bundles yf ∈Y to
each seller f ∈F . An allocation is (resource-)feasible if it satisfies

∑
n∈N xn≤

∑
f∈F yf .

Let X be the set of all resource-feasible allocations.
The surplus S(x) of allocation x∈X is

S(x) :=
∑

n∈N
un(xn)−

∑

f∈F
cf (yf ).

The efficient allocation problem is to solve maxx∈XS(x), with a solution denoted x∗∈
argmaxx∈XS(x) and the resulting surplus S∗ :=S(x∗). For any allocation x∈X, S(x)−
S∗ is the deadweight loss of x, and the ratio

S(x)−S∗

S∗ is the percentage loss at x.10

Pricing rules. To prepare for our markup equilibrium, we allow two different price
vectors pb,ps∈RL

+ for buyers and sellers, such that a buyer n pays pb ·x for bundle x,
and a seller f receives ps ·y for supplying y.

Denote buyer n’s demand correspondence by Dn :RL
+⇒X, mapping a price vector

pb to the set of utility-maximizing bundles Dn(p
b), which is well-defined because un

is upper semicontinuous. The indirect utility at pb is ûn(p
b) :=maxx∈X{un(x)−pb ·x}.

Similarly, denote seller f ’s supply correspondence by Sf :RL
+⇒Y , mapping a price vector

ps to the set of profit-maximizing bundles Sf (p
s), which is well-defined because cf is

lower semicontinuous. The indirect profit at ps is π̂f (p
s) :=maxy∈Y {ps ·y−cf (y)}.

2.2. Convex quasilinear economies

We study convexity as it pertains to the set of payoff-improving allocations for an agent
in the economy. The ū-upper contour set of buyer n∈N is

UCū
n :={(x,t)∈X×R :Un(x,t)≥ ū},

while the π̄-upper contour set of seller f ∈F is

UCπ̄
f :={(y,t)∈Y ×R :πf (y,t)≥ π̄}.

Buyer n has convex preferences if X is convex and the upper contour set UCū
n is

convex for all ū∈R, which is equivalent to the quasiconcavity of Un and the concavity of

10. Later assumptions will rule out cases where S∗=0, ensuring this ratio is well-defined.
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un. Seller f has convex technology if Y is convex and UCπ̄
f is convex for all π̄∈R, which

is equivalent to the quasiconcavity of πf and the convexity of cf .
For quasilinear markets with convex preferences and technologies, the existence and

welfare theorems of Arrow (1951), Debreu (1951), and Arrow and Debreu (1954) may
be stated as follows.

Proposition 1 (Equilibrium existence and efficiency) Suppose in a quasilinear
economy E that all buyers n∈N have convex preferences and all sellers f ∈F have convex
technologies. Then allocation x∈X is efficient if and only if there exists p∈RL

+,p ̸=0 such
that for all n∈N , xn∈Dn(p); for all f ∈F , yf ∈Sf (p); and

∑
n∈N p·xn=

∑
f∈F p ·yf .

Such a pair (x,p) is a competitive or Walrasian equilibrium.

2.3. Measures of nonconvexity and approximate equilibria

The nonconvexity of a set S can be measured in several ways by comparing S to its
convex hull, co(S). We use the following measures of nonconvexity:

• the inner radius of S is r(S) :=supx∈co(S) infT⊆S:x∈co(T )rad(T ), and

• the inner distance of S is ρ(S) :=supx∈co(S) infy∈S ∥x−y∥.

The two functions, illustrated in Figure 2, measure the size of the set of points in
co(S) that are not in S. For a convex set S, both measures are zero: r(S)=0=ρ(S).

r(S)
S

ρ(S)

Figure 2

Measures of nonconvexity of a set.

The nonconvexity of buyer n’s preferences is measured by the largest inner radius or
inner distance of their upper contour sets: rn :=supū∈Rr(UCū

n) or ρn :=supū∈Rρ(UCū
n).

Similarly, the nonconvexity of seller f ’s technology is measured by rf :=supπ̄∈Rr(UCπ̄
f )

or ρf :=supπ̄∈Rρ(UCπ̄
f ). We let rE and ρE denote the largest of these measures among

all agents in economy E .
When agents’ upper contour sets are not convex, competitive equilibrium might not

exist. Proposition 2, the Shapley-Folkman Lemma, helps identify allocations that are
nearly competitive equilibria.11

11. While the “Shapley-Folkman Lemma” most accurately refers only to the result in the second
sentence of Proposition 2, Starr (1969) first reported it as a result of private communication with Lloyd
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Proposition 2 (Shapley-Folkman Lemma) Let Si⊆RL for i=1,...,M , and let S=⊕M
i=1Si be the Minkowski sum of those sets. Then any x∈co(S) may be written as

x=
∑N

i=1xi where xi∈co(Si) and |i :xi∈co(Si)\Si|≤L′ :=min(L,M). Moreover, there

exists y,y′∈S such that ∥x−y∥≤(maxir(Si))
√
L′ and ∥x−y′∥≤(maxiρ(Si))L

′.

Proposition 2 has been used to establish results about approximate equilibria, which
are constructed as follows. First, convexify the economy by replacing the upper contour
sets of buyer preferences and seller technologies with their convex hulls. This is equivalent
to replacing each buyer’s valuation function un by its concave envelope cav(un) and each
seller’s cost function cf by its convex envelope, vex(cf ).

12 The convexified economy is

Ê :=⟨N,(cav(un))n∈N ,F,(vex(cf ))f∈F ⟩.
By Proposition 1, the convexified economy has a competitive equilibrium that is

efficient, according to the concavified valuation functions and convexified cost functions.
Since the convexified economy’s efficient allocation problem is a relaxation13 of the
same problem for the original economy, the efficient surplus of the convexified economy
provides an upper bound on the efficient surplus of the original economy. The resulting
allocation-price pair (x,p) is a pseudoequilibrium of E . Proposition 2 implies that one
can choose x such that at most L′ agents in E are not utility- or profit-maximizing at
x given prices p and that one can find a nearby allocation x′ in which markets may not
exactly clear such that all agents are maximizing given prices p.14 The allocation-price
pair (x′,p) is an approximate equilibrium.

Pseudoequilibria and approximate equilibria describe allocation-price pairs rather
than mechanisms. These allocation-price pairs may be infeasible or impose large losses
on some agents, potentially rendering them unsuitable for practical market design. We
use these ideas to devise mechanisms that are computable, select feasible allocations,
and possess other desirable properties akin to those of Walrasian mechanisms in convex
economies.

