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Abstract

When selling goods like wireless spectrum or electricity contracts, designers often
opt for core-selecting mechanisms — i.e., those that induce outcomes in the core — in
order to balance revenue and efficiency goals. But increasingly, auctions — such as
the FCC’s Incentive Auction and those explored for natural resources — seek to real-
locate goods, not just sell them. We show that when bidders can both buy and sell,
substitutability among goods is no longer sufficient or necessary for core selection. In
particular, in these environments, core selection can fail even with a single good and
positive revenue, and can succeed even when some or all bidders view goods as com-
plements. Instead, we show that the key feature that determines core selection is hetero-
geneity among the bidders. With too much heterogeneity, reallocation mostly realizes
pre-existing gains from trade among the bidders, and core selection fails. With limited
heterogeneity, most gains from trade among the bidders are created by the quantity
auctioned, and a core-selecting mechanism is possible.
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1 Introduction

Increasingly, auctions — such as the U.S. FCC’s Incentive Auction for wireless spec-
trum licenses — aim to serve bidders interested in buying and/or selling various goods by
reallocating them, instead of just offering them for sale.1 Such auctions can help realize sur-
plus in settings where transaction costs restrain voluntary trade, e.g., by reallocating water
rights (Milgrom (2022)), electric vehicle charging time (Morstyn et al. (2019)), fishing rights
(Bichler et al. (2019)), carbon sequestration credits, groundwater abstraction permits, and
other resources (see, e.g., the survey by Teytelboym (2019)).2 They can also facilitate the
reallocation of goods when an additional quantity provided by the auctioneer makes such
reallocation efficient. These reallocative auctions are the focus of our paper.

The designers of these auctions often seek to balance multiple objectives. In particular,
both revenue and allocative efficiency may be important when, e.g., the auction is designed
on behalf of a government agency. Moreover, a design’s ability to achieve these objectives
may be challenged by the participants’ ability to deviate in ways that the designer cannot
fully control, such as by using bids submitted by proxies to manipulate the auction (shill
bidding). In response, designers often favor auctions that are core-selecting — that is, which
select a core outcome. Such designs rule out incentive problems that compromise these
objectives: By definition, core selection ensures that the auction allocates goods efficiently,
and that its revenue is competitive, in the sense that no coalition of bidders could profitably
persuade him to trade with them instead of conducting the auction. It also renders shill
bidding unprofitable (Yokoo and Matsubara, 2004) and ensures that revenue is increasing
in bidder participation (Ausubel and Milgrom, 2002).

The central question relevant for core-selecting auction design — and this paper — is
when such a design is an option for the auctioneer.3 In one-sided environments — those
where each bidder is only interested in buying goods — it is well understood that core
selection is possible when the goods being auctioned are gross substitutes (Ausubel and
Milgrom, 2002). We show that in reallocative environments — those where bidders are
interested in both buying and selling goods — this condition is neither necessary nor suf-
ficient. Specifically, core selection may be impossible even when goods are substitutes for
all bidders (Example 3), and in fact, even when only one good is being auctioned (Example 1).
Conversely, core selection can be possible even when some bidders view goods as comple-

1Reallocating the spectrum controlled by television stations into uses of higher value was a major part
of the FCC’s objective in the Incentive Auction; see http://www.fcc.gov/incentiveauctions and Ausubel
et al. (2017). Bidders in spectrum auctions may wish to switch to a different frequency or exit a market;
reallocative auctions allow them to do so.

2See also Klemperer (2010) for a discussion, as well as a description of the Product-Mix Auction, a
uniform-price auction that can be used in a way that permits reallocation.

3The question of which design has a simple answer, since when core selection is possible, any auction
that achieves it must be outcome-equivalent to the Vickrey (1961) auction. See the discussion below (and
Proposition B.1 in the Supplementary Appendix).
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mentary (Example 2). In fact, our main results (Theorems 1 and 2) show that in reallocative
auctions, the main obstacle to core selection is heterogeneity among bidders, rather than
complementarity among goods.

Many applications feature bidders that hold non-zero quantities of some of the goods
traded — such as spectrum licenses or natural resources — and could thus both buy and
sell them. These environments typically involve multiple goods: For instance, spectrum
licenses differ in their geographical coverage and technical characteristics such as interfer-
ence with adjacent frequency bands (e.g., Milgrom (2019)); appropriative rights to surface
water differ in location of use, purpose of use, season of use, and seniority (Ferguson and
Milgrom, 2024); electricity contracts differ in duration and location characteristics; and
emission permits are issued for different time periods and pollutants. Notably, bidders
generally have complex preferences over the goods being auctioned, and may consider
some goods to be complements and others to be substitutes; in particular, complementari-
ties are often an essential feature of bidders’ preferences.4

We integrate these features in an environment with multiple divisible goods. Because
any auction that achieves core selection is outcome-equivalent to the Vickrey (1961) auction
(in the one-sided case, Goeree and Lien (2016); in the reallocative case, Proposition B.1 in
the Supplementary Appendix) we focus, without loss of generality, on whether the Vickrey
outcome lies in the core. As we show in Section 3, the possibility of reallocation changes
the meaning of core selection by making new blocking coalitions relevant, but the design
implications of core selection remain unchanged (Proposition 9).

Main Results

We present two sets of main results. Together, they show that when reallocation is pos-
sible, different characteristics of the environment determine the possibility of core-selecting
design. In particular, it is heterogeneity among bidders that matters — both in their pref-
erences and in their pre-auction allocations — not substitutability among goods.

Theorem 1 establishes a joint sufficient condition — on bidders’ preferences and the ef-
ficient allocation — that allows for the design of a core-selecting auction: There is a set of
packages (bundles of goods) that the bidders regard as substitutable, and it is efficient to al-
locate non-negative quantities of them to each bidder. Mathematically, these substitutable
packages must form a basis for the set of goods; the additional condition on package alloca-
tions then ensures that the reallocative auction for goods functions like a non-reallocative
(i.e., one-sided) auction for packages that are gross substitutes for all bidders. Intuitively,
the basis change represents a pattern of behavior relevant for core selection, and the joint
condition captures how the bidders’ incentives to substitute are aligned with the trades

4See, e.g., the discussion of wireless spectrum in Milgrom (2019) and natural resources in Teytelboym
(2019).
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necessary to realize the surplus created by participants’ pre-auction allocations and the
quantity auctioned. While predefined packages are often explicitly used in auction design
in practice (e.g., Xiao and Yuan (2022)), Theorem 1 allows them to be implicit.

We also provide sufficient conditions that apply directly to bidders’ primitive valua-
tions. Theorem 2 shows that one can find a set of substitutable packages that are always
allocated to bidders in positive quantities (and hence, by Theorem 1, core selection is pos-
sible) whenever bidders’ substitution patterns — their valuations’ Hessian derivative ma-
trices — are homogeneous (in the sense that they are simultaneously diagonalizable) and
bidders’ marginal utility at their pre-auction allocations is the same. Thus, we can de-
sign a reallocative auction that selects outcomes in the core whenever the bidders (and in
particular, their substitution patterns and pre-auction marginal utilities) are not too hetero-
geneous.

Our second set of main results shows that limited heterogeneity is not just sufficient for
core selection, but also necessary (in a maximal domain sense). In fact, with sufficient het-
erogeneity in marginal utility at the pre-auction allocation, Propositions 3 and 4 show that
core selection fails independently of heterogeneity in bidders’ substitution patterns. Like-
wise, with sufficient heterogeneity in substitution patterns, Proposition 5 shows that core
selection fails even when the pre-auction allocation is efficient.

Thus, in practice, the possibility of core selection in a reallocative auction depends on
the intended design objective: If the primary objective is to eliminate the inefficiencies in
bidders’ pre-auction allocation (as in, e.g., the FCC Incentive Auction), core selection is less
likely. But if the majority of the gains from trade to be realized among the bidders are
created by the new quantity of goods offered by the auctioneer, a reallocative auction can
be core-selecting, provided that bidders’ substitution patterns are not too different. Which
of these dominates depends crucially on the quantity of goods that the auctioneer offers
for sale.

Together, these results illustrate that, in contrast to one-sided environments, the Vickrey
auction may perform poorly in reallocative environments (in the sense that it is not core-
selecting) even when goods are substitutable.5 Furthermore, its poor performance is due
precisely to heterogeneity among bidders that creates gains from trade between them, and
causes reallocation of goods to occur. This raises the question of whether, when reallocation
is important, other auction designs, such as the uniform-price auction (UPA) used in the
clock phases of the FCC Incentive Auction, may be more appropriate: Even though the
uniform-price auction does not result in an efficient allocation, it guarantees nonnegative
revenue. However, it is known that even with a single good, the uniform-price auction
can sometimes yield lower revenue than a Vickrey auction would (Ausubel et al., 2014). In

5That is, its revenue may be uncompetitively low, shill bidding may be profitable, and the auctioneer
may have an incentive to restrict participation, and not just because negative revenue is possible (as is well
understood; see, e.g., Myerson and Satterthwaite (1983)).
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environments where bidders have i.i.d. quadratic valuations, we show in Theorem 3 that
Vickrey outperforms the UPA when the expected heterogeneity (i.e., the variance) of the
bidders’ marginal utilities for the packages they view as substitutes (the eigenvectors of
their substitution patterns) is sufficiently small — precisely when it is also likely to be core
selecting (Theorem 2).

Finally, we make two observations about implementation. As the FCC Incentive Auc-
tion demonstrated, when the prospective buyers and prospective sellers in a reallocative
auction are separate groups, the auction’s complexity can be reduced considerably by split-
ting it into two non-reallocative auctions: a reverse auction that buys goods, and a forward
auction that sells them. These auctions are then linked through a clearing rule that equalizes
price across them. When an auction uses a uniform-price design, such as the one used
in the reverse and forward clock phases of the Incentive Auction, it can be split without
affecting its outcome. However, splitting a Vickrey auction would generally not be an
outcome-neutral design choice: bidding according to their marginal utility schedules is no
longer a dominant strategy for bidders (Proposition 8). Thus, the equilibrium allocation in
a split Vickrey auction will generally be inefficient.

On the other hand, in environments with limited heterogeneity among bidders’ substi-
tution patterns, we show that there is an alternative way to simplify reallocative auctions
that works just as well with either a Vickrey or uniform-price design. Specifically, suppose
that bidders have homogeneous substitution patterns, in the sense that their valuations’
Hessian matrices are simultaneously diagonalizable (or equivalently, commute with one
another). Then, a reallocative Vickrey or uniform-price auction that allows package bid-
ding is equivalent to a series of independent Vickrey or uniform-price auctions for the
packages formed by the eigenvectors of those matrices (Proposition 7).

Consequently, while incorporating the substitutable packages from Theorems 1 and 2
into the auction’s design is unnecessary for those results to hold, doing so may be useful:
If bidder substitution patterns are not too different, then instead of conducting a package
auction for, e.g., complementary spectrum licenses for Chicago and New York, Proposition
7 shows that we can separately auction off a spectrum license for both Chicago and New
York, and a license that gives the holder the right to swap some amount of spectrum in
Chicago for some amount of spectrum in New York. This allows auction designers a way to
sidestep the known complexity issues associated with package bidding (see, e.g., surveys
by De Vries and Vohra (2003) or Vohra (2015)).

Related Literature

Our paper belongs to three strands of the literature.

Core-selecting design. The literature on core-selecting auction design has explored one-
sided environments (where reallocation is not possible), and has also largely focused on
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environments with indivisible goods. There, the key role of gross substitutability for an
incentive compatible design’s ability to select a core outcome is well understood (e.g.,
Ausubel and Milgrom (2002) or Bikhchandani and Ostroy (2002)). This paper examines
the possibility of core-selecting design in environments where goods can be reallocated
among the bidders, which have more recently attracted attention in market design, and
considers bidders with multi-unit demands for divisible goods. An important predecessor
is Milgrom and Strulovici (2009), who show that in one-sided environments, divisibility
does not fundamentally alter the features of the environment that allow core-selecting de-
sign: Gross substitutability is still sufficient, and in a maximal domain sense, necessary.
Since it reduces to gross substitutability when it is applied to goods in a one-sided envi-
ronment, the sufficient condition we give in Theorem 1 can be seen as unifying the features
that make core selection possible across environments where trade is necessarily one-sided
and those where participants and the auctioneer can both buy and sell.6

Some authors have investigated how an auction should function when the Vickrey out-
come is not in the core, and so core selection conflicts with incentive compatibility. One
approach is to relax the requirement of strategy-proofness, and seek to achieve revenue
objectives using payment rules that select outcomes in the core as long as bidders truth-
fully reveal their valuations. Authors such as Ausubel et al. (2006), Day and Raghavan
(2007), Day and Milgrom (2008), Erdil and Klemperer (2010), Day and Cramton (2012), and
Ausubel and Baranov (2020) consider the design of such payment rules, as well as methods
for implementing them in practice.

Patterns of behavior and basis changes. Theorem 1 is based on package substitutability —
substitutability under a change of basis. The idea that analyzing transformations through
basis changes can help to identify relevant patterns of behavior has been noted for other
questions. Notably, Galeotti et al. (2020) introduce a principal component approach to
analyze the optimal interventions in a network of interacting agents, aimed at changing
their individual incentives to take action. Applying these tools in a market context, Galeotti
et al. (2024) show how the use of a basis change to transform the representative consumer’s
Slutsky matrix, which captures a network structure among firms in the space of goods,
allows a characterization of the optimal tax-and-subsidy scheme (and its effect on welfare)
in terms of the price pass-throughs of eigenbundles of goods produced by firms.7

Substitutability under a basis change of the space of goods has also allowed new exis-
tence results in the literature on competitive equilibrium with imperfectly divisible goods.8

6Milgrom’s (2007) Fisher-Schultz lecture emphasizes that the theory of package exchanges has few predic-
tive results. Our results characterize the possibilities for and limitations of core-selecting design in realloca-
tive environments with multiple heterogeneous divisible goods, including the design of exchanges (where
the auctioneer’s quantity vector is zero).

7Weinstein (2022) explores the role of basis changes in defining substitutes and complements.
8Examples include the gross substitutes and complements condition of Sun and Yang (2006); its close

relative, the full substitutability condition of Ostrovsky (2008) and Hatfield et al. (2013); and, more generally,
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In our setting, nonemptiness of the core (or the set of competitive equilibria) does not
require substitutability (Proposition C.1 in the Supplementary Appendix). On the other
hand, substitutability under a basis change does not suffice on its own to establish core
selection. Instead, Theorem 1 shows that an additional allocation condition — which is
not relevant to the existence of the core or competitive equilibrium with either divisible or
indivisible goods — is needed.9

Applied market design. Several recent papers explore and evaluate design features of
the FCC Incentive Auction, which reallocated wireless spectrum from TV broadcasters to
higher-value uses such as mobile broadband (Kwerel et al. (2017), Doraszelski et al. (2019),
Loertscher and Marx (2020), Newman et al. (2020), Milgrom and Segal (2020), Ausubel and
Baranov (2023)). Teytelboym (2019) reviews related designs — proposed or implemented
— for natural resources. We contribute by establishing conditions when core-selecting
design is possible in reallocative environments such as these. We also analyze the impact of
splitting a reallocative auction into forward and reverse stages (as in the Incentive Auction)
when coupled with a core-selecting payment rule.

Structure of the Paper

Section 2 introduces the setting. Section 3 discusses the relevant notion of core selec-
tion in reallocative auctions and its link to the surplus function. Section 4 provides our
motivating examples and main results on core selection in reallocative auctions. Section 5
discusses the uniform-price auction and compares its performance to the Vickrey auction.
Finally, Section 6 discusses implementation. Section 7 concludes. All proofs are contained
in the Appendix.