3. BOUND-FORM FIRST WELFARE THEOREM

When competitive equilibrium does not exist, no feasible allocation is supported by
a single anonymous price vector that is the same for buyers and sellers. To restore
feasibility with a single price vector, some agent must be rationed, that is, assigned a
bundle different from its most preferred one at the specified prices. Given an allocation

Shapley and Jon Folkman. Starr (1969) then proved the first part of the third sentence of Proposition 2,

and Heller (1972) proved the second part. For simplicity, we refer to all of Proposition 2 as the Shapley-

Folkman Lemma. Budish and Reny (2020) and Wu and Tang (2024) provide improved bounds for the
Shapley-Folkman Lemma using a different measure of nonconvexity, which could also be used in our
setting to improve the constant but not the asymptotic rate of convergence in some results.

12. The concave envelope of a function is the pointwise smallest concave function everywhere above

the function, while the convex envelope of a function is the pointwise largest convex function everywhere
below the function.

13. That is, the relaxed constraint set is weakly larger than the original, and the relaxed objective

function is pointwise weakly larger than the original.
14. To see this, note that if a buyer is assigned a bundle xn in x that is not utility-maximizing at p,

then xn must be the convex combination of bundles (x′
n) in X which are exposed points in un (i.e. where

cav(un)=un). Agents in the convexified economy must be indifferent between xn and these bundles,

because the concavified portions of buyers’ utility functions consist of (patches of) hyperplanes, and if
an agent is assigned a bundle on such a patch, then the price vector must be normal to that hyperplane.
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and prices, we define buyers’ and sellers’ rationing losses as the excess of the payoff an
agent would obtain from its most preferred bundle at the given prices over the payoff it
receives in its assigned allocation.

Definition 1 (Rationing loss) The rationing loss Rn(x,p) of buyer n at allocation
x given price p is

Rn(x,p) := ûn(p)−Un(x,p·x).
The rationing loss Rf (y,p) of seller f at allocation y given price p is

Rf (y,p) := π̂f (p)−πf (y,p ·y).

The rationing loss of allocation x=((xn)n∈N ,(yf )f∈F ) given price p is

R(x,p) :=
∑

n∈N
Rn(xn,p)+

∑

f∈F
Rf (yf ,p).

If competitive equilibrium does not exist, any allocation-price pair must entail
rationing, wasted supply (leading to a budget deficit), or both. Our first main result
establishes that the magnitude of such rationing and budget losses fully characterizes
the efficiency of the allocation.

Theorem 1 (Bound-Form First Welfare Theorem) Let p∈RL
+ be a price vector

and x∈X be any feasible allocation. Then, the deadweight loss of x is bounded by

S∗−S(x)︸ ︷︷ ︸
deadweight loss

≤ R(x,p)︸ ︷︷ ︸
rationing loss

+p ·


∑

f∈F
yf−

∑

n∈N
xn




︸ ︷︷ ︸
budget deficit

.

Proof. Fix any efficient allocation x∗. By the definitions of the indirect utility and profit
functions, for any prices p:

ûn(p)≥un(x
∗
n)−p ·x∗n, and

π̂f (p)≥p ·y∗f−cf (y
∗
f ).

Summing these inequalities, we obtain

∑

n∈N
ûn(p)+

∑

f∈F
π̂f (p)+p·


∑

n∈N
x∗n−

∑

f∈F
y∗f


≥

∑

n∈N
un(x

∗
n)−

∑

f∈F
cf (y

∗
f )=S∗.

Since x∗ is resource-feasible, the third term on the left side is nonpositive, which implies
∑

n∈N
ûn(p)+

∑

f∈F
π̂f (p)≥S∗.

Subtracting S(x) and applying the definitions of rationing loss, we obtain

S∗−S(x)≤
∑

n∈N
ûn(p)+

∑

f∈F
π̂f (p)−S(x)=R(x,p)+p ·


∑

f∈F
yf−

∑

n∈N
xn


.

∥
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The Bound-Form First Welfare Theorem extends the First Welfare Theorem for
quasilinear economies to any allocation-price pair (x,p) rather than just Walrasian
equilibria. If (x,p) is a Walrasian equilibrium, then both the budget deficit and the
rationing losses are zero, so Theorem 1 implies that the welfare loss is zero, or,
equivalently, that any Walrasian equilibrium is efficient.

One interpretation of the First Welfare Theorem is that prices serve as a “certificate
of optimality”: if supporting prices exist for a given allocation, then it is efficient. As
Scarf (1994) observed, without convexity, there is generally no such optimality test.
However, Theorem 1 may be interpreted as an approximate optimality test: an allocation-
price pair for which the sum of the rationing loss and the budget deficit is small has a
correspondingly small welfare loss. Theorem 1 also suggests a link between incentives
and efficiency: a pricing mechanism with little rationing and no budget deficit in which
individual agents have limited influence over prices must have both good incentive
properties and small deadweight losses. These observations are key to our extensions
below.

4. MARKUP MECHANISMS

4.1. Pricing mechanisms and approximate mechanism design

In this section, we study pricing mechanisms that map profiles of reports of sellers’
cost functions (cf )f∈F and buyers’ value functions (un)n∈N to an allocation x∈X and

anonymous prices for buyers and sellers, p=(pb,ps).15 We require that the mechanism
specify outcomes that are both resource-feasible and budget-feasible, so that for all
report profiles,

∑
f∈F yf ≥

∑
n∈N xn and ps ·∑f∈F yf ≤pb ·∑n∈N xn.

16 How agents
communicate their potentially complicated costs and values to the mechanism is beyond
the scope of this paper; we instead assume that the reporting language is rich enough
for buyers and sellers to report their true preferences.17

A pricing mechanism is efficient if the output allocation x is surplus-maximizing
given the reported value and cost functions and ε-efficient if the deadweight loss of x is
bounded by ε given the reports.18 A pricing mechanism is (ex post) individually rational
if, given reported value and cost functions, the allocation and prices determined by the
mechanism deliver each agent a payoff no worse than non-participation (here, 0).

A Walrasian mechanism inputs reports of value and cost functions and outputs a
Walrasian equilibrium price and allocation. If there are multiple Walrasian equilibria,
the mechanism employs a predetermined selection rule (a similar assumption applies to

15. We do not consider randomized mechanisms, both because these are unnecessary to achieve our

objectives and because they raise daunting practical issues, including stringent trust requirements in
the mechanism designer and the possible failure of ex post individual rationality for ex ante individually

rational lotteries.
16. Our definition of resource-feasibility embeds a free disposal assumption, which ensures that

the feasible set is nonempty. While free disposal may be a good approximation for many markets,
in others (e.g., wholesale electricity production), disposal may be costly, and these costs should enter

the mechanism designer’s objective. However, because overproduction is bounded in the simple markup
mechanism introduced in Section 4.2 below, our asymptotic efficiency and incentive compatibility results
extend to a setting with (bounded) costs of disposal.

17. Reporting languages for complex preferences have been studied by Milgrom (2009), Klemperer

(2010), Bichler et al. (2014), Bichler et al. (2022) and others.
18. We allow ε to depend on properties of E (and implicitly (Et)t∈N if E is part of a sequence), so

that, for example, O(1/|Nt|)−efficiency refers to a deadweight loss of x that is O(1/|Nt|).
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the other mechanisms discussed in this paper whenever multiplicity arises). Walrasian
mechanisms are efficient, individually rational, and exhibit good large-market incentive
properties, but their application is limited to environments where Walrasian equilibria
are guaranteed to exist. We explore extensions for settings where Walrasian equilibria
may not exist.

We seek mechanisms that perform well in large markets, with approximations to
efficiency that depend on the number of agents in the market. Let Et=⟨Nt,µt,ϕt,χt⟩
be a sequence of economies indexed by t=1,2,..., and let REt :=min{rEt

√
L,ρEtL}. The

following additional assumptions apply as the economy grows large.

Assumption 1 (Existence of limit economy) As t→∞, |Nt|→∞ and ϕt→ϕ∈
(0,1).

Assumption 2 (Individual nonconvexities are bounded) There exists R>0
such that REt <R for all t.

Assumption 3 (Growing gains from trade) As t→∞, the efficient surplus S∗
t

grows at least as quickly as |Nt| asymptotically, or in Knuth’s (1976) asymptotic notation,
S∗
t =Ω(|Nt|).19

Assumption 4 (Prices are bounded) There exists choke prices p,p>0 such that for

each l=1,··· ,L and for all t, we have: (a) Dl
n(p)=0 for any n∈Nt and p∈RL

+ with pl>p,

and (b) Sl
f (p)=0 for any f ∈Ft and p∈RL

+ with pl<p.

Assumption 1 asserts that for large t, the important variation among economies is
their scale: the proportions of various types converge to a limit. Assumption 2 asserts
that there is a uniform bound on the measure of nonconvexity across the sequence of
markets, limiting the impact of any single firm’s or consumer’s nonconvexity in a large
economy.20 Assumption 3 is the condition that the efficient surplus per participant is
bounded away from zero. Assumption 4 implies that there is a compact set of prices that
can support nonzero feasible allocations.

4.2. Markup mechanisms

We now introduce markup equilibria, which are designed to maintain a no-rationing
property similar to Walrasian equilibrium. Without rationing, finding prices such that
buyers demand all supply may be impossible. To pay for firms’ excess supply, a markup
is applied to the prices buyers pay.

Definition 2 (Markup equilibrium) A markup equilibrium is a triple (x,p,α)
consisting of a resource-feasible allocation x∈X, a price p∈RL

+, and a markup parameter
α≥0 such that:

(a) sellers’ payments are determined by price vector p, and sellers are not rationed at
these prices, so yf ∈Sf (p);

19. Recall that f(x)=Ω(g(x)) if liminfx→∞ |f(x)|/g(x)>0.
20. It suffices to assume that the buyer’s consumption possibility set X and the seller’s production

possibility set Y does not grow with t, since R≤rad(X) and R≤rad(Y ).



i
i

“output” — 2025/7/15 — 1:45 — page 15 — #15 i
i

i
i

i
i

MILGROM & WATT A WALRASIAN MECHANISM WITH MARKUPS 15

(b) buyers’ payments are determined by price vector (1+α)p, and buyers are not
rationed at these prices, so xn∈Dn((1+α)p); and

(c) budgets are at least weakly balanced, so
∑

n∈N (1+α)p ·xn−
∑

f∈F p ·yf ≥0.

A markup mechanism is a mechanism that inputs reports of cost and value functions
and outputs a markup equilibrium. With finite choke prices on supply and demand,
markup equilibria with no trade and α=∞ always exist. However, we focus on markup
mechanisms that select α close to zero and result in few unallocated goods, because their
allocations are nearly efficient. This follows from Theorem 1 applied to allocation-price
pair (x,p): if few goods are unallocated, the budget deficit at price p is small, while if
prices p and (1+α)p are close, the rationing losses for each buyer at price p are small.
This latter claim follows by an envelope theorem argument, formalized in Proposition 3.

Proposition 3 (Rationing bound) Let x∈Dn(p), and consider another price p′ ̸=p.
Then the rationing loss of buyer n at allocation x given price p′, Rn(x,p

′), is O(∥p−
p′∥).21

If computational challenges were not a concern, a market designer might seek to
identify a markup mechanism with the smallest loss, which we call a minimal markup
mechanism.22 The pair (x,p) is a Walrasian equilibrium if and only if the triple (x,p,0)
is a markup equilibrium; in that case, this markup equilibrium is also the minimal
markup equilibrium. In nonconvex economies, however, computing the minimal markup
mechanism can be challenging. We now show that an O(1)-efficient markup mechanism—
that is, one for which the percentage loss in welfare is at most inversely proportional to
the number of agents in the economy—can be identified using only convex optimization
problems and a one-dimensional binary search. Before providing a technical description of
this simple markup mechanism, we outline the steps of our approach intuitively, echoing
the example in the introduction.

For a fixed α, we select (x,p) to be the equilibrium price-and-allocation pair of a
related economy with three changes from the actual economy: (1) every buyer’s value
function is replaced by the smaller function un/(1+α), (2) all values and costs are then
replaced by their concave or convex hulls, respectively,23 and (3) we add an operational
reserve for each good, which is a quantity demanded by the auctioneer in the amount of
R :=min{rE

√
L,ρEL}. Step (1) in this construction yields prices and allocations where

buyers would demand the same allocations given their actual value functions un and
marked-up prices (1+α)p. We apply the Shapley-Folkman Lemma (Proposition 2) to
round x to one of the demanded allocations for each agent while changing the net demand
for each good by at most R units. This is balanced by an offsetting change to the reserve
allocated to the auctioneer in step (3) to ensure feasibility.

21. Recall Knuth’s (1976) big O notation: f(x)=O(g(x)) if limsupx→∞ |f(x)|/g(x)<∞.
22. Computing the minimal markup equilibrium is at least as hard as the Walrasian equilibrium

computation problem (since the two coincide whenever the Walrasian equilibrium exist), which is known,

in general, to be hard (Daskalakis et al., 2009). We refer the reader to Lehmann et al. (2006) for a
practical discussion of the difficulty of the winner determination problem in combinatorial auctions

(which requires calculating an efficient allocation), a type of nonconvex market.
23. This need not be computationally expensive. For example, if the value and cost functions are

reported to the mechanism using a mixed integer program, the mechanism may simply convert integer
variables to real variables to obtain the convex hulls in the form of linear or quadratic programs.



i
i

“output” — 2025/7/15 — 1:45 — page 16 — #16 i
i

i
i

i
i

16 REVIEW OF ECONOMIC STUDIES

Excluding the auctioneer’s demand, the final allocation is resource-feasible, with
excess supply no more than 2R units of each good. Excess supply can lead to efficiency
loss, but the quantity allocated to the auctioneer is bounded by a constant independent
of market size.24 Because the price vector and the excess supply of goods are bounded,
the budget surplus at price p is also bounded. As trade increases with market size, the
markup, α, required to guarantee budget balance is inversely proportional to market size.
The total welfare loss is thus bounded by a constant stemming from excess production,
plus the sum of rationing loss terms, each inversely proportional to market size.