2 Setting

There is an auctioneer, denoted a, and a set I of potential bidders. A finite subset X ⊆ I
of these bidders participate in an auction conducted by the auctioneer, where |X| ≥ 2.
The auctioneer has a quantity vector q̄ ∈ RK of K perfectly divisible goods, but obtains no
value from them: His payoff is the sum of the transfers he receives from the bidders.10 Each

the basis changes employed in Baldwin and Klemperer (2019).
9In fact, even after the transformation of auctions for goods into those of packages, the arguments avail-

able for standard one-sided environments (e.g., Milgrom and Strulovici (2009)) are not sufficient in realloca-
tive environments. (See the discussion in the appendix before Lemma 4 and after the proof of Theorem 1.)

10We consider an environment with perfectly divisible goods in order to accommodate bidders who can
buy or sell multiple units of the same good, while abstracting away from the questions of equilibrium exis-
tence associated with indivisible goods in the absence of gross substitutability (see, e.g., Gul and Stacchetti
(1999) and Baldwin and Klemperer (2019)). The issues created by reallocation that we examine are relevant
beyond divisible-good environments. We conjecture that results similar to ours can be found in indivisible
good environments, with a restriction on the change of basis due to the integer choice set: the logic of placing

7



bidder i ∈ I has a valuation ui : RK → R for bundles of those goods, where ui(0) = 0; when
he receives the bundle qi ∈ RK and sends the transfer xi ∈ R to the auctioneer, his payoff
is given by ui(qi)− xi.11 When the kth entry of qi is negative, it represents a sale of good k
by agent i to the auctioneer; when it is positive, it represents a purchase of good k from the
auctioneer. We assume that each bidder’s valuation ui is twice continuously differentiable
and strictly concave, and that the image of each agent’s marginal utility function is the
same: There is a convex set M ⊆ RK such that for each i ∈ I, ∇ui(R

K) = M.12

In contrast to the one-sided environments typically considered in the core-selection liter-
ature, our setting does not constrain bidders’ allocations of goods qi to be positive. Instead,
the only feasibility constraint on allocations {qi}i∈X is that they must sum to the quantity
vector q̄. This allows us to accommodate new applications where bidders are able to both
buy and sell goods; e.g., those in which bidders have non-zero quantities of some of the
goods auctioned.13

The Core

We are primarily interested in auctions that produce allocations in the core of the auction
environment: the set of payoff profiles such that no coalition can be better off by abandon-
ing the mechanism and trading on its own. To define the core, we first define the surplus
function

v(Z, q) := max
{qi}i∈Z

∑
i∈Z

ui(qi) s.t. ∑
i∈Z

qi = q. (1)

v(Z, q) represents the maximum value that can be obtained by allocating the bundle q
among the bidders Z ⊆ I. Similarly, for a coalition Z ⊆ I, let {qe

i (Z, q)}i∈Z denote the
Pareto-efficient allocation of the bundle q among the bidders in Z:14

{qe
i (Z, q)}i∈Z := arg max

{qi}i∈Z
∑
i∈Z

ui(qi) s.t. ∑
i∈Z

qi = q. (2)

sufficient conditions on bundles rather than goods should not depend on divisibility.
11We can think of ui as a reduced form describing the bidders’ pre-auction allocations {q0

i }i and prefer-
ences over total quantities ûi; then ui(qi) ≡ ûi(q0

i + qi)− ûi(q0
i ), and ui(0) = 0. We work directly with the

reduced form ui, since when the bidders can buy and sell in arbitrary quantities, this is all that matters for
the properties of the auction designs that we consider.

12For instance, with quadratic valuations (Section 4), M = RK, whereas if marginal utility is bounded, then
M is some strict subset of RK. These regularity assumptions ensure that there is a competitive equilibrium in
finite quantities and that aggregate demand is everywhere well-defined. This is stronger than necessary for
equilibrium existence, but ensures the invertibility of agents’ demand functions.

13While not our main focus, the model accommodates environments in which the auctioneer seeks only to
reallocate goods among the bidders (and so q̄ = 0) or procurement auctions in which the auctioneer seeks to
purchase goods (and so q̄ < 0).

14Since the bidders’ payoffs are quasilinear with strictly concave valuations, and the images of their
marginal utility functions are identical, there is a unique efficient allocation (Lemma E.3 in the Supplementary
Appendix).
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The coalitional value function

V(Z, q̄) :=

{
v(Z \ {a}, q̄), a ∈ Z;

v(Z, 0), a /∈ Z,

gives the maximum surplus that can be produced by reallocating goods among the agents
Z ⊆ I ∪ {a} when the auctioneer’s quantity vector is q̄. Given the set of participating
bidders X, the payoff profile π ∈ RX∪{a} is in the core if

∑
i∈X∪{a}

πi = V(X ∪ {a}, q̄), and ∑
i∈Z

πi ≥ V(Z, q̄) for all Z ⊆ X ∪ {a}.

If ∑i∈Z πi < V(Z, q̄), we say that the coalition Z blocks the payoff profile π. If π is un-
blocked by any Z ⊆ X ∪ {a} except Z = {a}, we say that π is in the bidder-core.15,16

Because we study an environment where goods can be reallocated among the bidders,
our definitions of the coalitional value function and core are generalizations of those that
appear in most of the core-selecting auction literature. In particular, coalitions that do not
involve the auctioneer are relevant, since the bidders may be able to realize gains from
trade among themselves without access to the auctioneer’s quantity vector. In one-sided
environments commonly studied in the literature, on the other hand, reallocation is not
feasible, and so coalitions are only relevant to the core if they include the auctioneer. We
discuss this difference, and its consequences for (bidder-)core selection, in Section 3.

The Vickrey Auction

Since we are interested in core selection, we mainly focus on the Vickrey (1961) auction.
This focus is without loss of generality: if an auction mechanism is incentive compatible
and (bidder-)core-selecting on some convex domain of bidder preferences, it must pro-
duce the Vickrey outcome there (Goeree and Lien, 2016).17,18 Many ways of implementing

15We note that the set of bidder-core outcomes (a superset of the set of core outcomes) is different from the
set of bidder-optimal core outcomes (the minimum-revenue subset of the set of core outcomes) often considered
in the literature on core selection in one-sided auctions.

16There is a large literature on the existence of payoff profiles in the core (e.g., Bondareva (1963); Shapley
(1967)). This is not our focus: In our reallocative auction environment, the (bidder-)core is never empty. (See
Proposition C.1 in the Supplementary Appendix.) Hence, when our results show that core selection is not
possible, it is not because the core does not contain any payoff profiles, but rather that it just does not contain
the Vickrey payoff profile.

17Note that in our setting, the Vickrey auction is necessarily reallocative: Since it is possible for a design to
reallocate goods among the bidders, efficiency requires that the auction is capable of doing so.

18Specifically, Goeree and Lien (2016) show that in a one-sided environment where bidder preferences are
drawn from a convex set, if an auction mechanism is Bayesian incentive compatible and core-selecting, it
must be outcome-equivalent to the Vickrey auction. In Section B of the Supplementary Appendix, we extend
this result to reallocative environments (Proposition B.1). We note that while auctions that use different
pricing schemes (e.g., the Vickrey-Nearest rule) may select outcomes in the core of an environment where
bidders’ valuations are replaced by their reported valuations, these outcomes are not necessarily in the core of
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the Vickrey auction have appeared in the literature.19 Throughout the paper, we use the
version that (as in Vickrey (1961)) solicits bids in the form of inverse demand schedules
bi : RK → M, awards each bidder the bundle q∗i (b) at which his bid is equal to the market-
clearing price p∗(b), and charges him a payment tV

i (b) equal to the area under his residual
supply curve.20 As we show in Section 5, this format facilitates a straightforward compar-
ison with the commonly used uniform-price auction.

Proposition 1 gives the usual characterization of the Vickrey auction’s dominant-strategy
(truthful) equilibrium, which we assume the bidders play throughout the paper.

Proposition 1 (Equilibrium in the Vickrey Auction).

i. For each participating bidder i ∈ X, submitting a bid function bV
i (qi) = ∇ui(qi) that coincides

with his marginal utility function is a weakly dominant strategy in the Vickrey auction.

ii. The Vickrey auction implements the efficient allocation: {q∗i (b
V)}i∈X = {qe

i (X, q̄)}i∈X.

iii. The Vickrey auction gives each bidder i a payoff πV
i (X) equal to their marginal contribution to

the surplus produced by the grand coalition, and the remainder of that surplus to the auctioneer:

πV
i (X) := ui(q∗i (b

V))− tV
i (b

V) = v(X, q̄)− v(X \ {i}, q̄) for each i ∈ X;

πV
a (X) := ∑

i∈X
tV
i (b

V) = v(X, q̄)− ∑
i∈X

πV
i (X).

When the Vickrey payoff profile πV(X) ≡ {πV
i (X)}i∈X∪{a} is in the core, we say that

the Vickrey auction is core-selecting; when it is in the bidder-core, we say that the Vickrey
auction is bidder-core-selecting.

Discussion

As Proposition 1 shows, equilibrium in the Vickrey auction is ex post. When we intro-
duce the uniform-price auction in Section 5, we show that the same is true of its equilibrium
in the quadratic environment where we consider it. This allows us to avoid assumptions
about the information available to the bidders (other than that they know their own val-
uations) when analyzing the properties of the two auctions. Instead, the only uncertainty
that we need to consider is the auctioneer’s uncertainty about which bidders will partic-
ipate in the auction. In our main results, this uncertainty is implicit: the auctioneer may

the underlying environment, because when the payment rule differs from Vickrey, truthful reporting is not
always a dominant strategy.

19The Vickrey auction can equivalently be implemented dynamically (as in, e.g., the Combinatorial Clock
Auction (Ausubel et al., 2006)) or by directly soliciting bidders’ payoff functions ui, allocating q̄ efficiently
given their reports, and charging a payment of ui(qe

i (X, q̄))− v(X, q̄) + v(X \ {i}, q̄).
20See the Appendix for a formal description of the auction.
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be concerned with whether the Vickrey auction is core-selecting for all possible participants
X ⊆ I, instead of one particular set of participants X. When we compare the revenue per-
formance of the Vickrey and uniform-price auctions in Section 5, we make the auctioneer’s
uncertainty explicit by giving him a prior over the participants X drawn from I.

3 Reallocation and Core Selection

The practical implications of core selection in one-sided environments are well known.
There, it is equivalent to the statement that the auctioneer’s revenue is competitive, in the
sense that no coalition of bidders could profitably collude with the auctioneer;21 it ensures
that shill bidding (that is, using a set of proxies that imitate other potential bidders) is
unprofitable (Yokoo and Matsubara (2004), Day and Milgrom (2008)); and it rules out any
incentive for the auctioneer to restrict entry to the auction, by ensuring that his revenue is
monotone in the number of bidders (Ausubel and Milgrom, 2002).

We now ask whether these practical implications extend to environments with both
buyers and sellers. We show that they do, but the relevant criterion is bidder-core selection.

Reallocation and Blocks by Coalitions Without the Auctioneer

In a one-sided environment, the value of any coalition that does not include the auc-
tioneer is zero, since no reallocation can occur. This makes these coalitions irrelevant for
core selection, since the Vickrey auction guarantees each bidder a nonnegative payoff. In-
stead, core selection is strictly about the incentives of coalitions that include the auctioneer —
and hence the competitiveness of the auction’s revenue.

With reallocation, coalitions that only consist of bidders can achieve positive value by
realizing gains from trade among themselves. However, Proposition 2 shows that they still
never block the Vickrey payoff profile: participation in the reallocative Vickrey auction is
not only individually rational, but coalitionally rational as well.

Proposition 2 (Coalitional Rationality of Participation). Coalitions which do not include the
auctioneer never block the Vickrey payoff profile πV(X).

Vickrey’s (1961) classical “no budget balance” result shows that when q̄ = 0, the Vick-
rey auction subsidizes the participating bidders X. Proposition 2 generalizes this insight
by showing that every coalition is so subsidized for any q̄. Thus, any blocking coalition
must include the auctioneer, and so core selection is still fundamentally a property of the
auctioneer’s revenue.

21Formally, the Vickrey auction’s revenue is competitive if its payoff profile is unblocked by any coalition
that includes the auctioneer and at least one bidder.
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Reallocation and Blocks by the Auctioneer Alone

Vickrey’s result also points at another difference between auctions with and without
reallocation that affects the interpretation of core selection: A reallocative Vickrey auction
can yield negative revenue, allowing the coalition {a}, the auctioneer alone, to block its
payoff profile. While the possibility of negative revenue is an important design consider-
ation, it is separate from those that usually focus attention on core-selecting auctions: For
instance, we might expect revenue to be negative in a procurement auction (where q̄ < 0)
but still be interested in whether the payment made to the bidders is competitive. Thus, a
designer may want to abstract away from the sign of revenue and focus on its competitive-
ness. This means considering bidder-core selection: By Proposition 2, the coalitions relevant
for competitiveness are exactly those that are relevant for the bidder-core.

Corollary 1 (Revenue and (Bidder-)Core Selection). The reallocative Vickrey auction’s rev-
enue is competitive if and only if it is bidder-core selecting. Its revenue is competitive and nonneg-
ative if and only if it is core-selecting.

In fact, besides ensuring that the auctioneer’s revenue is competitive, bidder-core se-
lection suffices to ensure that two of the most well-known implications of core selection in
one-sided environments — shill bidding is unprofitable and revenue is monotone in the set
of participants — carry over to reallocative auctions. (See Proposition 9 in the Appendix.)
We thus focus mainly on bidder-core selection for the remainder of the paper.

4 Core Selection and Preferences

This section contains the main results of the paper. We begin with examples that il-
lustrate how the relationship between bidder preferences and (bidder-)core selection is af-
fected when bidders can both buy and sell.

4.1 Motivating Examples

The literature has established a close connection between core selection — or equiva-
lently, submodularity of the surplus function in bidders — and substitutability between
goods.22

Definition (Demand and Substitutability). The demand function of a bidder i ∈ I is given
by di(p) := arg maxqi ui(qi)− p · qi.23 We say that goods are substitutable for bidder i if, when
the price of one good goes up, bidder i’s demand for each other good does not go down.

22As an intermediate step in establishing our main results, we extend this equivalence to our setting where
reallocation is feasible (Lemma 1) and show that the Vickrey auction’s ability to select outcomes in the bidder-
core is equivalent to a weaker submodularity condition (Lemma 2).

23Since ui is strictly concave, di is a function, not a correspondence.
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Because goods are divisible in our environment, substitutability is a property of the
bidders’ Slutsky matrices Ddi(p). Since the inverse of a bidder’s Slutsky matrix is just the
second derivative matrix D2ui(qi) of their valuation24 — what we call their substitution
pattern — this amounts to a condition on the valuation itself: Goods are substitutes for
bidder i if his substitution pattern has an inverse with nonnegative off-diagonal entries.

In one-sided environments, existing results show that when goods are substitutes, the
Vickrey auction is core-selecting (e.g., Ausubel and Milgrom (2002); Milgrom and Strulovici
(2009)). The next three examples show that in reallocative environments, substitutability
is neither sufficient (Examples 1 and 3) nor necessary (Example 2) for core- or bidder-core-
selection. In each, we consider environments where bidders have quadratic valuations for
goods.25 This allows us to solve for the surplus function and efficient allocation in closed
form (Lemma 3 in the Appendix).

Definition (Quadratic Valuations). We say that bidders have quadratic valuations if for each
bidder i, ui(qi) = θ′iqi − 1

2 q′iSiqi for some positive definite matrix Si ∈ RK×K and marginal
utility parameter θi ∈ RK.

Example 1 shows that when the bidders and/or the auctioneer can buy and sell, the
Vickrey outcome may not lie in the core even when substitutability is trivially satisfied (e.g., in
environments with only one good).

Example 1 (No Core Selection with a Single Good and Positive Revenue). An auctioneer
has q̄ = 1 units of a single divisible good for sale in a Vickrey auction. There are three
participating bidders X = {1, 2, 3}, with valuations

u1(q1) = 4q1 −
1
2

q2
1, u2(q2) = 4q2 −

1
2

q2
2, u3(q3) = 2q3 −

1
2

q2
3.