Definition 3 (Simple markup mechanism) The simple markup mechanism is the
markup mechanism with parameters (x∗,p∗,α∗) determined as follows. If all reported
values are concave and all reported costs are convex, set α∗=0 and choose (x∗,p∗) to
be some Walrasian equilibrium. Otherwise, for each α>0, consider the following convex
program:

min
p∈RL

+

max
xn∈co(X),yf∈co(Y )

∑

n∈N

cav(un)(xn)

1+α
−
∑

f∈F
vex(cf )(yf )−p ·


∑

n∈N
xn+R1L−

∑

f∈F
yf


,

where 1L is the vector of ones in RL. Let (x̃α,pα) denote any solution to this program.
From x̃α∈co(X), obtain, via Proposition 2, an allocation xα∈X with ∥xα−x̃α∥≤R

such that xαn∈Dn((1+α)p) for each n∈N and yαf ∈Sf (p) for each f ∈F . Let

α∗ :=min



α

∣∣∣∣∣∣
∑

n∈N
(1+α)pα ·xαn−

∑

f∈F
pα ·yαf ≥0



, (A)

and set p∗=pα
∗
and x∗=xα

∗
.

Theorem 2 formalizes the preceding informal argument, showing that the simple
markup mechanism is well-defined and O(1/|Nt|)-efficient.

Theorem 2 (Approximate efficiency of simple markup mechanism) Let Et
be a sequence of economies satisfying Assumptions 1–4. Then:

(a) the simple markup mechanism is well-defined (that is, the minimum in (A) is
attained),

(b) the simple markup mechanism’s markup α∗ is O(1/|Nt|), and
(c) the deadweight loss of the simple markup mechanism’s allocation is O(1), implying

a percentage loss of O(1/|Nt|).

24. The choice of R units of each good as a set-aside for the auctioneer in step (3) is a theoretical

guarantee. It may be possible to allocate fewer units to the auctioneer in step (3) to arrive at a more
efficient feasible allocation using the same approach. Alternatively, one could check for feasible allocations

with zero units set aside (corresponding to competitive equilibria) and then intelligently increase the set-

aside until a budget-feasible markup mechanism is identified. We leave the details of such a mechanism
for future research.



i
i

“output” — 2025/7/15 — 1:45 — page 17 — #17 i
i

i
i

i
i

MILGROM & WATT A WALRASIAN MECHANISM WITH MARKUPS 17

Although the rates of convergence in Theorem 2 are stated in terms of |Nt|, by
Assumption 1, the same asymptotic rate of convergence holds in |Ft| or |At|.

Several other key properties of the simple markup mechanism are evident from its
construction. First, the equilibrium is resource-feasible and budget-feasible. Second, each
agent’s allocation and payments are individually rational. For sellers, this is because they
receive a bundle in their supply set at price pα. For buyers, the pseudoequilibrium price
pα and consumption allocation in x̃α satisfy

1

1+α
un(x̃

α
n)−pα ·x̃αn=

1

1+α
un(x

α
n)−pα ·xαn≥0,

thus buyer n’s payoff, un(x
α
n)−(1+α)pα ·xαn, is also nonnegative.

4.3. Incentives

To analyze the incentive properties of markup mechanisms, we study an independent
private values (IPV) model in which (Et)t∈N=(⟨Nt,µt,ϕt,χt⟩)t∈N is a sequence of
economies with buyer valuations and seller costs drawn i.i.d. from full-support probability
distributions µ and χ defined on type spaces U and C respectively, satisfying
Assumption 1 almost surely. Buyers and sellers know µ, χ, |Nt|, and |Ft| and observe
their realized types, but not those of other agents. Let Dµ and Sχ denote the expected

demand and supply correspondences, respectively,25 and let P⊂RL
+ be the set of price

vectors for which Dµ(p)>0 and Sχ(p)>0. We assume that P is compact.
We study two types of incentives in this model: interim and ex post.

Approximate interim incentive compatibility. A mechanism is interim incentive-
compatible (IIC) if truthful reporting maximizes each agent’s expected payoffs under the
mechanism. A mechanism is ε−IIC if, under truthful reporting, each agent’s expected
payoff from any report is no more than ε greater than the expected payoff of the truthful
report.

As markup mechanisms do not ration producers or consumers at their respective
prices, all markup mechanisms are envy-free. As a result, Theorem 1 of Azevedo and
Budish (2019) implies that every markup mechanism is strategy-proof in the large,
leading to the following asymptotic interim incentive compatibility result in the IPV
model with finite type spaces.

Theorem 3 (Approximate IIC) In an IPV economy with finite type spaces U and

C, any markup mechanism is O(1/|Nt|
1
2
−ε)−IIC for any ε>0.

Approximate ex post incentive compatibility. A mechanism is ex post incentive-
compatible (EPIC) if truthful reporting is an ex post Nash equilibrium of the reporting
game induced by the mechanism. A mechanism is ε-EPIC if truthful reporting is a ε−ex
post Nash equilibrium.

To establish ex post incentive results for markup mechanisms, we exploit the fact that
prices determine their allocations. Intuitively, in markup mechanisms—as in Walrasian

25. Formally, given distribution µ on U , the expected indirect utility function is defined pointwise

for p∈RL
+ by Eµ[û(p)]=

∫
U ûn(p)dν(un), and the expected demand correspondence is then its negative

subdifferential Dµ(p)=−∂Eµ[û(p)]. The expected supply correspondence is defined analogously.
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mechanisms—buyers and sellers receive their most preferred bundles at the prices they
face; consequently, a single agent profits from a false report only to the extent that
it can influence its price vector. As Watt (2025) shows for Walrasian mechanisms, an
agent’s ability to influence prices with any report is approximately inversely proportional
to market size when the expected demand and supply correspondences are strongly
monotone, as defined below.

Definition 4 (Strong monotonicity) The expected demand correspondence Dµ is
strongly monotone if there exists some m>0 such that for all p,p′∈P, d∈Dµ(p), and
d′∈Dµ(p

′),
(d−d′) ·(p′−p)≥m∥p−p′∥2.