The Vickrey auction efficiently allocates qe
1({1, 2, 3}, q̄) = qe

2({1, 2, 3}, q̄) = 1 unit of the
good to each of bidders 1 and 2, by causing bidder 3 to sell a unit of the good: qe

3({1, 2, 3}, q̄) =
−1. Or, put differently, it allocates the auctioneer’s quantity to bidder 1, and also reallocates
a unit of the good from bidder 3 to bidder 2. Since the Vickrey payment rule ensures that
the auctioneer pays more for goods than he receives by reselling them, this makes it attrac-
tive for him to cancel the auction and negotiate with bidder 1 instead: the coalition {a, 1}
blocks the Vickrey outcome, and so (bidder-)core selection fails.26

Intuitively, bidder 3’s marginal utility is low enough that even after bidders 1 and 2 have
obtained the auctioneer’s unit of the good, they can realize further surplus by buying from

24Follows from the first-order condition ∇ui(di(p)) = p and the implicit function theorem.
25Models with quadratic payoffs are commonly studied in the divisible good auctions and financial mar-

kets literatures. See, e.g., Ausubel et al. (2014); Malamud and Rostek (2017). Unlike in much of the literature,
however, we allow for heterogeneity in bidders’ substitution patterns {−Si}N

i=1.
26Intuitively, a net buyer is complementary to a net seller in the surplus function v, which can cause core

selection to fail (Lemma 1 in the Appendix). Here, core selection fails because bidder 2 (a net buyer) and
bidder 3 (a net seller) are complementary.
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bidder 3. Facilitating that reallocation requires a subsidy from the auctioneer, decreasing
the revenue he obtains from the auction. If each bidder had instead had the same marginal
utility at zero auction allocation, reallocation would be unnecessary, and (as we show in
Theorem 2) the Vickrey outcome would be in the (bidder-)core.

Example 1 illustrates that reallocative environments present new challenges for core
selection that are independent of complementarity or substitutability among goods. In
particular, bidder-core selection can fail when bidders’ marginal valuations at zero auction
allocation are heterogeneous enough that the auctioneer must subsidize reallocation in or-
der to realize surplus in the auction.27 In contrast, when bidders’ marginal valuations are
the same at their initial allocations, Example 2 shows that allowing them to both buy and sell
need not cause the Vickrey payoff profile to lie outside the core. In fact, as we will show in
Theorem 2, Example 2 illustrates the conditions under which bidder-core selection always
holds in reallocative auctions.

Example 2 (Core Selection with Substitutability and Complementarity). An auctioneer
wishes to sell a bundle q̄ = [1 1]′ of two goods using a Vickrey auction. There are three
participating bidders X = {1, 2, 3}, with valuations

u1(q1) =

[
1
1

]′
q1 −

1
2

q′1

[
1 −1

2
−1

2 1

]
q1; ui(qi) =

[
1
1

]′
qi −

1
2

q′i

[
1
2

1
4

1
4

1
2

]
qi, i ∈ {2, 3}.

Hence, goods are complements for bidder 1, but substitutes for bidders 2 and 3. Never-
theless, as we show in the Supplementary Appendix, the Vickrey auction is bidder-core
selecting (in fact, core-selecting, since the auctioneer’s revenue is positive).

Intuitively, while bidders 2 and 3 view goods as substitutes, and bidder 1 views them
as complements, all three bidders have substitution patterns D2ui(qi) with the same eigen-
vectors, [1 1]′ and [−1 1]′. Hence, they view the packages described by these eigenvectors
as perfect substitutes. Since the pre-auction allocation is efficient, the reallocation problems
observed in Example 1 are avoided, and core selection follows.

This example does not hinge on the presence of only two goods. In the Supplementary
Appendix, we extend it to allow for three goods (Example 2’), and show that bidder-core
selection is possible even when one bidder views all three goods as complements, but the
other bidders view them as substitutes.28

27As we discuss in Section 4.2, this dimension of heterogeneity depends both on the bidders’ underlying
preferences and their pre-auction allocations of the goods being auctioned.

28This helps to illustrate that we allow for complementarity in a different way than Sun and Yang (2006),
who show that their gross substitutes and complements (GSC) condition is sufficient for the existence of compet-
itive equilibria in markets for imperfectly divisible goods: GSC accommodates complementarity in markets
with two goods, but not three — and all agents must view those two goods as complements. In fact, the
package substitutability condition that we introduce in Section 4.2 generalizes GSC, requiring substitutability
under some basis change rather than under the specific class of basis changes that reverse the sign of a subset
of goods.
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As we will show in Theorems 1 and 2, in reallocative auctions, it is not the presence of
complementarities per se, but instead a type of heterogeneity in substitution patterns, that
can challenge (bidder-)core selection. In particular, core selection is possible in Example 2,
even though some bidders view goods as complements, while others view them as substi-
tutes, because substitution patterns D2ui(qi) are symmetric across bidders in the sense that
they commute with one another.29 This allows the setting to be transformed from one where
bidders heterogeneously view goods as complements or substitutes to one where they all
view packages as substitutes. On the other hand, Example 3 shows that with too much het-
erogeneity in bidders’ substitution patterns, a reallocative auction may not be bidder-core
selecting, even when goods (or packages) are substitutable, and the pre-auction allocation
is efficient.

Example 3 (No Core Selection with Substitutes and Efficient Pre-Auction Allocation).
An auctioneer wishes to sell 1 unit of good 1 and 0 units of good 2 using a reallocative
Vickrey auction; that is, he wishes to auction the vector q̄ = [1, 0].30 Three bidders with the
following valuations participate:

u1(q1) =

[
10
10

]′
q1 − 1

2 q′1

[
0.25 0.19
0.19 1.49

]
q1, u2(q2) =

[
10
10

]′
q2 − 1

2 q′2

[
5.8 0
0 5.8

]
q2,

u3(q3) =

[
10
10

]′
q3 − 1

2 q′3

[
3.07 3.47
3.47 4.47

]
q3.

Here, no gains to trade exist among the bidders prior to the auction, i.e., all bidders have
the same marginal utility at zero. Moreover, the quantity of each good auctioned is non-
negative, and goods are substitutes for all bidders. Thus, if efficiency did not require re-
allocation of the goods among the bidders, we know from the literature that the Vickrey
auction would be core-selecting.

However, as we show in the Supplementary Appendix, the Vickrey payoff profile is
blocked by {a, 1}, and thus outside the bidder-core. Because the bidders’ substitution pat-
terns are heterogeneous, the new supply of good 1 creates gains from trade among the
bidders from reallocating good 2, even though (unlike in Example 1) no gains from trade
existed prior to the auction. Since the auctioneer subsidizes this reallocation in a Vickrey
auction, these gains from trade are sufficient for core selection to break down.

These examples demonstrate that in a reallocative environment, substitutability among
goods is neither necessary (Example 2) nor sufficient (Examples 1 and 3) for a core-selecting

29Two matrices A and B commute if AB = BA. Diagonalizable matrices A and B commute if, and only if,
they have the same eigenvectors.

30The logic of this example can be mimicked when the auctioneer wants to both buy and sell; e.g., when
he wishes to exchange 0.5 units of good 1 for 0.9 units of good 2 using a reallocative Vickrey auction; that is,
he wishes to auction the vector q̄ = [0.5,−0.9].
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design. Moreover, heterogeneity in bidders’ substitution patterns D2ui(qi) (as in Example
3) or in their marginal utilities at the pre-auction allocation (Example 1) can independently
challenge core selection, because each can lead to “too much” reallocation among the bid-
ders that must be subsidized by the auctioneer. But conversely, when bidders’ substitution
patterns have the same eigenvectors and the pre-auction allocation is efficient (e.g., when
an efficient auction has been conducted in the past), core selection is possible (Example 2).
Our main results formalize these insights.

4.2 Sufficient Conditions for Core Selection

In one-sided environments, the literature has shown that substitutability among goods
is sufficient — and, in a maximal domain sense, necessary — for core selection to be pos-
sible (Ausubel and Milgrom, 2002). This condition can be decomposed into two separate
statements:

(a) When the price vector for goods changes in one of K linearly independent directions,
the quantity vectors that bidders demand move in directions opposite (or dual to) that
direction.

(b) Those directions represent a change in the price of a single good.

We show that for the purposes of core selection, (a) is the key part of the substitutes
condition. The second part (b) is only important insofar as it ensures that the directions
in question represent changes in the prices of bundles that the auction allocates to each
bidder in non-negative quantities. Condition (b) always performs this function in a one-
sided environment, but it cannot do so in environments where reallocation is possible.

Hence, we dispense with (b) and show that the relevant substitutability condition for
core selection is among packages rather than goods. To formalize this, for any set of linearly
independent vectors Φ = {ϕk}K

k=1, let TΦ =
[
ϕ1 · · · ϕK

]
. T−1

Φ maps quantity vectors to
their representation in terms of the packages Φ. T′

Φ, on the other hand, maps price vectors
to their representation in terms of the prices of the packages Φ.

Definition (Package Substitutability). If Φ ⊂ RK is a set of K linearly independent vectors,
we say that packages Φ are substitutes if whenever the price ϕk · p of a package ϕk ∈ Φ
increases, each bidder i’s quantity demanded [T−1

Φ di(p)]−k of the other packages (weakly)
increases.

Package substitutability ensures that when prices change in certain directions (the row
vectors of T−1

Φ ), the quantities demanded by all bidders move in a direction opposite that
of the price change (linear combinations of the column vectors of TΦ with all but one co-
efficient positive). In other words, package substitutability is just the substitutes property
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under a basis change of the space of goods and a compatible basis change of the space
of prices.31 This basis change can arise naturally from bidders’ valuations: For instance,
in Theorem 2, we provide a condition on bidders’ substitution patterns ensuring substi-
tutability among the packages formed by their eigenvectors.

As Example 1 shows, reallocation can rule out core selection, even when goods are sub-
stitutes. The same is true in the more general case where packages are substitutes. Instead,
Theorem 1 establishes a joint condition on the substitutability and non-negative allocation
of packages that is sufficient for bidder-core selection to be possible in a reallocative auc-
tion.

Theorem 1 (Core Selection: Package Substitutability and Allocations). Suppose that (i)
packages Φ are substitutes and (ii) the efficient allocation always gives each bidder a non-negative
quantity of them: T−1

Φ qe
i (Z, q̄) ≥ 0 for each Z ⊆ I and all i ∈ Z. Then the Vickrey auction is

bidder-core selecting for each set of participating bidders X ⊆ I. If, in addition, for each Z ⊆ I,
T′

Φ∇qv(Z, q̄) ≥ 0, then the Vickrey auction is core selecting for each set of participating bidders
X ⊆ I.

φ1 φ2

q̄

q
e

2

q
e

1 φ1 φ2

q̄

q
e

2

q
e

1

Good 1

Good 2

Good 1

Good 2

Figure 1: Theorem 1’s allocation condition. Both panels illustrate Theorem 1’s allocation condition
with two bidders and two goods. In the left panel, both bidders receive positive allocations of both
ϕ1 and ϕ2, and the condition is satisfied for the packages Φ = {ϕ1, ϕ2}. In the right panel, this is no
longer true.

Theorem 1 provides sufficient conditions for core selection in environments where bid-
ders can both buy goods and sell them. In particular, it shows that bidder-core selection is
possible even when bidders do not receive positive quantities of each good, as long as they
receive positive quantities of each of a set of substitutable packages; i.e., bidders are all net
package buyers.

31In the appendix, Lemma 4 shows that package substitutability can also be formulated as a condition
directly on the bidders’ valuations — and in particular, their substitution patterns. In fact, Theorem 1 only
requires this condition only needs to hold locally on the polyhedron 0 ≤ T−1

Φ qi ≤ T−1
Φ q̄, where the auction

allocation is guaranteed by assumption to lie (Lemma 5).
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Relative to results in the literature on core selection in one-sided environments, Theo-
rem 1 generalizes substitutability to packages and includes a new condition on allocations.
This additional condition is necessary because it ensures that the reallocative auction for goods
functions like a non-reallocative (i.e., one-sided) auction for packages; i.e., we can restrict atten-
tion to the positive orthant in package space. This clarifies the role that one-sidedness plays
in core selection results in the literature.32 In particular, when the packages are goods,
Theorem 1’s allocation condition is always satisfied in a one-sided environment — by def-
inition, a one-sided auction must allocate goods to the bidders in non-negative quantities
— and so substitutability among goods is sufficient for (bidder-)core selection.33 However,
when it is efficient for some bidders to sell some goods, goods substitutability generally
will not ensure that the Vickrey payoff profile is in the bidder-core. Nevertheless, if ef-
ficient reallocation always gives each bidder a positive quantity of certain packages, then
package substitutability ensures bidder-core selection.

Our second main result, Theorem 2, gives conditions that guarantee this. As foreshad-
owed by our motivating examples, these conditions must limit heterogeneity among the
bidders, both in their substitution patterns (the problem in Example 3) and in their pre-
auction marginal utilities (the problem in Example 1).

Theorem 2 (Core Selection: Package Substitutability and Heterogeneity). Suppose that

(a) Bidders’ pre-auction allocations are efficient: ∇ui(0) = ∇uj(0) for all i, j ∈ I, and

(b) Bidders’ substitution patterns {D2ui(qi)}i∈I,qi∈RK are commuting matrices.

Then the bidders’ substitution patterns have a common orthonormal eigenbasis Φ such that

i. The packages Φ are substitutes; and

ii. The efficient allocation always gives each bidder a positive quantity of each package in Φ, i.e.,
T−1

Φ qe
i (Z, q̄) ≥ 0 for each Z ⊆ I and all i ∈ Z.

Hence, the Vickrey auction is core-selecting for each set of participating bidders X ⊆ I.

Intuitively, commutativity (b) (or equivalently, simultaneous diagonalizability) is a ho-
mogeneity property of substitution patterns. It ensures that there is some set of implicit

32Even though transforming a reallocative auction for goods into an auction for packages unifies Theorem
1’s sufficient conditions with those for one-sided auctions, we cannot establish Theorem 1 simply by applying
standard results on one-sided auctions (e.g., Theorem 31 in Milgrom and Strulovici (2009)) under a change
of basis. Instead, as we discuss in the appendix before Lemma 4 and after the proof of Theorem 1, new
arguments are needed because of the interaction between the change of basis and the reallocative nature of
the auction.

33Theorem 1’s derivative condition, on the other hand, ensures that adding packages to the quantity vector
q̄ increases the surplus available to any potential group of participating bidders. As we show, this ensures
that the auctioneer will receive non-negative payments for packages from all bidders, just as in a one-sided
auction.
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packages — the common eigenbasis Φ — that the bidders view as substitutes (i) (in fact,
in which their valuations are separable). When we orient these implicit packages so that
the quantity of each for sale in the auction is non-negative — i.e., so that T−1

Φ q̄ ≥ 0 — the
homogeneity of bidders’ marginal utilities at zero (a) makes it efficient to allocate a positive
quantity of each package to each bidder, no matter which bidders participate in the auction
(ii). As we show in Section 6, these implicit packages can also be useful in implementation.

We emphasize that heterogeneity among bidders does not necessarily mean that the
Vickrey outcome lies outside the bidder-core.34 In particular, a continuity argument demon-
strates that when this heterogeneity is limited, Theorem 1’s allocation and package substi-
tutability conditions — and thus bidder-core selection — continue to hold: that is, “near
commutativity” and “near pre-auction efficiency” imply bidder-core selection.

Revisiting our motivating examples from Section 4.1 clarifies the scope of Theorems 1
and 2. (Figure 2 illustrates.) In Example 1, core selection fails with a single good: Bidders’
marginal utilities differ at zero, so Theorem 2 does not apply. And since the only possible
packages are (multiples of) ±1, Theorem 1’s allocation condition would require all bidders
to be net buyers or net sellers, which is not efficient. In Example 2, on the other hand, The-
orem 2 ensures that the auction is core-selecting: While some bidders view the goods as
substitutes and others view them as complements, the commutativity of their substitution
patterns and efficiency of the pre-auction allocation jointly guarantee the existence of a set
of substitutable packages (here, [1 1]′ and [−1 1]′) that are allocated in non-negative quan-
tities. Finally, in Example 3, core selection fails with substitutable goods and an efficient
pre-auction allocation: The bidders’ substitution patterns do not commute, so Theorem 2
is not applicable. In fact, they are different enough that even though the auctioneer has a
positive quantity of each good, efficiency still requires him to reallocate them among the
bidders, violating Theorem 1’s allocation condition.