Similarly, the expected supply correspondence Sχ is strongly monotone if there exists
some m>0 such that for all p,p′∈P, s∈Sχ(p), and s′∈Sχ(p

′),

(s−s′) ·(p−p′)≥m∥p−p′∥2.

Under the assumption of strong monotonicity, the expected demand and supply
correspondences are responsive to small price changes, and we have the following ex
post incentive properties of the simple and minimal markup mechanisms.

Theorem 4 (Approximate EPIC) In an IPV economy with strongly monotone
expected demand and supply correspondences satisfying Assumption 3 almost surely, with
probability 1−O(1/|Nt|) over draws of Et, the simple and minimal markup mechanisms
are O(1/|Nt|1−ε)−EPIC for any ε>0.

Our proof exploits the fact that prices in markup mechanisms are Walrasian equilibrium
prices in a related convex economy, so the limited ability of agents to manipulate
Walrasian prices in large markets—established by Watt (2025) using the strong
monotonicity assumption—implies a similar limitation in markup mechanisms. The only
additional complication is an agent’s ability to affect markups, but these are always
O(1/|Nt|) for the simple and minimal markup mechanisms under Assumption 3. A
corollary is an improved bound for interim incentives under the strong monotonicity
assumption, namely that the two mechanisms are O(1/|Nt|1−ε)-IIC for any ε>0.

4.4. Computational properties

While equilibrium computation is hard in general,26 computing Walrasian equilibria in
concave quasilinear economies reduces to solving a convex optimization problem and
its dual. A wide class of such optimization problems can be efficiently solved, including
problems with self-concordant or strongly convex objectives.27

In contrast, finding efficient allocations in many nonconvex economies is computa-
tionally complex, even with quasilinear preferences. For example, identifying an optimal
allocation in the fisheries market of Bichler et al. (2018) involved solving a large integer
programming problem, which was NP-hard, implying that no efficient optimization

26. See, for example, Chen et al. (2009) and Daskalakis et al. (2009).
27. For example, Walrasian prices in economies with strongly monotone supply and demand, as

introduced in Watt (2025), may be efficiently computed via tâtonnement.
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algorithm is known for all problem instances, although heuristics and approximations
are sometimes useful.

Our approach relies on approximation. Conditional on α, the simple markup
mechanism requires only solving a convex optimization problem. Identifying the optimal
markup α∗ in the simple markup mechanism is more challenging; however, a binary
search for α could be used in practice to identify a small markup ensuring weak budget
balance. Ahunbay et al. (2024) provide further details on how to adapt our markup
mechanism for practical computations, focusing on an application to European wholesale
spot electricity markets.

5. CONCLUSION

In some regulated markets with multiple closely interrelated products, market operators
use Walrasian-like mechanisms despite nonconvexities in production or consumption.
For example, in wholesale electricity markets, producers often incur fixed costs to start
their plants and ramping costs to adjust production, while firms buying large quantities
of electricity may also start and stop production based on energy prices. Similarly, in
markets for fishing catch rights, fishers incur fixed costs to staff a boat and send it to
sea. Given the nonconvexities in these markets, Walrasian equilibria may not exist, so
the Walrasian mechanism cannot be implemented without modification.

This paper combines two traditional perspectives to define an equilibrium and
a mechanism for nonconvex markets. On the one hand, it draws on results from
classic general equilibrium theory regarding approximate Walrasian equilibrium. On the
other hand, it draws on concepts and traditions from mechanism and market design,
aiming to ensure physical and financial feasibility as well as envy-freeness, approximate
incentive feasibility, and individual rationality. Older notions like pseudo-equilibrium
or quasi-equilibrium may specify outcomes that fail to be resource- or budget-feasible,
impose losses on individual participants, incentivize misreporting, or lack envy-freeness.
While these notions satisfy approximate market clearing in the aggregate, individual
participants may find their rationing or underpayment highly significant. In contrast,
our mechanism design approach to extending Walrasian equilibrium insists on prices
and envy-free allocations satisfying exact resource feasibility, with no need for third-party
subsidies, and satisfying participation and incentive constraints—at least approximately.
In that way, our markup equilibrium and its corresponding mechanism have no close
antecedent in either tradition.

Markup equilibria always exist and retain many attractive features of Walrasian
equilibrium. Because they use linear prices for producers and consumers, markup
equilibria economize on communication and computation and provide a robust and
transparent pricing system that many market participants will find familiar and fair.
When markups are small and few goods remain unsold, the resulting allocations
are nearly efficient. Such equilibria can be computed in practice, with welfare losses
bounded by a constant proportional to the largest relevant nonconvexity. Incentives in
markup mechanisms with small markups resemble those of the Walrasian mechanism:
participants can benefit from misreporting only if they can influence prices—an ability
that diminishes in large markets.

When the economist’s task is to reform a market, one concern may be the disruption
to existing market participants. If a Walrasian-like mechanism is already employed
in a nonconvex, multi-product marketplace, then implementing another Walrasian-like
mechanism may limit disruption. In contrast, switching to a Vickrey-Clarke-Groves pivot
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mechanism would be significantly more disruptive, requiring participants to adapt their
processes and affecting the values of their past capital investments. The pivot mechanism
may also present other significant drawbacks: it does not guarantee that revenues weakly
exceed costs, can pay more to firms that produce less output, and can require impractical
levels of communication and computation.28

The simple markup mechanism exhibits inefficiency almost exclusively due to
overproduction. This raises the question of whether another mechanism without excess
production could perform better. Instead of setting different prices for the two sides of
the market, an alternative mechanism would set a single price vector and ration, forcing
some participants to accept suboptimal bundles at those prices.29 Our Bound-Form First
Welfare Theorem provides a tool to evaluate the welfare losses of such a mechanism,
although assessing incentives under that alternative would require additional analysis.

We use a market design approach to address concerns related to communication,
computation, and fairness. This approach adopts a different perspective on “hard”
versus “soft” constraints than many older theories. Other extensions of Walrasian
equilibrium treat resource constraints and budget constraints as soft, to be satisfied
only approximately; in contrast, our approach requires a mechanism that satisfies these
constraints exactly. While many mechanism design analyses require participants to
be unable to gain from misreporting, our market design approach imposes a softer
constraint, leading to mechanisms in which the potential gains from misreporting are
vanishingly small, but not necessarily zero, in large markets. For some important
applications, including the two discussed previously, markup mechanisms, by satisfying
constraints in this way, offers an appealing approach for addressing the practical
challenges of market design.

A. PROOFS OMITTED FROM THE MAIN TEXT

A.1. Proof of Proposition 3

Proof. We present two proofs of this claim: the first derives directly from the definitions, and the second

demonstrates its relationship to the envelope theorem.
For the first proof, let x′∈Dn(p′). Then,

Rn(x,p
′)=un(x

′)−p′ ·x′−(un(x)−p′ ·x).

Since x∈Dn(p), u(x′)−p·x′≤u(x)−p ·x. Thus,

Rn(x,p
′)≤p·x′−p ·x+p′ ·x−p′ ·x=(p−p′) ·(x′−x),

which is O(∥p−p′∥) since x′,x∈X, a compact set.
For the second proof, write

Rn(x,p
′)= ûn(p

′)−(un(x)−p′ ·x)

= ûn(p
′)−(un(x)−p·x)−p ·x+p′ ·x

= ûn(p
′)−ûn(p)+(p′−p) ·x.

28. See Ausubel and Milgrom (2006) for a discussion of the fairness, participation, and revenue

concerns associated with VCG pivot mechanisms, and Leyton-Brown et al. (2017) for a discussion of

the computational challenges associated with VCG pivot mechanisms.
29. For some indication of the possible benefits of this approach, consider the five-firm example in

Figure 1, and suppose that firm 3 had an average cost between a2 and (1+α)p and a small capacity

(namely K3<D(a3)−K1). In that case, setting a price at which firm 3 produces while rationing firm 2
would be more efficient than the markup equilibrium we identified.
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Let p(t)=(1−t)p+tp′ for t∈ [0,1]. Applying the Milgrom and Segal (2002) envelope theorem to the

parametrized utility maximization problem

ûn(p(t))=max
x∈X

{un(x)−p(t)·x},

gives

ûn(p
′)= ûn(p)−

∫ 1

0
(p′−p) ·d(t)dt.

where d(t) is any selection from the demand correspondence Dn(p(t)). Substituting this result into the

expression for Rn(x,p′) yields

Rn(x,p
′)=−

∫ 1

0
(p′−p) ·d(t)dt+(p′−p) ·x=

∫ 1

0
(p′−p) ·(x−d(t))dt,

which is bounded by (p′−p) ·(x−x′), since (p′−p) ·(x−d(t)) increases in t by the law of demand. ∥

A.2. Proof of Theorem 2

Proof. Part (a) Fix some E and consider any sequence αi→α and selections Revi of revenues
∑

n∈N (1+

αi)p
αi ·xαi

n −∑
f∈F pαi ·yαi

f associated with some markup mechanisms (xαi ,pαi ,αi) constructed as in

Definition 3. We show that limiRevi is the revenue of a markup mechanism (xα,pα,α), implying that

the infimum in equation (A) is attained (and thus the minimum exists).

By the saddle point condition associated with the objective in Definition 3, there exist x̃αi that

maximize over co(X) the objective
∑

n∈N
cav(un)(xn)

1+αi
−∑

f∈F vex(cf )(yf ). As αi→α, this objective

hypo-converges30 (since it is continuous and bounded) to
∑

n∈N
cav(un)(xn)

1+α
−∑

f∈F vex(cf )(yf ), so
that x̃αi → x̃α for some x̃α that maximizes this limiting objective. By optimality, each pαi lies in the

superdifferential ∂∗ of the concavified valuation functions for each buyer and in the subdifferential
of the convexified cost functions of each seller at x̃αi . For these concave (and convex) functions, the

superdifferential (and subdifferential) correspondences are upper hemicontinuous, so the sequence pαi

converges to some pα in the super- and subdifferentials at x̃α. Finally, since the demand and supply
correspondences are upper hemicontinuous, the convergence of prices implies that xαi approaches some

xα such that xα
n∈Dn((1+α)pα) and yαf ∈Sf (p

α). Thus, the limit of Revi is attained as the revenue of

some markup mechanism (xα,pα,α).
Part (b) For notational simplicity, we drop the index t in the prices, markups and allocations.

The construction in Definition 3 ensures, via Proposition 2, that
∑

f∈F yαf −∑
n∈N xα

n≤(2R)1L. It

suffices to show that for sufficiently large |Nt|, an α exists such that

α
∑
n∈N

pα ·xα
n≥(2R)pα ·1L.

Moreover, if this α is O
(

1
|Nt|

)
, then since α∗<α, (b) will follow. This result follows from showing that

for fixed α>0 sufficiently to zero,
∑

n∈N pα ·xα
n is Ω(|Nt|), while pα ·1L is O(1).

Let Sα be the value of the saddle point problem

min
p∈RL

+

max
x∈X

∑
n∈N

cav(un)(xn)

1+α
−

∑
f∈F

vex(cf )(yf )−p ·

∑
n∈N

xn+R1L−
∑
f∈F

yF

.

First, we show that Sα is Θ(|Nt|) for sufficiently small α.31 To see this, write f(|Nt|)=
∑

n∈Nt
un(x∗

n)

and g(|Nt|)=
∑

f∈Ft
cf (y

∗
f ). Assumptions 1, 3 and the boundedness of utilities and costs implies that the

efficient surplus is Θ(|Nt|). As a result, liminfN→∞
f(N)
N

:=u>0, and limsupN→∞
g(N)
N

:=c>0, with

u−c>0. Then Sα≥ liminfN→∞
f(N)

(1+α)N
− g(N)

N
= u

1+α
−c, which is positive for sufficiently small α.

We now show that this implies
∑

n∈N pα ·xα
n is Ω(|Nt|) for small, fixed α. Since

∑
f∈Ft

cf (y
α
f ) is

Ω(|Nt|), individual rationality of the sellers (in the convexified economy) implies that
∑

f∈Ft
pα ·yαf

30. See Rockafellar and Wets (2009), Section 7.B.
31. Recall that f(x)=Θ(g(x)) if f(x)=O(g(x)) and f(x)=Ω(g(x))
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is Ω(|Nt|). By complementary slackness,
∑

n∈Nt
pα ·xα

n=
∑

f∈Ft
pα ·yαf −Rpα ·1L. Since p∈ [p,p]L by

Assumption 4, we must have that
∑

n∈N pα ·xα
n is Ω(|Nt|).

Since for α near zero,
∑

n∈N pα ·xα
n is Ω(|Nt|) and (2R)pα ·1L is O(1) (where R is O(1) by

Assumption 2), for sufficiently large |Nt|, there exists an α (and thus some least α by (a)) such that

α
∑
n∈N

pα ·xα
n≥(2R)pα ·1L,

and furthermore, this α is O
(

1
|Nt|

)
. Since α∗<α, we have that α∗ is O

(
1

|Nt|

)
, as required.