Discussion

We pause to discuss practical interpretations of the sufficient conditions in Theorems 1
and 2.

Generalizing substitutes from goods to packages by changing how we think of ‘more’ is
natural in many applications. For instance, suppose that the goods are licenses for wireless
spectrum in Los Angeles and Chicago. A unit of package ϕ1 = [1 1]′ is thus equivalent to a
license for the a unit of wireless spectrum in both cities, while a unit of package ϕ2 = [1 −
1]′ is equivalent to a contract to swap a unit of wireless spectrum in Chicago for the same
amount in Los Angeles.35 The bidders may differ in whether they consider spectrum in

34In fact, the condition that Proposition 5 shows is necessary in a maximal domain sense is strictly weaker
than Theorem 2’s commutativity condition.

35Alternatively, if the goods sold in the auction were contracts for electricity generation in the two markets,
ϕ1 would represent a contract to deliver the same amount of electricity to both cities, while ϕ2 could represent
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Figure 2: Allocations and core-selection conditions in examples. These three panels illustrate
Theorem 1 in Examples 1-3. First panel, Example 1: There are no packages that are efficiently
allocated in positive quantities to all three bidders. Second panel, Example 2: Each bidder’s efficient
allocation lies in the cone generated by the packages ϕ1 = [1 1]′ and ϕ2 = [−1 1]′ that form an
eigenbasis for the bidders’ substitution patterns D2ui(qi). Third panel, Example 3: When only
bidders 2 and 3 participate, bidder 3’s efficient allocation qe

3({2, 3}, q̄) is outside the positive orthant
of R2 where Theorem 1’s allocation condition holds with substitutable goods.

the two markets to be complements (e.g., if they want to expand their coverage nationally)
or substitutes (e.g., if they want to focus on achieving a high level of coverage in as many
markets as they can). Nevertheless, core selection can still obtain, as it does in Example 2,
if all bidders view contracts to swap spectrum between the two markets and contracts to
acquire more spectrum as substitutes.

This taxonomy of switching packages and buying packages applies more generally than the
spectrum context. If Φ ⊂ RK is a set of packages, then each of its elements can be classified
as a switching package (if it has both positive and negative entries), a buying package (if
its entries are all nonnegative), or a selling package (if its entries are all nonpositive). For
instance, in Example 2, ϕ1 is a buying package, and ϕ2 is a switching package.

When there are packages that are seen as substitutes by all bidders, the success or failure
of Theorem 1’s allocation condition depends on the auctioneer’s quantity vector, not just
the bidders’ valuations. In Section D of the Supplementary Appendix, we show that for
any set of packages, there is a set of directions (which may be empty) such that if q̄ is large
enough in one of those directions, each bidder receives a non-negative allocation of each
package. Thus, a quantity vector that is sufficiently large in that direction can mitigate the
impact of heterogeneity among bidders on the possibility of bidder-core selection.

Theorem 2’s sufficient conditions, on the other hand, are independent of the auctioneer’s
quantity vector. Instead, they depend on the bidders’ pre-auction allocation, which must
be efficient — or, as we point out above, at least approximately so. In practice, this is
likely to depend on the level of the transaction costs among the bidders that motivate an
efficiency goal for the auctioneer. If transaction costs are not prohibitively high, bidders
can largely correct an inefficient allocation by trading among themselves, but doing so

a contract to transmit electricity from Chicago to Los Angeles.
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can still be costly. Hence, the pre-auction allocation is likely to be efficient, but using the
auction to realize the new gains from trade created by the auctioneer’s quantity vector
avoids the transaction cost to the bidders of realizing those gains themselves. On the other
hand, if transaction costs are high enough to deter trade altogether (e.g., if they involve
poorly defined or nontradeable property rights), then the initial allocation may be highly
inefficient, and Theorem 2 is unlikely to apply.36

The kind of heterogeneity ruled out by Theorem 2’s pre-auction efficiency condition (a)
depends on both the bidders’ preferences and their pre-auction allocation. Theorem 2’s
condition on substitution patterns (b), on the other hand, depends on preferences alone. In
essence, it strengthens the package substitutability condition from Theorem 1 to package
separability. (See Lemma 6 in the Appendix.) That is, it captures that there are packages
such that the marginal value of one does not depend on the quantity consumed of the oth-
ers.37 In an auction for fishing rights, this might mean that the value of a right to catch
more fish (in a two-fishery auction, package [1 1]′) is independent of the right to catch those
fish in a different place (package [1 − 1]’). Likewise, if the goods are water abstraction rights,
bidders might care separately about how much water they get, and where that water is de-
livered. And in a market for energy, a company may view how much energy to consume as
a separate decision from whether to consume it in the form of electricity or gas. Settings with
mean-variance preferences, where bidders share a common assessment of the risk associ-
ated with goods or assets, are another example.

4.3 Maximal Domain Results for Core Selection

Theorem 2 shows that in reallocative auctions, the combination of homogeneity in bid-
ders’ substitution patterns and homogeneity in their marginal utility at the pre-auction al-
location is sufficient for bidder-core selection to be possible. On the other hand, Examples 1
and 3 demonstrate that with heterogeneity in either bidders’ substitution patterns or their
pre-auction marginal utilities, the Vickrey auction need not be bidder-core-selecting. Our
next results establish that both types of homogeneity are necessary for bidder-core selection
in a maximal domain sense.

First, Proposition 3 demonstrates that in fact, for any profile of bidders’ valuations over
goods, there exist pre-auction allocations such that the Vickrey outcome is not in the core
for some profile of participants.

36Teytelboym (2019) provides a concrete example of this dichotomy in the context of water abstraction
rights, noting that in the U.S., legal restrictions make transaction costs prohibitively high, whereas in Aus-
tralia, they are low enough for trade to occur.

37This makes Theorem 2’s condition on substitution patterns similar to the bundle-consistency condition
of Jagadeesan and Teytelboym (2024), but with a different quantifier: Rather than common substitutability
or complementarity between each pair of bundles for all bundlings of the underlying goods, commutativity
is equivalent to independence among the bundles in some bundling. Consequently, it is neither more nor less
difficult to check.
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Proposition 3 (No Core Selection: Pre-Auction Allocations and Heterogeneity in Pre-Auc-
tion Marginal Utility). There is a pre-auction allocation {ti}i∈I such that if each bidder i is en-
dowed with the valuation ũi(qi) = ui(qi + ti), the Vickrey auction is not bidder-core-selecting for
some set of participants X ⊆ I.

Similarly, Proposition 4 shows that if the pre-auction allocation is not efficient, there
is a quantity vector q̄ for the auctioneer such that the Vickrey auction is not bidder-core-
selecting.

Proposition 4 (No Core Selection: Quantity Auctioned and Heterogeneity in Pre-Auction
Marginal Utility). If ∇uℓ(0) ̸= ∇uj(0) for some j, ℓ ∈ I, there is a quantity vector q̄ such that
the Vickrey auction is not bidder-core-selecting for some set of participants X ⊆ I.

Together, Propositions 3 and 4 make precise the sense in which an efficient pre-auction
allocation is necessary for bidder-core selection: The necessary condition is placed jointly
on the bidders’ pre-auction quantities and the quantity supplied by the auctioneer, and is
thus weaker than a condition on the former alone. Whenever the pre-auction allocation is
inefficient, there is a quantity vector for the auctioneer for which bidder-core selection fails
(Proposition 4); conversely, for any quantity vector for the auctioneer, there is an inefficient
pre-auction allocation that makes bidder-core selection fail (Proposition 3).38

However, as Example 3 shows, an efficient pre-auction allocation is not sufficient for
core selection. Instead, Theorem 2 also requires bidders’ substitution patterns to be homo-
geneous, in the sense that their eigenvectors are the same. Proposition 5 clarifies the sense
in which the latter homogeneity condition is necessary, at least in the case of quadratic
valuations: Suppose that substitution patterns −Si are heterogeneous enough that even

though S−1
ℓ , the harmonic mean

(
∑i∈Z\{ℓ} S−1

i + ∑i∈Z\{j} S−1
i

)−1
, and S−1

j are all positive
definite, their product has a negative eigenvalue. Then there is some quantity vector q̄ for
the auctioneer such that core selection is impossible, even when each bidder has the same
marginal utility at the pre-auction allocation.39

Proposition 5 (No Core Selection: Heterogeneity in Substitution Patterns). Suppose that
bidders have quadratic valuations with substitution patterns {−Si}i∈I and the same marginal util-

ity parameter θi = θ. If the matrix S−1
ℓ

(
∑i∈Z\{ℓ} S−1

i + ∑i∈Z\{j} S−1
i

)−1
S−1

j has a negative
eigenvalue for some coalition Z ⊆ I and agents ℓ, j ∈ Z, then there is a quantity vector q̄ such that
the Vickrey auction is not bidder-core-selecting for some set of participants X ⊆ I.

38We emphasize that the challenges that bidder heterogeneity presents for core selection in reallocative
auctions are not due to the divisibility of goods in the setting we study. In particular, in the Supplementary
Appendix, we contribute a converse similar to Proposition 3 (Proposition F.1) that applies in environments
with indivisible goods and multi-unit demands (i.e., where allocations are constrained to some subset of ZK).

39Equivalently, we can fix q̄ and find a rotation of the substitution patterns — that is, right-multiply each Si
by some orthonormal A and left-multiply it by A′ — for which bidder-core selection fails.
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4.4 Discussion

As has been frequently noted (e.g., Milgrom (2007, 2019); Milgrom and Segal (2020)),
the Vickrey auction has drawbacks. It is prone to collusion; it can be computationally de-
manding to implement (Day and Raghavan, 2007); and perhaps most importantly, revenue
may be uncompetitively low. However, (bidder-)core selection rules out the last of these;
consequently, auction designs that coincide with the Vickrey auction in such environments
(e.g., Vickrey-nearest core pricing (Day and Raghavan, 2007; Day and Cramton, 2012)) are
widely used.

Our main results show that in reallocative auctions, the conditions under which these
revenue drawbacks are severe differ from those in one-sided auctions:40 Substitutability
among goods is no longer necessary or sufficient for (bidder-)core selection (Examples 1-3).
Instead, a design’s revenue competitiveness depends crucially on the degree of heterogene-
ity among the bidders, both in their substitution patterns and pre-auction marginal utilities
(Theorem 2, Propositions 3 and 5), rather than the presence of complementarities.

One takeaway from our analysis is that in practice, the possibility of (bidder-)core selec-
tion in reallocative environments depends on the intended design objective: A reallocative
Vickrey auction has poor revenue performance (i.e., isn’t bidder-core selecting) when bid-
ders have very different marginal utilities at their pre-auction allocations, and the auction
is meant to rectify the inefficiency in these allocations. But when it is meant to allow bid-
ders to realize gains from trade that appear when the auctioneer offers a new quantity of goods for
sale, a reallocative Vickrey auction can have good revenue performance (both in the sense
of bidder-core selection, and relative to other designs — see Section 5) whenever bidders
substitute between goods in similar ways. In particular, the underlying K goods need not
be substitutable — only a set of K bundles, or packages.41

5 Revenue in the Vickrey and Uniform-Price Auctions

In practice, concerns about the Vickrey auction’s revenue often lead designers to em-
ploy alternative auction mechanisms. (See, e.g., Milgrom (2007, 2019) for a discussion).
These concerns are especially prominent in the environments we consider: When efficiency
requires reallocating goods among the bidders, the Vickrey auction subsidizes that reallo-
cation (Proposition 2). This motivates the consideration of uniform-price designs, such as
the one used in the clock phases of the FCC Incentive Auction: Unlike the Vickrey auction,
a uniform-price auction never subsidizes reallocation.

40Moreover, our results describe the environments where Vickrey-nearest core pricing coincides with Vick-
rey, and thus inherits its strategyproofness.

41It is not relevant to revenue whether the auctioneer lists goods or packages for sale, but doing the latter
can help to reduce the computational burden on the bidders — see Section 6.1.
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In this section, we compare the revenue performance of the Vickrey and uniform-price
auctions, and show that the same feature of the environment that makes the Vickrey auc-
tion select outcomes in the bidder-core — namely, limited heterogeneity among the bid-
ders — also leads it to outperform the uniform-price auction on revenue (Theorem 3). For
simplicity, we work in an environment where bidders have quadratic valuations with a
common substitution pattern −S.42

Definition (Uniform-Price Auction). The uniform-price auction (UPA) is conducted the same
way as the Vickrey auction, except that the payment rule requires bidders to pay the
market-clearing price for each unit of the good they are awarded: tU

i (b) = p∗(b) · q∗i (b).

Unlike in the Vickrey auction, bidders do not have weakly dominant strategies in the
uniform-price auction. However, we can still remain agnostic about the bidders’ infor-
mation when computing the auction’s equilibrium: The UPA has a unique linear ex post
equilibrium such that each bidder’s bid is optimal, regardless of the identities of the other
bidders.43 Proposition 6 offers the standard characterization of this equilibrium.

Proposition 6 (Equilibrium in the Uniform-Price Auction). Suppose that bidders have quadratic
valuations with a common substitution pattern −S, and that |X| > 2.

i. The profile of bids bU = {bU
i }i∈I , where bU

i (qi) ≡ θi − |X|−1
|X|−2 Sqi, is an ex post equilibrium of

the uniform-price auction.

ii. In the ex post equilibrium bU, unless all participating bidders have identical valuations, the
UPA implements an inefficient allocation: {q∗i ({bU

j }j∈X)}i∈X ̸= {qe
i (X, q̄)}i∈X.

iii. In the ex post equilibrium bU, the UPA produces revenue πU
a (X) ≡ 1

|X|

((
∑i∈X θ′i q̄

)
− |X|−1

|X|−2 q̄′Sq̄
)

.

In a uniform-price auction, bidders shade their bids by submitting a bid function bU
i that

is steeper than their marginal utility schedule ∇ui(qi) = θi − Sqi.44 As a consequence,
unlike the Vickrey auction, the uniform-price auction does not allocate goods efficiently
among the bidders. Its revenue properties, on the other hand, may be more favorable than

42While we do not provide results for nonquadratic utilities, we anticipate that the results we establish —
and in particular, the role of heterogeneity they highlight — will continue to hold qualitatively. Nonquadratic
utilities will change the conditions quantitatively by introducing effects due to the third derivative of the
utility function.

43Formally, we say that a profile of bids {bi}i∈I for all agents is an ex post equilibrium of the uniform-price
auction if for each set of participating bidders X′ ⊆ I with |X′| = |X|, {bi}i∈X′ is a Nash equilibrium of a
uniform-price auction with participants X′.

44This is because bidders in a uniform-price auction have price impact: In either a Vickrey or uniform-price
auction, the only way for a bidder to increase the quantity of each good sold to her in the auction is by placing
a higher bid that causes market-clearing prices to rise. With a Vickrey payment rule, this price increase only
affects the bidder’s payment for the marginal units of the goods that she obtains by submitting a higher bid.
But in a uniform-price auction, the price increase also affects the bidder’s payment for the inframarginal units
of the goods — the bundle that she would have received if she had placed a lower bid instead.
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those of the Vickrey auction: Corollary 2 shows that revenue in the UPA can never fall
below zero, as long as each bidder’s marginal utility for goods is high enough that the
auctioneer could sell his entire quantity vector q̄ to her for a positive price. In contrast,
revenue in a reallocative Vickrey auction can be negative — and when q̄ = 0, it will never
be positive (Vickrey, 1961).

Corollary 2 (Nonnegative Revenue in the Uniform-Price Auction). Suppose that bidders
have quadratic valuations with a common substitution pattern −S, and that |X| > 2. If the quan-
tity auctioned q̄ and the bidders’ marginal utilities at q̄, {θi − Sq̄}i∈I , are each non-negative, then
the auctioneer’s revenue πU

a (X) from a uniform-price auction is non-negative.