Part (c) We apply the Bound-Form First Welfare Theorem to show that the allocation xα∗
is

approximately efficient. Suppose xα∗
was implemented with a single price vector pα

∗
and (therefore) a

budget deficit. Theorem 1 implies that

S(x∗)−S(xα∗
)≤R(xα∗

,pα
∗
)+pα

∗ ·

 ∑
f∈Ft

yα
∗

f −
∑

n∈Nt

xα∗
n

. (A.1)

By construction, in xα∗
at prices pα

∗
, no sellers are rationed, while at prices (1+α∗)pα

∗
, no buyers

are rationed. However, buyers are rationed at price pα
∗
. Proposition 3 implies Rn(xα∗

n ,pα
∗
) is

O
(

1
|Nt|

)
because α∗ is O

(
1

|Nt|

)
and ∥pα∗∥ is bounded (by Assumption 4). Thus, R(xα∗

,pα
∗
)=∑

n∈Nt
Rn(xα∗

n ,pα
∗
) is O(1). Finally, the budget deficit is O(1) since the excess supply is bounded

by construction and each component of pα
∗
is O(1). Thus, the deadweight loss is O(1).

∥

A.3. Proof of Theorem 4

Proof. First, we establish that the simple and minimal markup mechanisms almost surely output an
O(1/N) markup with O(1) excess production, both under truthful reporting and after misreporting by a

single agent. The remainder of this proof applies to any markup mechanism with that property. For the

simple markup mechanism, these properties follow almost surely by construction and Theorem 2 (the
requirements for which hold almost surely, by assumption). For the minimal markup mechanism, the

markup is almost surely O(1/N) by Theorem 2, and, given this, budget-feasibility ensures overproduction

is almost surely O(1) (otherwise, the mechanism’s revenue, αp ·∑xn−p·(∑f yf −
∑

nxn), would
eventually be negative almost surely).

We now use these facts to show that the (seller) price vector output by either mechanism—both

under truthful reporting and after misreporting by a single agent—minimizes an objective differing from
that of the Walrasian mechanism for the convexified economy by an O(1)-Lipschitz convex function,

constituting a perturbation of that objective, as defined by Watt (2025).

Suppose that under truthful reporting, the markup mechanism outputs a markup α, prices pα, and
has an excess supply vector s. Suppose that buyer n0 misreports its valuation function, and let α′, pα

′

and s′ be the corresponding outputs of the mechanism given this misreport. The markup mechanism’s
price and allocation constitute a Walrasian equilibrium of an economy where buyers’ values are scaled

down by (1+α) and auctioneer demand is s. Thus, pα minimizes the dual objective for that economy,

1

1+α

∑
n∈N

ûn(p)+
∑
f∈F

π̂f (p)−p ·s.

Similarly, under a buyer’s misreport resulting in indirect utility û′
n0

, prices pα
′
minimize

1

1+α′

∑
n∈N\{n0}

ûn(p)+
1

1+α
û′
n0

(p)+
∑
f∈F

π̂f (p)−p·s′.

Walrasian equilibrium prices for the convexified economy under truthful reporting minimize∑
n∈N

ûn(p)+
∑
f∈F

π̂f (p).

This objective and the truthful markup mechanism’s objective differ by
α

1+α

∑
n∈N

ûn(p)+p ·s.

Since α≤O(1/N) almost surely, we have α
1+α

≤O(1/N) as well, while
∑

n∈N ûn(p) is O(N)-Lipschitz
since its subdifferential is total demand at p which is O(N) (its Lipschitz constant is the largest selection
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from the subdifferential). Since p·s is Lipschitz with constant s, the perturbation above is O(1)-Lipschitz.

Similarly, the difference between the convexified objective and that of the markup mechanism under the
misreport is

α′

1+α′

∑
n∈N\{n0}

ûn(p)+ûn0 (p)−
1

1+α′ û
′
n0

(p)−p·s′,

which is O(1) by similar reasoning.

By Theorem 4 of Watt (2025) (adapted to two-sided markets, as in Appendix C of that paper),

for any ε>0, with probability 1−O(1/|Nt|) over draws of Et, we have that ∥p−pα∥ and ∥p−pα
′∥ are

O(1/|Nt|1−ε) for any ε>0. Then, by the triangle inequality, ∥pα−pα
′∥ and ∥(1+α)pα−(1+α′)pα

′∥
are O(1/|Nt|1−ε) with the same probability, as well. But, since the ex post benefits of a misreport

are bounded above by ûn((1+α)pα)−ûn((1+α′)pα
′
) and each buyer’s indirect utility function ûn is

O(1)-Lipschitz, those ex post benefits are O(1/|Nt|1−ε) with high probability, as well. Similar reasoning

applies to seller misreports.
∥

B. ADDITIONAL MATERIAL

B.1. Nonconvexity and approximate equilibria

This section presents a stronger statement of the Shapley-Folkman Lemma used in general equilibrium

theory with nonconvexities.

Proposition 4. Let Si⊆RL for i=1,...,N , S=
⊕N

i=1Si and L′=min(L,N). Then for any x∈co(S):

(a) (Shapley-Folkman Lemma) x=
∑N

i=1xi where xi∈co(Si) and |i :xi∈co(Si)\Si|≤L′.

(b) (Starr, 1969) If Si is ordered so that r(Si) is nonincreasing in i, then there is y∈S such that

|x−y|≤
√∑L′

i=1r(Si)2.

(c) (Heller, 1972) If Si is ordered so that ρ(Si) is nonincreasing in i, then there is y∈S such that

|x−y|≤
√∑L′

i=1ρ(Si)2.

These results underpin the construction of approximate equilibria in general equilibrium theory. An

approximate equilibrium is an allocation-price pair (x,p) such that xn∈Dn(p) for all n, yf ∈Sf (p) for

all f , and
∣∣∣∑n∈N xn−∑

f∈F yf

∣∣∣≤s for some small s>0. An approximate equilibrium allocation may

have excess demand, making it infeasible. An approximate equilibrium can be constructed by finding
the competitive equilibrium of the convexified economy and applying to it the results of Proposition 4.

Proposition 5 presents the approximate equilibrium analogs of Proposition 4.

Proposition 5. For economy E=(N,F ):

(a) (Starr, 1969) There is x∈co(X) and p∈RL
+,p>0 such that |n :xn∈co(X)|+|f :yf ∈co(Y )|≤L

and for all other agents, xn∈Dn(p) and yf ∈Sf (p).

(b) Let rn=supū∈Rr(UCū
n) and rf =supπ̄∈Rr(UCπ̄

f ). Let δ≥0 satisfy rn≤δ for all n∈N and rf ≤δ

for all f ∈F . Then there exists p∈RL
+,p>0, xn∈X and yf ∈Y such that xn∈Dn(p) for all n∈N ,

yf ∈Sf (p) for all f ∈F and
∣∣∣∑n∈N xn−∑

f∈F yf

∣∣∣≤δ
√
L.