However, the UPA’s revenue performance is not always better than that of the Vickrey
auction. Even though the auctioneer may receive a larger share of the surplus realized in a
uniform-price auction than the share he would receive in a Vickrey auction, the amount of
surplus realized in a uniform-price auction is smaller, since it does not produce an efficient
allocation. The revenue ranking of the two auctions thus depends on which of the two
effects dominates.

For clarity, we compare the revenue produced by the Vickrey and uniform-price auc-
tions from an ex ante perspective, before the auctioneer knows the identities of the partic-
ipating bidders. This requires informational assumptions that we have thus far avoided.
In particular, we assume that the auctioneer knows the number of participants, and that the
bidders’ marginal utility parameters are i.i.d.

Definition (I.I.D. Quadratic Valuations). We say bidders have i.i.d. quadratic valuations if

(a) The set of potential bidders is I = ⨿N
i=1 Θ for some set Θ ⊂ RK and N > 2;45

(b) Bidders have quadratic valuations with a common substitution pattern −S: For each
bidder θ ∈ I, uθ(q) = θ′q − 1

2 q′Sq; and

(c) The auctioneer has a prior µ over sets of participants X that assigns positive probability
only to sets of participants {θi}N

i=1 with cardinality N, and does so such that each θi is
i.i.d. with distribution F.46

When bidders have quadratic valuations that are perfectly correlated, rather than i.i.d.,
Ausubel et al. (2014) show that with a single good, the Vickrey auction produces more
revenue than the uniform-price auction. Theorem 3 shows that when we allow for hetero-
geneity by assuming i.i.d. quadratic valuations instead, this revenue ranking can reverse.
In particular, the UPA outperforms the Vickrey auction when expected heterogeneity in
bidders’ marginal utility schedules is large, and so (by Propositions 3 and 4) bidder-core

45That is, I is the coproduct, or disjoint union, of N copies of Θ.
46Formally, µ is a product distribution on ∏N

i=1 Θ with identical marginals F.
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selection is likely to fail. Conversely, the Vickrey auction outperforms the UPA when ex-
pected heterogeneity in bidders’ marginal utility parameters is small, and so it is likely to
be core selecting (Theorem 2).47

Theorem 3 (Expected Revenue in the Uniform-Price and Vickrey Auctions). Suppose that
bidders have i.i.d. quadratic valuations, let Φ = {ϕk}K

k=1 be the orthonormal eigenbasis of the
common substitution pattern −S, and let {λk}k∈K be the corresponding eigenvalues of S.

i. In the Vickrey auction, expected revenue is Eµ[πV
a (X)] = q̄′EF(θ)− 1

2 ∑K
k=1

1
λk

VarF(ϕk · θ)−
2N−1

2N(N−1) q̄′Sq̄.

ii. In the uniform-price auction, expected revenue is Eµ[πU
a (X)] = q̄′EF(θ)− N−1

N(N−2) q̄′Sq̄.

iii. Expected revenue is higher in the Vickrey auction than in the uniform-price auction if and only
if

K

∑
k=1

1
λk

VarF(ϕk · θ) <
1

(N − 1)(N − 2)
q̄′Sq̄.

Theorem 3 (i) shows that in expectation, Vickrey revenue is increasing in the number of
participating bidders N and in their expected marginal utility in the direction of the quan-
tity auctioned q̄, but decreasing in expected heterogeneity in bidders’ marginal utility for
the packages Φ. Intuitively, since the bidders have identical substitution patterns, we can
think of the Vickrey auction as having two stages: first, the auctioneer efficiently reallocates
goods among the bidders; second, the auctioneer sells his quantity vector to the bidders,
who now have identical marginal utility schedules. In the first stage, the auctioneer loses
revenue by subsidizing reallocation among the bidders; the more heterogeneous the bid-
ders are, the larger the revenue loss. In the second stage, the auctioneer makes money by
selling his quantity vector; the higher the bidders’ marginal utility in the direction of the
quantity vector, and the more of them there are, the more money he makes.48

47In a working paper version of Ausubel et al. (2014), the authors compare Vickrey and UPA revenue in the
independent private values case with one good. By providing a comparison for multiple-good environments,
Theorem 3 highlights the role of heterogeneity in bidder valuations, thus providing an intuitive link between
the environments where UPA is outperformed by the Vickrey auction and those in which core selection is
likely to hold.

48Theorem 3 (i) also highlights another important difference between core selection in environments where
reallocation is feasible and those where it is not. In one-sided Vickrey auctions, the auctioneer captures all
surplus as the number of participants becomes large, and so such large auctions are approximately core
selecting. In contrast, the auctioneer does not capture all surplus from a reallocative Vickrey auction as it
becomes large, even in expectation: limN→∞ Eµ[πV

a (X)] = q̄′EF(θ) − 1
2 ∑K

k=1
1

λk
VarF(ϕk · θ) < q̄′EF(θ) =

limN→∞ Eµ[v(X, q̄)]. Intuitively, when reallocation is feasible, efficiency generically requires goods to be
reallocated between bidders, even as the number of those bidders becomes large. Since a Vickrey auction
must subsidize that reallocation, the fraction of total surplus obtained by the auctioneer is bounded away
from 1.
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In the uniform-price auction, on the other hand, no such subsidization is necessary.
Thus, Theorem 3 (ii) shows that the auctioneer’s expected revenue only depends on the
bidders’ expected marginal utility parameter, the number of participating bidders, and
the quantity auctioned. Together, parts (i) and (ii) of Theorem 3 show that (iii) the uniform-
price auction outperforms the Vickrey auction when expected heterogeneity is large enough,
and this threshold is decreasing in the number of participating bidders and the quantity
auctioned.

6 Implementation

The auctions that we consider present bidders with a complex task. Each allows package
bidding: bidders are asked to submit bids for combinations of goods, rather than amounts of
each good. And because these auctions are reallocative, bidders must consider both the
prices they are willing to pay to buy bundles of goods and the prices they are willing to
take to sell them — and moreover, the prices at which they are willing to buy some goods
and sell others.

In this section, we consider the extent to which both types of complexity can be amelio-
rated with an alternative implementation of the Vickrey or uniform-price auctions. First, in
Section 6.1, we observe that when bidders’ substitution patterns are homogeneous (in the
sense of Theorem 2), a Vickrey or uniform-price auction where bidders bid on all bundles
is equivalent to K independent auctions where they bid on specific packages individually.
This allows a designer to bypass the complexity problem that bidders face in an auction
where they can bid on each possible bundle, without leading to the well-known exposure
problems present in auctions where goods are sold independently.49

Then, in Section 6.2, we consider the effects of splitting a reallocative auction into in-
dependent forward (selling) and reverse (buying) components linked by a clearing rule, as
in the FCC Incentive Auction. We show that, while splitting an auction does not change
the revenue or allocation that it produces when (as in the FCC Incentive Auction) pricing
is uniform, it can change both in a Vickrey auction (Proposition 8): In particular, truthful
bidding is no longer a dominant strategy in the split Vickrey auction, and so the allocation
it produces need not be efficient. Instead, the VCG principle requires the payment rules in
the forward and reverse auctions, not just their market-clearing prices and quantities, to
each depend on the bids submitted in the other auction, as in Andreyanov et al. (2023).

49For a more detailed description of the exposure problem, see, e.g., De Vries and Vohra (2003) or Milgrom
(2007). For empirical evidence on its impact in FCC spectrum auctions, see Xiao and Yuan (2022).
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6.1 Independent Package Auctions

When an auction solicits bids for all possible bundles, it places a computational bur-
den on both the bidders (who must compute their valuations for each bundle) and on the
auctioneer (who faces a difficult problem when mapping bids for many different bundles
to an allocation).50 This burden can be alleviated substantially by using a dynamically
implemented auction (as in, e.g., Ausubel and Milgrom (2002)) or by constructing prede-
fined packages and requiring bidders to place independent bids on them. Both approaches
are common in practice (e.g., Milgrom (2019)); for instance, the U.S. FCC employs both
concurrently in many of its auctions for wireless spectrum (Xiao and Yuan, 2022).

But unlike implementing an auction dynamically, restricting bidders to independent
bids on specific packages can affect the outcome of the auction and the revenue it produces.
This is because it introduces an exposure problem: The amount a bidder is willing to pay for
a package may depend on the quantities of other packages it obtains in the auction, but its
bids for that package cannot be contingent on those quantities. Consequently, the design
of these packages is important for both the revenue an auction yields and the surplus it
creates: For instance, Xiao and Yuan (2022) use bids from FCC Auction 73 to show that
different package designs could change the revenue and surplus generated by the auction
by billions of dollars.

Proposition 7 shows how to design these packages when heterogeneity among bidders’
substitution patterns is limited. In particular, it shows that when bidders’ substitution
patterns commute with one another, the exposure problem can be eliminated by choosing
packages that coincide with the substitution patterns’ common eigenvectors. Intuitively,
designing the packages in this way leverages the homogeneity of bidders’ substitution
patterns to reduce the auction’s complexity without affecting bidders’ incentives.

Proposition 7 (Equivalent Implementation with Eigenvector Packages). Suppose that bid-
ders’ substitution patterns {D2ui(qi)}i∈I,qi∈RK are commuting matrices. Then they have a com-
mon orthonormal eigenbasis Φ, and conducting independent Vickrey auctions for each package in
Φ yields the same allocation and payoff profile as a single Vickrey auction in which goods are sold
jointly. Moreover, if bidders have quadratic valuations with identical substitution patterns, and
there are at least three participating bidders, then conducting independent uniform-price auctions
for each package in Φ yields the same allocation and payoff profile as a single uniform-price auction
in which goods are sold jointly.

For intuition, recall from the discussion following Theorem 2 that when bidders’ sub-
stitution patterns commute, their valuations are additively separable in those substitution
patterns’ common eigenbasis Φ. As a consequence, their equilibrium bids in either the

50See Parkes and Ungar (2000) and De Vries and Vohra (2003) for a discussion of the computational problem
facing the bidders and the auctioneer, respectively.
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Vickrey or uniform-price auction are also separable in Φ. It follows that the equilibrium of
either auction can be decentralized among K separate auctions for the packages in Φ.

We emphasize that when the eigenbases of bidders’ substitution patterns are very dif-
ferent, they cannot be used to design packages that eliminate (or nearly eliminate) the
exposure problem for all bidders simultaneously. But if the data suggests that the bidders’
substitution patterns have approximately the same eigenvectors, Proposition 7 indicates
how packages could be defined in practice. Moreover, as noted in Section 4.2, each of these
packages can be described to bidders very simply as a switching package (a package that
swaps some goods for others — what Ferguson and Milgrom (2024) call a “swap bid”) or
a buying package (a more traditional package that contains non-negative amounts of each
good). Employing both buying and switching packages allows the auction to be decentral-
ized into independent auctions for packages, even when bidders do not regard any buying
packages as independent.51

6.2 Split Auctions

Throughout, we have focused on reallocative auctions that allow bidders to both buy
and sell goods. These auctions facilitate the realization of gains from trade among the
bidders, rather than just between the bidders and the auctioneer. This is a central objec-
tive of many auctions, including the FCC Incentive Auction. But when some agents are
known to be buyers, and others are known to be sellers, we could also seek to achieve a
designer’s reallocation objectives by using a pair of independent non-reallocative auctions
whose market-clearing prices and quantities are linked, as the FCC Incentive Auction did.
We call such a design choice a split auction.

Definition. A split auction consists of three parts:

• a forward auction mechanism that auctions a quantity q̄+ to participating bidders X+;

• a reverse auction mechanism that auctions a quantity q̄− to participating bidders X− =

X \ X+; and

• a clearing rule specifying that given the profiles of bids bX+ = {bi}i∈X+ and bX− =

{bi}i∈X− submitted in the forward and reverse auctions, the quantities q̄− and q̄+ are
chosen so that (i) they sum to the quantity auctioned (i.e., q̄− + q̄+ = q̄) and (ii) the

51Several related changes to the space of bids have recently been considered in the context of financial mar-
kets, where bidders have multi-unit demands, there is no exogenous quantity auctioned, and the uniform-
price rule is used to clear the market. Rostek and Yoon (2021, 2024, 2025) examine designs that allow two
types of combinatorial demands and focus on their welfare-improving effects relative to clearing the market
for each asset separately (as is standard in practice) or the textbook design that allows bidders to submit
fully contingent bids. Budish et al. (2023) introduce a design with one-dimensional demands allowing for
trader-specific portfolio weights. Our focus in this section is instead on equivalent implementation.

29



market-clearing prices p∗(bX+) and p∗(bX−) in the forward and reverse auctions are
the same.

Because of the clearing rule, if the profiles of bids submitted in the forward and reverse
auctions are bX+ and bX− , the market-clearing prices p∗(bX+) and p∗(bX−) must each be
equal to the market-clearing price p∗(b) that would obtain if the same bids were submitted
in a single reallocative auction. Consequently, the split auction must award bidders the
same bundles that a single reallocative auction would. Since payments in a uniform-price
auction only depend on the market-clearing price and the bundles obtained by the bidders,
it follows that a split UPA and a reallocative UPA are equivalent. Hence, with a uniform-
price design like the one used in the clock phases of the FCC Incentive Auction, splitting the
auction into buyers and sellers reduces the level of complexity facing the bidders without
affecting the revenue or allocation produced by the auction.

Splitting a Vickrey auction in this way would be less innocuous: Truthful bidding
would no longer be a dominant strategy. This should not be surprising: given the same
bids b, payments in a split Vickrey auction are different from those in a single reallocative
Vickrey auction, but the Vickrey payment rule uniquely implements the efficient allocation
(Holmström, 1979).

Proposition 8 (No Truthful Bidding in a Split Vickrey Auction). There exist valuations
{ui}i∈X for the set of participating agents such that for any bidder i ∈ X, submitting the bid
function bV

i (qi) = ∇ui(qi) is not a weakly dominant strategy in a split Vickrey auction.

Observe that in a reallocative auction, a bidder’s residual supply is the price that clears
the market, given the quantity that he receives, but in the forward part of a split auction,
residual supply is the price that clears the market holding the quantity awarded to bidders
in X− constant. Consequently, splitting the auction causes each bidder’s residual supply
curve to pivot around the market-clearing price and quantity. Since the Vickrey payment
is just the area under the residual supply curve, this shift changes the payment rule and
gives bidders incentives to submit bids that differ from their marginal utility schedules.

7 Conclusion

Our results provide a more nuanced view of core selection as well as the usefulness
of the Vickrey auction (and equivalent designs). As we show, it is not the presence of
complementarities per se, but rather heterogeneity in bidder valuations — both in pre-
auction marginal utility, and (independently) in substitution patterns — that can challenge
core selection.

Our results also qualify both the conditions under which the drawbacks of the Vick-
rey auction noted by the literature are or are not severe, thus adding to the discussion of
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the relative merits of the Vickrey auction vs. alternative designs (see, e.g., Milgrom (2019),
Ausubel and Baranov (2023)). In particular, when bidders’ substitution patterns are suffi-
ciently similar, and the gains from trade in the auction come primarily from the new quan-
tity vector offered by the designer, the reallocative Vickrey auction performs well. When
bidder heterogeneity is significant — such as when some are TV broadcasters and others
are providers of wireless broadband — uniform-price rules like those used in the clock
phase of the FCC’s Incentive auction may perform better (Theorem 3).

More generally, our analysis demonstrates that environments where bidders are inter-
ested in both buying and selling (e.g., markets for natural resources; Teytelboym (2019))
offer new opportunities for market design research beyond classical market design.

Data Availability Statement

Code used for the computations in Examples 2, 2’, and 3 is available on Zenodo at
https://doi.org/10.5281/zenodo.15259066. No new data were generated or analysed in
support of this research.
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Appendix

Vickrey Auction: Formal Description. Here, we formally describe the version of the Vickrey auc-
tion that solicits bids in the form of inverse demand schedules. Each participating bidder i ∈ X
submits a bid function (i.e., a (net) inverse demand schedule) bi : RK → M that is continuously dif-
ferentiable, surjective, and downward sloping (in the sense that it has a negative definite Jacobian
derivative matrix), and hence has a continuously differentiable inverse b−1

i with a negative definite
Jacobian. This ensures that for each profile of bids b = {bi}i∈X, there is a unique market-clearing
price p∗(b) ∈ M that solves q̄ = ∑i∈X b−1

i (p). (See Lemma E.2 in the Supplementary Appendix.)
Each bidder i is then awarded the bundle q∗i (b) := b−1

i (p∗(b)) at which his bid is equal to the
market-clearing price. The amount tV

i (b) he pays for this bundle is given by the area under the

(inverse) residual supply curve ri that he faces: tV
i (b) =

∫ q∗i (b)
0 ri(q, b−i) · dq, where ri(qi, b−i) is the

unique value of p such that qi + ∑j∈X\{i} b−1
j (p) = q̄.

Proof of Proposition 1 (Equilibrium in the Vickrey Auction) (i) First, observe that if

q∗i (b
V
i , b−i) ∈ arg max

qi
ui(qi)−

∫ qi

0
ri(q, b−i) · dq, (3)

then given b−i, a bid of bV
i maximizes ui(q∗i (b))− tV

i (b). Further, observe that
∫ qi

0 ri(q, b−i)) · dq is
strictly convex: its Hessian matrix is Dri(qi, b−i), which is positive definite by the implicit function
theorem, since Db−1

j (p) is negative definite for each j ̸= i. It follows that the objective in (3) is strictly
concave, and so is maximized at q∗i (b

V
i , b−i) if and only if ∇ui(q∗i (b

V
i , b−i)) = ri(q∗i (b

V
i , b−i), b−i).

By definition, we have ∇ui(q∗i (b
V
i , b−i)) = bV

i (q
∗
i (b

V
i , b−i)) = p∗(bV

i , b−i) = ri(q∗i (b
V
i , b−i), b−i). It

follows that bV
i is weakly dominant.

(ii) Setting Z = X and q = q̄, the Kuhn-Tucker conditions for a maximum in (2) are

∑
i∈X

qi = q̄, ∇ui(qi) = p for each i ∈ X for some p ∈ RK.

By definition, these are satisfied by setting qi = q∗i (b
V) for each i ∈ X and p = p∗(bV); the statement

follows.
(iii) Setting Z = X \ {i} and replacing q̄ with q̄ − qi, the Kuhn-Tucker conditions for a maximum

in (2) are

∑
j∈X\{i}

qj = q̄ − qi, ∇uj(qj) = p for each j ∈ X \ {i} for some p ∈ RK.
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By definition, these are satisfied by setting p = ri(qi, bV
−i) and qj = (bV

j )
−1(p). By the envelope

theorem, then, ∇qi v(X \ {i}, q̄ − qi) = −ri(qi, bV
−i). Then by the fundamental theorem of calculus,

for each i ∈ X,

πV
i (X) = ui(q∗i (b

V)) +
∫ q∗i (b

V)

0
∇qi v(X \ {i}, q̄ − qi) · dqi

= ui(q∗i (b
V)) + v(X \ {i}, q̄ − q∗i (b

V))− v(X \ {i}, q̄)

= ui(qe
i (X, q̄)) + v(X \ {i}, q̄ − qe

i (X, q̄))− v(X \ {i}, q̄) (by (ii))

= v(X, q̄)− v(X \ {i}, q̄).

The expression for πV
a (X) then follows from (ii). □

Proof of Proposition 2 (Coalitional Rationality of Participation) Suppose Z ⊆ X blocks πV
i (X).

Then by Proposition 1 (iii),

|Z|v(X, q̄)− ∑
i∈Z

v(X \ {i}, q̄) < v(Z, 0)

⇔ |Z| max
{qi}i∈X

{
∑
i∈X

ui(qi) s.t. ∑
i∈X

qi = q̄

}
< max

{qi}i∈Z

{
∑
i∈Z

ui(qi) s.t. ∑
i∈Z

qi = 0

}

+ ∑
i∈Z

max
{qj}j∈X\{i}

 ∑
j∈X\{i}

uj(qj) s.t. ∑
j∈X\{i}

qj = q̄

 ,

⇔ max
{qi,j}i∈Z

j∈X

∑
i∈Z
j∈X

ui(qi,j) s.t. ∑
i∈Z
j∈X

qi,j = |Z|q̄

 < max
{qi,i}i∈Z

{
∑
i∈Z

ui(qi,i) s.t. ∑
i∈Z

qi,i = 0

}

+ max
{qi,j} i∈Z

j∈X\{i}

 ∑
i∈Z

j∈X\{i}

uj(qi,j) s.t. ∑
j∈X\{i}

qi,j = q̄ ∀i ∈ Z

 ,

⇔ max
{qi,j}i∈Z

j∈X

∑
i∈Z
j∈X

ui(qi,j) s.t. ∑
i∈Z
j∈X

qi,j = |Z|q̄

 < max
{qi,j}i∈Z

j∈X

∑
i∈Z
j∈X

ui(qi,j) s.t.
∑i∈Z

j∈X
qi,j= |Z|q̄,

∑j∈X\{i} qi,j= q̄∀i ∈ Z

 ,

a contradiction, since the problem on the right hand side of the inequality has |Z| additional con-
straints. □

The intuition for Proposition 2 is as follows. Observe that if Z ⊆ X opts out of the auction,
they can achieve the surplus v(Z, 0); unlike in a one-sided setting, this surplus may be strictly
positive. Hence, by Proposition 1, Z ⊆ X blocks πV(X) if the surplus v(Z, 0) they can create
through reallocation is greater than the sum of their marginal contributions to the surplus created
in the auction:

v(Z, 0) + ∑
i∈Z

v(X \ {i}, q̄) > |Z|v(X, q̄). (4)
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The term on the right-hand side of (4) is equal to the total surplus in an auction where the par-
ticipants are replicated |Z| times, and the quantity auctioned is |Z| times larger. This must be at
least the surplus that could be created in that auction if we were constrained to allocate q̄ to each
of the coalitions {X \ {i}}i∈Z, and nothing to the remaining participants Z — which is precisely the
left-hand side of (4).

Proposition 2 allows us to restrict attention to coalitions that include the auctioneer for the pur-
poses of core selection. Lemma 1 shows that the condition on the surplus function v that ensures
that these coalitions do not block the Vickrey payoff profile is identical to the one given by Ausubel
and Milgrom (2002) in the one-sided case. In particular, the Vickrey payoff profile is in the core pre-
cisely when the surplus function is bidder-submodular, i.e., when v(Z, q̄) is submodular in Z under
the usual set order ⊆.52

Lemma 1 (Core Selection and Bidder-Submodularity). The Vickrey auction is core selecting for each
set of participating bidders X ⊆ I if, and only if, v(Z, q̄) is submodular in Z.

Given Proposition 2, the argument for Lemma 1 is familiar from Ausubel and Milgrom (2002):
if each bidder in a group Z is more valuable to smaller coalitions than larger ones, then the sum of
their individual contributions to the surplus generated by allocating q̄ among the participants X —
their payoffs in the Vickrey auction — must be less than the marginal contribution of the group as a
whole. Consequently, removing Z from the auction decreases the total surplus available by a larger
amount than the share of the surplus that the Vickrey auction allocates to Z — and so the coalition
(X \ Z) ∪ {a} cannot block the Vickrey payoff profile πV(X).

Proof of Lemma 1 (Core Selection and Bidder-Submodularity) (If) Fix a set of participating bid-
ders X and label each bidder in X as an integer i ∈ Z. By Proposition 1, πV(X) is unblocked by
Z ∪ {a} if, and only if,

v(X, q̄)− ∑
i∈X\Z

πV
i (X) ≥ v(Z, q̄)

⇔v(X, q̄)− v(Z, q̄) ≥ ∑
i∈X\Z

(v(X, q̄)− v(X \ {i}, q̄)) (5)

⇔ ∑
i∈X\Z

(
v(Z ∪ {j ∈ X \ Z|j ≤ i}, q̄)−v(Z ∪ {j ∈ X \ Z|j < i}, q̄)

−v(X, q̄)+v(X \ {i}, q̄)

)
≥ 0 (6)

Since each term in (6) is nonnegative when v(Y, q̄) is submodular in Y, the “if” part follows by
Proposition 2.

(Only if) Suppose that v(Y, q̄) is not submodular in Y. Then there exists some finite Y, Z ⊂ I
such that v(Y ∪ Z, q̄) − v(Y, q̄) > v(Z, q̄) − v(Y ∩ Z, q̄). Since 2Y∪Z is a finite product of chains,
submodularity on 2Y∪Z is equivalent to decreasing differences, so it follows that for some X ⊆ Y ∪ Z
and some agents i, j ∈ X,

v(X, q̄)− v(X \ {i}, q̄) > v(X \ {j}, q̄)− v(X \ {i, j}, q̄)

⇔ πV
i (X) + πV

j (X) > v(X, q̄)− v(X \ {i, j}, q̄).

52That is, for all coalitions Z ⊆ I that include bidder j, v(Z, q̄)− v(Z \ {j}, q̄) does not increase when more
bidders are added to Z. Intuitively, bidder-submodularity requires that adding a bidder increases the surplus
produced in the auction by more when the set of participants is smaller.
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It follows that πV(X) is blocked by {a} ∪ X \ {i, j}. □

Lemma 2 shows that bidder-core selection is equivalent to a slightly weaker version of the bidder-
submodularity condition from Lemma 1.

Lemma 2 (Bidder-Core Selection and Bidder-Submodularity). The Vickrey auction is bidder-core-
selecting for each set of participating bidders X ⊆ I if, and only if, for each i ∈ I, v(Z, q̄) is submodular in Z
on the sublattice {Y ∪ {i}|Y is a finite subset of I}.53

For intuition for Lemma 2, observe that Lemma 2’s submodularity condition is equivalent to
saying that v(Z, q̄) + v(Y, q̄) ≥ v(Z ∪ Y, q̄) + v(Z ∩ Y, q̄) for all Y, Z′ such that Y ∩ Z ̸= ∅. Hence,
bidders are more valuable to smaller nonempty coalitions than larger ones, so the sum of the individ-
ual contributions of a strict subset of the participants Z ⊂ X to the grand coalition must be less than
the marginal contribution of Z as a whole. Consequently, the intuition for Lemma 1 still applies, so
long as the coalition being removed from the auction is not the grand coalition X.

Proof of Lemma 2 (Bidder-Core Selection and Bidder-Submodularity) For the “if” part, suppose
that v(Z, q̄) is submodular in Z on the sublattice {Y ∪ {ℓ}|Y is a finite subset of I}. Then if ℓ ∈ Z,
each term in (6) is nonnegative. It follows that if ℓ ∈ Z, Z ∪ {a} does not block πV(X). Thus,
when v(Z, q̄) is submodular in Z on the sublattice {Y ∪ {ℓ}|Y is a finite subset of I} for each ℓ ∈ I,
it follows from Proposition 2 that no Z ̸= {a} blocks πV(X).

For the “only if” part, suppose that v(Z, q̄) is not submodular in Z on the sublattice {Y ∪
{ℓ}|Y is a finite subset of I} for some ℓ ∈ I. Then there exist some finite Y, Z ⊂ I such that ℓ ∈ Y ∩Z
and v(Y ∪ Z, q̄)− v(Y, q̄) > v(Z, q̄)− v(Y ∩ Z, q̄) Since 2Y∪Z is a product of chains, submodularity
on 2Y∪Z is equivalent to decreasing differences, so it follows that for some X ∋ ℓ and some agents
i, j ∈ X with i, j ̸= ℓ,

v(X, q̄)− v(X \ {i}, q̄) > v(X \ {j}, q̄)− v(X \ {i, j})
⇔ πV

i (X) + πV
j (X) > v(X, q̄)− v(X \ {i, j}).

It follows that πV(X) is blocked by {a} ∪ X \ {i, j} ⊃ {a, ℓ}.

Proposition 9 (Implications of Bidder-Core Selection). If the Vickrey auction is bidder-core-selecting
for each finite X ⊆ I, then

i. The auctioneer’s revenue πV
a (X) is increasing in the set of participants X, and

ii. Shill bidding is never profitable for bidders, regardless of the set of participating bidders X ⊆ I: There
is no bidder i ∈ X and finite collection of shills B ⊂ I such that when the set of bidders B ∪ X \ {i}
participate in the auction and bid their dominant strategies bV

j (qj) = ∇uj(qj),

ui

(
∑
j∈B

q∗j (b
V)

)
− ∑

j∈B
tj(bV) > πV

i (X).

53That is, for any finite sets Z, Z′ ⊂ I containing i, v(Z ∪ Z′, q̄) + v(Z ∩ Z′, q̄) ≤ v(Z, q̄) + v(Z′, q̄).
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Proof. First note that since the Vickrey auction is bidder-core-selecting for all X ⊆ I, then by Lemma
2, for each ℓ ∈ I, v(Z, q̄) is submodular in Z on the sublattice {Y ∪ {ℓ}|Y is a finite subset of I}. (i):
By Proposition 1, πV

a (X) = v(X, q̄)− ∑i∈X(v(X, q̄)− v(X \ {i}, q̄)). Suppose that Y ⊆ Z ⊆ I, and
that |Y| ≥ 2, so that Y and Z are valid sets of auction participants. Then (labeling each i ∈ Z with
an integer) we have

πV
a (Z)− πV

a (Y) =
v(Z, q̄)− v(Y, q̄)− ∑i∈Z(v(X, q̄)− v(X \ {i}, q̄))
+∑i∈Y(v(X, q̄)− v(X \ {i}, q̄))

= v(Z, q̄)− v(Y, q̄)− ∑i∈Z\Y(v(X, q̄)− v(X \ {i}, q̄))

≥ v(Z, q̄)− v(Y, q̄)− ∑i∈Z\Y(v(Y ∪ {j ∈ Z|j ≤ i}, q̄)− v(Y ∪ {j ∈ Z|j < i}, q̄))

= 0,

as desired.
(ii): Given a finite B ⊂ I \ (X \ {i}), let bB(q) = ∇qv(B, q). Suppose that, given the set of

participants X, bidder i plays bB and each bidder j ∈ X \ {i} plays bV
j . Then for each j ∈ X \ {i},

∇qv(B, q∗i (bB, bV
−i)) = p∗(bB, bV

−i) = ∇uj(q∗j (bB, bV
−i)). Then since uj is strictly concave for each j ∈ I

— and hence v(B, q) is strictly concave in q — we have

q∗i (bB, b∗−i) = arg max
q

v(B, q) + ∑
j∈X\{i}

uj(qj) s.t. q + ∑
j∈X\{i}

qj = q̄


= arg max

q

max
{qj}j∈B

{
∑
j∈B

uj(qj) s.t. ∑
j∈B

qj = q

}
+ ∑

j∈X\{i}
uj(qj) s.t. q + ∑

j∈X\{i}
qj = q̄


= ∑

j∈B
qe

j (B ∪ (X \ {i}), q̄). (7)

Moreover, since by the envelope theorem, ri(qi, bV
−i) = −∇qi v(X \ {i}, q̄ − qi), we have

tV
i (bB, bV

−i) = −
∫ q∗i (bB,bV

−i)

0
∇qi v(X \ {i}, q̄ − qi)dqi

= v(X \ {i}, q̄)− v
(

X \ {i}, ∑j∈X\{i} qe
j (B ∪ (X \ {i}), q̄)

)
= v(X \ {i}, q̄)− ∑j∈X\{i} uj(qe

j (B ∪ (X \ {i}), q̄)).