(c) Let ρn=supū∈Rρ(UCū
n) and ρf =supπ̄∈Rρ(UCπ̄

f ). Let δ′≥0 satisfy ρn≤δ′ for all n∈N and

ρf ≤δ′ for all f ∈F . Then there exists p∈RL
+,p>0, xn∈X and yf ∈Y such that xn∈Dn(p) for

all n∈N , yf ∈Sf (p) for all f ∈F and
∣∣∣∑n∈N xn−∑

f∈F yf

∣∣∣≤δ′L.

While Proposition 5(a) is standard, Propositions 5(b) and (c) offer stronger results than the classical

statements by Starr (1969) and Heller (1972). The quasilinearity of agent preferences implies that agents
are utility- and profit-maximizing, rather than merely expenditure-minimizing.

Nguyen and Vohra (2024) introduced the generalized ∆-single improvement property, a general-

ization of the well-known single improvement property in terms of perceived complementarity and
substitutability of goods. Our results also extend to quasilinear preferences satisfying this definition.
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Definition 5. Buyer n’s preferences satisfy the generalized ∆-single improvement property for some

∆>0 if, for any price vector p>0, any two bundles x,y∈Dn(p), and any price change δp with δp ·x>
δp ·y, there exist a≤(x−y)+ and b≤(y−x)+ such that:32

(a) |a|+|b|≤∆,

(b) δp·a>δp·b, and
(c) x−a+b∈Dn(p).

In this definition, ∆ quantifies the substitutability and complementarity between goods. Preferences

with Gul and Stacchetti’s 1999 single improvement property fall within the class where ∆=2.

Given the compactness assumption for X and Y , all preferences and technologies satisfy the
generalized ∆-improvement property for some ∆, as noted by Nguyen and Vohra (2024). However, a

stronger relationship holds between the inner radii of preferences and the ∆-single improvement property.

Proposition 6. Let rn=supū∈Rr(UCū
n). Then the preferences of buyer n∈N satisfy the generalized

∆−single improvement property for all ∆>2
√
2rn.

Proof. Let buyer n’s preferences satisfy rn=supū∈Rr(UCū
n). Let x,y∈X and p∈RL

+ be given such that

x,y∈Dn(p). Suppose |(x−y)+|+|(y−x)+|≥2rn (otherwise, the preferences would immediately satisfy
the ∆ improvement property for ∆=2rn).

For any ε>0, let z∈RL
+ be the unique convex combination of x and y such that |x−z|=rn+ε,

and let λ satisfy z=λx+(1−λ)y. By construction, (z,p ·z)∈co(UC
un(x)−p·x
n ). The bound on preference

nonconvexity then implies the existence of a set T ⊆UC
u(x)−p·x
n with rad(T )≤rn such that (z,p ·z)=∑

(x′,t′)∈T α(x′,t′)(x
′,t′) with

∑
(x′,t′)∈T α(x′,t′)=1.

For all (x′,t′)∈T , it follows that x′∈Dn(p) and t′=p ·x′. This holds because x∈Dn(p) implies

un(x′)−p·x′≤un(x)−p·x. Summing yields:

un(x)−p·x≥
∑

(x′,t′)∈T

α(x′,t′)[un(x
′)−p ·x′]

=
∑

(x′,t′)∈T

α(x′,t′)un(x
′)−p ·z

=
∑

(x′,t′)∈T

α(x′,t′)[un(x
′)−t′].

On the other hand, since (x′,t′)∈UC
u(x)−p·x
n , un(x′)−t′≥u(x)−p·x. These conditions hold

simultaneously only if un(x′)−t′=u(x)−p·x for all (x′,t′)∈T.

However, it then follows that
∑

(x′,t′)∈T α(x′,t′)[un(x′)−p ·x′]=u(x)−p·x. This implies that at least

one of un(x′)−p ·x′≥un(x)−p·x. But then x∈Dn(p) implies that un(x′)−p·x′=un(x)−p ·x for all x′,
so x′∈Dn(p).

By construction, |x−x′|≤2rn+ε. Consequently, ||x−x′||1≤2
√
2rn+ε. ∥

The generalized ∆-single improvement property readily extends to sellers by substituting expressions
for utility with those for profits; an analogue of Proposition 6 then applies.

Nguyen and Vohra (2024) demonstrate an approximate equilibrium result in a setting with
indivisibilities, i.e., where X⊆ZL

+ and Y ⊆ZL
+.

Proposition 7. Suppose all buyers’ preferences and sellers’ technologies satisfy the generalized ∆-
improvement property and that X⊆ZL

+ and Y ⊆ZL
+. Then there exists p∈RL

+,p>0, xn∈X and yf ∈Y

such that xn∈Dn(p) for all n∈N , yf ∈Sn(p) and for each ℓ∈L,
∣∣∣∑n∈N xnℓ−

∑
f∈F yfℓ

∣∣∣≤∆−1.

This approximate equilibrium concept is stronger than previous results because the maximum imbalance
in supply and demand is bounded on a good-by-good basis, rather than by Euclidean distance in

32. Here, (x−y)+ denotes the vector whose ℓth component is max(xℓ−yℓ,0).
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commodity space. Nonetheless, depending on the relative size of ∆, the inner radii of nonconvexity,

and the inner distances of nonconvexity, any of the approximate equilibrium bounds in Proposition
5(b), 5(c) or 7 may prove strongest for our analysis.

B.2. Maximum surplus anonymous pricing

Our markup mechanisms relate to a linear pricing mechanism proposed for the allocation of commercial

fisheries licenses in New South Wales, Australia: the maximum surplus anonymous pricing mechanism,
as described by Bichler et al. (2018). That mechanism solves the standard surplus optimization problem

max
x∈X

∑
n∈N

un(xn)−
∑
f∈F

cf (yf ),

but subject to the constraint that there exist prices pb and ps satisfying

(a) Individual rationality: for all n∈N,f ∈F , un(xn)−pb ·xn≥0 and ps ·yf −cf (yf )≥0.

(b) Budget balance:
∑

n∈N pb ·xn≥∑
f∈F ps ·yf .

A corollary of Theorem 2 is that the maximum surplus anonymous pricing mechanism has a
deadweight loss bounded by a constant, independent of market size |N |. This paper introduces and

analyzes markup mechanisms rather than the alternative mechanism just described for two reasons.

First, the alternative mechanism is difficult to scale because it requires solving nonconvex optimization
problems, whereas the simple markup mechanism can be implemented by solving convex optimization

problems (plus a binary search). Second, the alternative mechanism may entail rationing at prevailing

prices, which can incentivize agents to misreport. The simple markup mechanism avoids this problem.
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