Now suppose that the set of bidders B ∪ X \ {i} participate in the auction and bid their dominant
strategies bV

j . Then by Proposition 1, for each j ∈ B,

q∗j ({bV
ℓ }ℓ∈B∪(X\{i})) = qe

j (B ∪ (X \ {i}), q̄),

tV
j ({bV

ℓ }ℓ∈B∪(X\{i})) = uj(qe
j (B ∪ (X \ {i}), q̄))− πV

j (B ∪ (X \ {i}))

= uj(qe
j (B ∪ (X \ {i}), q̄))− v(B ∪ (X \ {i}), q̄) + v((B \ {j}) ∪ (X \ {i}), q̄).

Since |X| ≥ 2, there is some ℓ ∈ X \ {i}. Since v(Z, q̄) is submodular in Z on the sublattice
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{Y ∪ {ℓ}|Y ⊆ I}, it follows that (assigning each j ∈ B an integer label)

tV
i (bB, bV

−i)− ∑
j∈B

tV
j ({bV

ℓ }ℓ∈B∪(X\{i})) =
v(X \ {i}, q̄)− v(B ∪ (X \ {i}), q̄)
+∑j∈B(v(B ∪ (X \ {i}), q̄)− v((B \ {j}) ∪ (X \ {i}), q̄))

≤
v(X \ {i}, q̄)− v(B ∪ (X \ {i}), q̄)

+∑j∈B

(
v({ℓ ∈ B|ℓ ≤ j} ∪ (X \ {i}), q̄)
−v({ℓ ∈ B|ℓ < j} ∪ (X \ {i}), q̄)

)
= 0.

Then by Proposition 1 (i),

πV
i (X) ≥ ui(q∗i (bB, bV

−i))− tV
i (bB, bV

−i)

= ui

(
∑
j∈B

qe
j (B ∪ (X \ {i}), q̄)

)
− tV

i (bB, bV
−i) (by (7))

= ui

(
∑
j∈B

q∗j ({bV
ℓ }ℓ∈B∪(X\{i}))

)
− tV

i (bB, bV
−i)

≥ ui

(
∑
j∈B

q∗j ({bV
ℓ }ℓ∈B∪(X\{i}))

)
− ∑

j∈B
tV

j ({bV
ℓ }ℓ∈B∪(X\{i})),

as desired.

Lemma 3 (Coalitional Value Function: Quadratic Valuations). With quadratic valuations, the surplus
function and efficient allocation are given by

v(Z, q) =
1
2 ∑

i∈Z
θ′i S

−1
i θi −

1
2

(
∑
i∈Z

S−1
i θi − q

)′

H(Z)

(
∑
i∈Z

S−1
i θi − q

)
,

qe
i (Z, q) = S−1

i θi − S−1
i H(Z)

(
∑
j∈Z

S−1
j θj − q

)
,

where H(Z) ≡
(

∑j∈Z S−1
j

)−1
is the harmonic mean of the matrices {Si}i∈Z. In particular, note that when

θi = θ for each i ∈ I, v(Z, q) = θ′q − 1
2 q′H(Z)q.

Proof. The Lagrangian for (1) is

L({qi}i∈Z, µ) = ∑i∈Z
(
θ′i qi − 1

2 q′iSiqi
)
− µ′(∑i∈Z qi − q).

The first-order condition (which is sufficient, by strict concavity of the objective) is θi − Siqi =

µ, ∀i ∈ J. Substituting qi = S−1
i (θi − µ) in the feasibility constraint yields

q =
(

∑i∈Z S−1
i θi

)
−
(

∑i∈Z S−1
i

)
µ ⇔ µ = H(Z)

(
∑i∈Z S−1

i θi − q
)

.

Substituting back into the FOC:

θi − Siqi = H(Z)
(

∑j∈Z S−1
j θj − q

)
⇔ qi = S−1

i θi − S−1
i H(Z)

(
∑j∈Z S−1

j θj − q
)

, ∀i ∈ Z.
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Now substituting our optimal choice of quantity back into the coalitional payoff:

v(Z, q) =

∑i∈Z θ′i S
−1
i θi −

(
∑i∈Z θ′i S

−1
i

)
H(Z)

(
∑i∈Z S−1

i θi − q
)

− 1
2 ∑i∈Z θ′i S

−1
i θi +

(
∑i∈Z θ′i S

−1
i

)
H(Z)

(
∑i∈Z S−1

i θi − q
)

− 1
2

(
∑i∈Z S−1

i θi − q
)′

H(Z)
(

∑i∈Z S−1
i θi − q

)
= 1

2 ∑i∈Z θ′i S
−1
i θi − 1

2

(
∑i∈Z S−1

i θi − q
)′

H(Z)
(

∑i∈Z S−1
i θi − q

)
.

As an intermediate step in establishing Theorem 1, Lemmas 4 and 5 show that under the theo-
rem’s hypotheses, the reallocative auction for goods functions like a one-sided auction for packages
Φ, but one in which bidders’ valuations may be decreasing in the quantity of a package that they
consume, and package prices may be negative. We must thus provide a new proof of the surplus
function’s bidder-submodularity, rather than applying off-the-shelf results to the one-sided package
auction.

Lemma 4 (Package Substitutability as a Condition on Primitives). The packages Φ are substitutes if,
and only if, for each bidder i and each qi, −(T′

ΦD2ui(TΦd̃Φ
i (pΦ))TΦ)

−1 is an M-matrix.54

Proof. Agent i’s first-order condition (which is necessary and sufficient for a maximum, since ui is
strictly concave) is ∇ui(di(p))− p = 0. Then by the implicit function theorem, di is continuously
differentiable, and we have Ddi(p) = (D2ui(di(p)))−1. Then packages Φ are substitutes if and only
if DpΦ T−1

Φ di(T−1
Φ pΦ) has nonnegative off-diagonal entries for each pΦ. By the chain rule,

DpΦ T−1
Φ di(T−1′

Φ pΦ) = T−1
Φ (D2ui(di(T−1′

Φ pΦ)))
−1T−1′

Φ

= (T′
ΦD2ui(di(T−1′

Φ pΦ))TΦ)
−1.

Since ui is strictly concave, −(T′
ΦD2ui(di(T−1′

Φ pΦ))TΦ)
−1 is positive definite; then it has nonpositive

off-diagonal entries if and only if it is an M-matrix.
Now observe that for each qi, di(T−1

Φ pΦ) = qi for pΦ = TΦ∇ui(qi). It follows that DpΦ T−1
Φ di(T−1

Φ pΦ)

has nonnegative off-diagonal entries for each pΦ if and only if −(T′
ΦD2ui(qi)TΦ)

−1 is an M-matrix
for each qi. The claim follows.

Lemma 5 (Constrained Submodularity and Monotonicity in Package Prices). If the packages Φ are
substitutes, then

Π̃Φ
i (pΦ) ≡ max

qi
{ui(qi)− pΦ · T−1

Φ qi s.t. 0 ≤ T−1
Φ qi}

is submodular and nonincreasing.

Proof. First note that Π̃Φ
i (pΦ) = maxx{ui(TΦx) − pΦ · x s.t. 0 ≤ x}. Since ui is strictly concave,

d̃Φ
i (pΦ) ≡ arg maxx{ui(TΦx) − pΦ · x s.t. 0 ≤ x} is single-valued. Then by the envelope theorem

(e.g., Milgrom and Segal (2002)), ∇Π̃Φ
i (pΦ) = −d̃Φ

i (pΦ) ≤ 0. Hence, Π̃Φ
i is nonincreasing.

54Recall that a positive definite matrix is an M-matrix iff its off-diagonal entries are nonpositive.
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By the maximum theorem, d̃Φ
i is continuous. Then for each k ∈ {1, . . . , K}, P̂k = {pΦ : [d̃Φ

i (pΦ)]k >

0} is open. For each L ⊆ {1, . . . , K}, let P̂L =
⋂

k∈L P̂k. Then since ui is strictly concave, for any
pΦ ∈ P̂L, we have

[T′
Φ∇ui(TΦd̃Φ

i (pΦ))− pΦ]k = 0, k ∈ L; [d̃Φ
i (pΦ)]k = 0, k /∈ L.

Then by the implicit function theorem, for each pΦ ∈ P̂L,

Dd̃Φ
i (pΦ) =

[[T′
ΦD2ui(TΦd̃Φ

i (pΦ))TΦ
]

L×L

]−1
0L×(K\L)

0(K\L)×L 0(K\L)×(K\L)


By Lemma 4, −(T′

ΦD2ui(TΦd̃Φ
i (pΦ))TΦ)

−1 is an M-matrix. Then by, e.g., Johnson (1982) Corollary

3, −
[[

T′
ΦD2ui(TΦd̃Φ

i (pΦ))TΦ
]

L×L

]−1
is an M-matrix.

Then for each L ⊆ {1, . . . , K} and each pΦ ∈ P̂L, D2Π̃Φ
i (pΦ) = −Dd̃Φ

i (pΦ) has nonpositive off-
diagonal entries. Since

⋃
L⊆{1,...,K} P̂L = RK, it follows from the fundamental theorem of calculus for

line integrals that Π̃Φ
i has decreasing differences, and so is submodular.

Proof of Theorem 1 (Core Selection: Package Substitutability and Allocations) For each nonempty
Z ⊆ I, since T−1

Φ qe
i (Z, q̄) ≥ 0, we have

v(Z, q̄) = max
{qi}i∈Z

{
∑
i∈Z

ui(qi) s.t. 0 ≤ T−1
Φ qi∀i ∈ Z and ∑

i∈Z
qi = q̄

}
= max

{qi}i∈Z

{
∑i∈Z ui(qi) s.t. 0 ≤ T−1

Φ qi∀i ∈ Z and ∑i∈Z T−1
Φ qi = T−1

Φ q̄
}

(8)

= min
pΦ

max
{qi}i∈Z

{
∑i∈Z ui(qi)− pΦ ·

(
∑i∈Z T−1

Φ qi − T−1
Φ q̄

)
s.t. 0 ≤ T−1

Φ qi∀i ∈ Z
}

(9)

= min
pΦ

{
∑i∈Z maxqi{ui(qi)− pΦ · T−1

Φ qi s.t. 0 ≤ T−1
Φ qi}+ pΦ · T−1

Φ q̄
}

= min
pΦ

{
∑i∈Z Π̃Φ

i (pΦ) + pΦ · T−1
Φ q̄

}
, (10)

where the primal (8) and dual (9) optimization problems are equivalent because the primal problem
is maximization of a concave function over a convex region under a feasible linear constraint, and
hence Slater’s condition ensures that strong duality holds.

From here we follow the proofs of Theorems 2.6.2 and 2.7.6 in Topkis (1998). Suppose that
packages Φ are substitutes. If p′Φ ≥ pΦ, then by Lemma 5, Π̃Φ

i (p′Φ)− Π̃Φ
i (pΦ) ≤ 0 for each i ∈ I,

and hence ∑i∈Z(Π̃Φ
i (p′Φ)− Π̃Φ

i (pΦ)) is decreasing in Z. Then ∑i∈Z Π̃Φ
i (y) has decreasing differences

in (y, Z). Then for all y, y′ ∈ RK and all Y, Z ⊆ I, we have

∑
i∈Y∪Z

Π̃Φ
i (y

′ ∨ y)− ∑
i∈Y

Π̃Φ
i (y) = ∑

i∈Y∪Z
Π̃Φ

i (y
′ ∨ y)− ∑

i∈Y∪Z
Π̃Φ

i (y) + ∑
i∈Y∪Z

Π̃Φ
i (y)− ∑

i∈Y
Π̃Φ

i (y)
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≤ ∑
i∈Z

Π̃Φ
i (y

′ ∨ y)− ∑
i∈Z

Π̃Φ
i (y) (decreasing differences in (y, Z))

+ ∑
i∈Z

Π̃Φ
i (y)− ∑

i∈Y∩Z
Π̃Φ

i (y) ((Y ∪ Z) \ Y = Z \ (Y ∩ Z))

≤ ∑
i∈Z

Π̃Φ
i (y

′)− ∑
i∈Z

Π̃Φ
i (y ∧ y′) (Lemma 5)

+ ∑
i∈Z

Π̃Φ
i (y ∧ y′)− ∑

i∈Y∩Z
Π̃Φ

i (y ∧ y′) (decreasing differences in (y, Z))

= ∑
i∈Z

Π̃Φ
i (y

′)− ∑
i∈Y∩Z

Π̃Φ
i (y

′ ∧ y).

Then since (y′ ∨ y)− y = y′ − (y′ ∧ y),

∑i∈Z Π̃Φ
i (y

′) + y′ · T−1
Φ q̄

+∑i∈Y Π̃Φ
i (y) + y · T−1

Φ q̄
≥ ∑i∈Y∪Z Π̃Φ

i (y
′ ∨ y) + (y′ ∨ y) · T−1

Φ q̄
+∑i∈Y∩Z Π̃Φ

i (y
′ ∧ y) + (y′ ∧ y) · T−1

Φ q̄
(11)

≥ v(Y ∪ Z, q̄) + v(Y ∩ Z, q̄) whenever Y ∩ Z ̸= ∅.

By (10), choosing y and y′ to minimize the left-hand side yields

v(Z, q̄) + v(Y, q̄) ≥ v(Y ∪ Z, q̄) + v(Y ∩ Z, q̄) whenever Y ∩ Z ̸= ∅, (12)

so for each i ∈ I, v(Z, q̄) is submodular in Z on the sublattice {Y ∪ {i} | Y ⊆ I}. It follows
from Lemma 2 that the Vickrey auction is bidder-core-selecting for each set of participating bidders
X ⊆ I.

Now suppose that in addition, T′
Φ∇qv(Z, q̄) ≥ 0 for each Z ⊆ I. By the envelope theorem and

(10), for each Z ⊆ I,

∇qv(Z, q̄) = T−1′
Φ arg min

pΦ

{
∑
i∈Z

Π̃Φ
i (pΦ) + pΦ · T−1

Φ q̄

}
;

⇒ 0 ≤ arg min
pΦ

{
∑
i∈Z

Π̃Φ
i (pΦ) + pΦ · T−1

Φ q̄

}
. (13)

Since T−1
Φ qe

i (Z, q̄) ≥ 0 for each Z ⊆ I and i ∈ Z, we must have T−1
Φ q̄ ≥ 0. Then for any Y, Z ⊆ I

such that Y ∩ Z = ∅, for each y, y′ ≥ 0, (11) yields

∑
i∈Z

Π̃Φ
i (y

′) + y′ · T−1
Φ q̄ + ∑

i∈Y
Π̃Φ

i (y) + y · T−1
Φ q̄ ≥ v(Y ∪ Z, q̄) + (y′ ∧ y) · T−1

Φ q̄

≥ v(Y ∪ Z, q̄) + 0 = v(Y ∪ Z, q̄) + v(Y ∩ Z, q̄).

By (13) and (10), choosing y, y′ ≥ 0 to minimize the left-hand side yields v(Z, q̄) + v(Y, q̄) ≥ v(Y ∪
Z, q̄) + v(Y ∩ Z, q̄). It follows from (12) that v(Z, q̄) is submodular in Z; hence, by Lemma 1, the
Vickrey auction is core-selecting for each set of participating bidders X ⊆ I. □

In the proof of Theorem 1, substitutable packages form a change of basis that allows us to aggre-
gate bidders’ indirect utility functions into a submodular objective function for the social planner’s
dual minimization problem, just as goods substitutability does in a one-sided auction (Lemma 5
in the Appendix). This argument is similar to the one used in core selection result for one-sided
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divisible good auctions by Milgrom and Strulovici (2009, Theorem 31), with an important differ-
ence: submodularity of the social planner’s dual objective function in package prices and bidders
only follows from submodularity of the bidders’ indirect utility functions when their allocations are
positive.55

Lemma 6 (Commutativity and Separability). The following are equivalent:

i. Bidders’ substitution patterns {D2ui(qi)}i∈I,qi∈RK are commuting matrices.

ii. Bidders’ substitution patterns {D2ui(qi)}i∈I,qi∈RK have a common orthonormal eigenbasis Φ such that

a. The packages Φ are substitutes and ϕ · q̄ ≥ 0 for each ϕ ∈ Φ; and

b. Each ui is separable in Φ: There exist {ûk
i }K

k=1 such that ui(TΦx) = ∑K
k=1 ûk

i (xk) for all x.

Proof. (i) =⇒ (ii): Since ui is strictly concave for each bidder i, each D2ui(qi) is negative definite
and thus has an orthonormal eigenbasis Φ(i, qi); choose the signs of Φ(i, qi) such that for each ϕ ∈
Φ(i, qi), ϕ · q̄ ≥ 0. Then since the D2ui(qi) commute, they must be simultaneously diagonalizable:
Φ(i, qi) = Φ for each i and each qi. Then for each i and each qi, D2ui(qi) = TΦ Mi(qi)T′

Φ, where
Mi(qi) is a diagonal matrix. Then since Φ are orthonormal, −(T′

ΦD2ui(qi)TΦ)
−1 = −Mi(qi)

−1 is
diagonal. (iia) follows by Lemma 4.

Moreover, for each i, since D2ui(qi) = TΦ Mi(qi)T′
Φ for each qi, D2

T′
Φqi

ui(TΦx) = T′
ΦD2ui(x)TΦ =

Mi(x) is diagonal. Then ui(TΦx) is modular. Then since R is a chain, (iib) follows by Topkis (1998)
Theorem 2.6.4.

(ii) =⇒ (i): Since Φ is orthonormal, T−1
Φ = T′

Φ. Then (iib) implies that for each i ∈ I and qi ∈ RK,
ui(qi) = ∑K

k=1 ûk
i (ϕk · qi). Then by the chain rule, for each i ∈ I and qi ∈ RK, D2ui(qi) = TΦ Mi(qi)T′

Φ,
where Mi(qi) is a diagonal matrix whose kth element is ûk′′

i (ϕk · qi). (i) follows.

Proof of Theorem 2 (Core Selection: Package Substitutability and Heterogeneity) By Lemma 6
(iia), {D2ui(qi)}i∈I have a common orthonormal eigenbasis Φ such that the packages Φ are substi-
tutes and T′

Φq̄ ≥ 0; (i) follows.
By Lemma 6 (iib), there exist {ûk

i }K
k=1 such that ui(TΦx) = ∑K

k=1 ûk
i (xk) for all x. Since ui is strictly

concave, each ûk
i must be as well. Further, by the chain rule, for each k ∈ {1, . . . , K}, ûk′

i (xk) =

∇ui(TΦx) · ϕk; equivalently, ûk′
i (qi · ϕk) = ∇ui(qi) · ϕk for each qi ∈ RK and each k ∈ {1, . . . , K}.

For each Z ⊆ I, the Kuhn-Tucker conditions for a maximum in (2) are

∑
i∈Z

qi = q̄, ∇ui(qi) = p for each i ∈ Z for some p ∈ RK.

55It is worth pointing out the specific point where the possibility of reallocation breaks standard arguments
for core selection with substitutable goods — and thus requires us to prove a new result rather than simply
appeal to standard results under a change of basis. In particular, in the study of one-sided auctions by
Milgrom and Strulovici (2009), one step in Theorem 31 involves showing that the surplus function is bidder-
submodular when v(Z, q̄)− v(Z, q̄′), q̄′ ≥ q̄, is nondecreasing in Z. This implication follows from the agents
in Z receiving fewer goods in aggregate when an additional agent j participates, which is true only when that
additional agent’s efficient allocation q∗j (Z ∪ {j}, q̄) is positive. Indeed, in Example 1, if the agents’ valuations
were such that they each received a positive allocation of the good — that is, if the auction behaved like a
one-sided one — then the payoff profile would be in the core. Instead, bidder 3 ends up selling some of his
pre-auction allocation in the Vickrey auction.
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Since the bidders’ pre-auction allocation is efficient, for each k ∈ {1, . . . , K}, either ϕk · p > ϕk ·
∇ui(0) = ûk′

i (0) for each i ∈ Z, or ϕk · p ≤ ûk′
i (0) for each i ∈ Z. If the former is true, since ui is

separable and ûk
i is strictly concave, we must have ϕk · qe

i (Z, q̄) < 0 for each i ∈ Z, a contradiction
since ϕk · q̄ ≥ 0. Then the latter must hold, and so (since ui is separable and ûk

i is strictly concave)
we have ϕk · qe

i (Z, q̄) ≥ 0 for each i ∈ Z, as desired. □

Proof of Proposition 3 (No Core Selection: Pre-Auction Allocations and Heterogeneity in Pre-
Auction Marginal Utility) Choose X with |X| = 3; label X = {1, 2, 3}. Since each ui is strictly
concave and twice continuously differentiable, by the inverse function theorem, ∇u2 : RK → M
has an inverse, (∇u2)−1 : M → RK. By assumption, ∇u1(q̄) ∈ M. Then let

t1 = 0; t2 = (∇u2)
−1(∇u1(q̄)); t3 =

{
0, ∇u1(q̄) ̸= ∇u3(0),
1, ∇u1(q̄) = ∇u3(0).

Then we have ∇ũ1(q̄) = ∇u1(q̄) = ∇ũ2(0).
Now suppose valuations for bundles are given by {ũi}i∈I . From the first-order conditions for a

maximum in (2), we have qe
1({1, 2}, q̄) = qe

1({1}, q̄) = q̄ and qe
2({1, 2}, q̄) = 0. Then v({1, 2}, q̄) =

ũ1(q̄) + ũ2(0) = u1(q̄) + ũ2(0) = v({1}, q̄) + ũ2(0).
By definition, v(X, q̄) ≥ ũ2(0) + v({1, 3}, q̄). Suppose this inequality binds. Then we must

have qe
2(X, q̄) = 0. Then from the first-order conditions for a maximum in (2), ∇u1(q̄) = ∇ũ2(0) =

∇ũ2(qe
2(X, q̄)), and so we must have qe

1(X, q̄) = q̄, and hence qe
3(X, q̄) = 0. But then ∇ũ3(qe

3(X, q̄)) =
∇ũ3(0) ̸= ∇u1(q̄), a contradiction. So we must have v(X, q̄) > ũ2(0) + v({1, 3}, q̄). It follows that

πV
a (X) + πV

1 (X) = v(X, q̄)− (v(X, q̄)− v({1, 2}, q̄))− (v(X, q̄)− v({1, 3}, q̄))

= v({1}, q̄) + ũ2(0)− v(X, q̄) + v({1, 3}, q̄)

< v({1}, q̄) = V({a, 1}, q̄),

and the coalition {0, 1} blocks the Vickrey payoff profile πV(X). □

Proof of Proposition 4 (No Core Selection: Quantity Auctioned and Heterogeneity in Pre-Auction
Marginal Utility) Since each ui is strictly concave and twice continuously differentiable, by the in-
verse function theorem, ∇u1 : RK → M has an inverse, (∇u1)

−1 : M → RK. By assumption,
∇uj(0) ∈ M. Then let q̄ = (∇u1)

−1(∇uj(0)), and suppose X = {1, j, ℓ}.
We have ∇u1(q̄) = ∇uj(0), so from the first-order conditions for a maximum in (2), we have

qe
1({1, j}, q̄) = qe

1({1}, q̄) = q̄ and qe
j ({1, j}, q̄) = 0. Then v({1, j}, q̄) = u1(q̄) + uj(0) = v({1}, q̄) +

uj(0).
By definition, v(X, q̄) ≥ uj(0) + v({1, ℓ}, q̄). Suppose this inequality binds. Then we must have

qe
j (X, q̄) = 0. Then from the first-order conditions for a maximum in (2), ∇u1(q̄) = ∇uj(0) =

∇uj(qe
j (X, q̄)), and so we must have qe

1(X, q̄) = q̄, and hence qe
ℓ(X, q̄) = 0. But then ∇uℓ(qe

ℓ(X, q̄)) =
∇uℓ(0) ̸= ∇uj(0), a contradiction. So we must have v(X, q̄) > uj(0) + v({1, ℓ}, q̄). It follows that

πV
a (X) + πV

1 (X) = v(X, q̄)− (v(X, q̄)− v({1, j}, q̄))− (v(X, q̄)− v({1, ℓ}, q̄))

= v({1}, q̄) + uj(0)− v(X, q̄) + v({1, ℓ}, q̄)

< v({1}, q̄) = V({a, 1}, q̄),
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and the coalition {0, 1} blocks the Vickrey payoff profile πV(X). □

The proof of Proposition 5 relies on the following lemma, proven in the Supplementary Ap-
pendix:

Lemma 7 (Eigenvalues and Harmonic Means). Suppose that {Si}i∈I are positive definite K × K ma-

trices, and that for some Z ⊆ I and ℓ, j ∈ Z, S−1
ℓ

(
∑i∈Z\{ℓ} S−1

i + ∑i∈Z\{j} S−1
i

)−1
S−1

j has a negative
eigenvalue. Then H(Z) + H(Z \ {ℓ, j})− H(Z \ {ℓ})− H(Z \ {j}) is not positive definite.

To understand Proposition 5’s eigenvalue condition, observe that with quadratic payoffs, Lemma
3 shows that the surplus function’s difference-in-differences v(Y ∪ Y′, q̄) + v(Y ∩ Y′, q̄)− v(Y, q̄)−
v(Y′, q̄) is just 1

2 q̄′(H(Y) + H(Y′) − H(Y ∩ Y′) − H(Y ∪ Y′))q̄. When we let Y = Z \ {ℓ} and
Y′ = Z \ {j}, this difference-in-differences represents the incentive of the coalition {a} ∪ Z \ {ℓ, j}
to cancel the auction and trade among themselves. In this case, the central matrix in this expression
— the harmonic mean’s difference-in-differences — is just the sum of Proposition 5’s triple product
and its transpose, multiplied by − 1

2 . Hence, if this triple product has a negative eigenvalue, and the
quantity vector q̄ lies in the same direction as the associated eigenvector, the coalition {a}∪Z \ {ℓ, j}
must block the Vickrey payoff profile.

Proof of Proposition 5 (No Core Selection: Heterogeneity in Substitution Patterns): We must
have Z ̸= {ℓ, j}: Suppose not, and Z = {ℓ, j}. Then

S−1
ℓ

(
∑i∈Z\{ℓ} S−1

i + ∑i∈Z\{j} S−1
i

)−1
S−1

j = S−1
ℓ (S−1

j + S−1
ℓ )−1S−1

j = (Sℓ + Sj)
−1,

which is positive definite, a contradiction since by assumption it has a negative eigenvalue.
By Lemma 7, H(Z)+ H(Z \ {ℓ, j})− H(Z \ {ℓ})− H(Z \ {j}) is not positive definite. Then since

it is symmetric, there exists q̄ ∈ RK such that q̄′(H(Z)+ H(Z \ {ℓ, j})− H(Z \ {ℓ})− H(Z \ {j}))q̄ <

0. Then by Lemma 3, v(Z, q̄) + v(Z \ {ℓ, j}, q̄) − v(Z \ {ℓ}, q̄) − v(Z \ {j}, q̄) > 0. The statement
follows by Lemma 2. □

Proof of Proposition 6 (Equilibrium in the Uniform-Price Auction) (i): Suppose that the set of
participants in a uniform-price auction is X′ ⊆ I with |X′| = |X|. Choose i ∈ X′, and suppose that
bidders X′ \ {i} submit bids bU

X′\{i} = {bU
j }j∈X′\{i}. Then if bidder i submits a bid bi such that he

obtains q∗i ({bi, bU
X′\{i}}) = qi, the market-clearing price must be ri(qi, bU

X′\{i}). Then his payoff from
such a bid is

θ′i qi −
1
2

q′iSqi − ri(qi, bU
X′\{i})

′qi. (14)

Now since bU
j (qj) = θj − |X|−1

|X|−2 Sqj, we have bU −1
j (p) = |X|−2

|X|−1 S−1(θj − p). It follows from the defini-
tion of residual supply that

q̄ = qi +
|X|−2
|X|−1 S−1

(
∑j∈X′\{i} θj

)
− (|X| − 2)S−1ri(qi, bU

X′\{i})

⇒ ri(qi, bU
X′\{i}) =

1
|X|−2 S(qi − q̄) + 1

|X|−1

(
∑j∈X′\{i} θj

)
.
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Then Dri(qi, bU
X′\{i}) = 1

|X|−2 S, and so bidder i’s payoff (14) from a bid that obtains qi is concave
in qi. It follows that bi is a best response to bU

X′\{i} for bidder i if and only if the quantity qi =

q∗i ({bi, bU
X′\{i}}) that bidder i obtains by bidding bi satisfies

θi − Sqi − ri(qi, bU
X′\{i})− Dri(qi, bU

X′\{i})
′qi = 0

⇔ θi −
|X| − 1
|X| − 2

Sqi − ri(qi, bU
X′\{i}) = 0

Since qi = q∗i ({bi, bU
X′\{i}}) whenever bi(qi) = p∗({bi, bU

X′\{i}}) = ri(qi, bU
X′\{i}), it follows that

bU
i (qi) = θi − |X|−1

|X|−2 Sqi is a best response to bU
X′\{i}. Since this is true for each i ∈ X′, {bU

i }i∈X′ is
a Nash equilibrium of the UPA with participants X′. The claim follows.

(ii): Since bU −1
ℓ (p) = |X|−2

|X|−1 S−1(θℓ − p), we have

q̄ = ∑ℓ∈X bU −1
ℓ (p∗({bU

j }j∈X)) = |X|−2
|X|−1 S−1

(
(∑ℓ∈X θℓ)− |X|p∗({bU

j }j∈X)
)

⇒ p∗({bU
j }j∈X) =

1
|X| (∑ℓ∈X θℓ)− |X|−1

(|X|−2)|X|Sq̄ (15)

⇒ q∗i ({bU
j }j∈X) = bU −1

i (p∗({bU
j }j∈X)) =

|X|−2
|X|−1 S−1

(
θi − 1

|X| (∑ℓ∈X θℓ) +
|X|−1

(|X|−2)|X|Sq̄
)

= 1
|X|

(
q̄ − |X|−2

|X|−1 S−1 ∑j∈X(θj − θi)
)

.

From Lemma 3, qe
i (X, q̄) = 1

|X|

(
q̄ − S−1 ∑j∈X(θj − θi)

)
. Since S−1 is positive definite, this coincides

with q∗i ({bU
j }j∈X) for each i ∈ X iff θi =

1
|X| ∑j∈X θj = θℓ for each i, ℓ ∈ X.

(iii): Revenue in a uniform-price auction is given by q̄ · p∗({bU
j }j∈X); the expression follows from

(15). □

Proof of Corollary 2 (Nonnegative Revenue in the Uniform-Price Auction) For each i ∈ X, since
q̄ ≥ 0 and θi − Sq̄ ≥ 0, we have θ′i q̄ − q̄′Sq̄ ≥ 0. Then since S is positive definite and |X| > 2,

|X|−1
(|X|−2)|X| q̄

′Sq̄ ≤ 1
|X|−2 q̄′Sq̄ ≤ q̄′Sq̄. Then for each i ∈ X, θ′i q̄ −

|X|−1
(|X|−2)|X| q̄

′Sq̄ ≥ θ′i q̄ − q̄′Sq̄ ≥ 0. Then

(∑i∈X θ′i q̄)−
|X|−1
|X|−2 q̄′Sq̄ ≥ 0. The statement follows from Proposition 6 (iii). □

Proof of Theorem 3 (Expected Revenue in the Uniform-Price and Vickrey Auctions)
(i): By Lemma 3, for any Z ⊆ I, we have

v(Z, q̄) = 1
2

(
∑θi∈Z θ′i S

−1θi
)
− 1

2|Z|

((
∑θi∈Z θi

)′ S−1 (∑θi∈Z θi
)
− 2q̄′

(
∑θi∈Z θi

)
+ q̄′Sq̄

)
= 1

2

(
∑K

k=1
1

λk
∑θi∈Z(θ

′
i ϕk)

2
)
− 1

2|Z|

((
∑K

k=1
1

λk

(
∑θi∈Z θ′i ϕk

)2
)
− 2q̄′

(
∑θi∈Z θi

)
+ q̄′Sq̄

)
Then by Proposition 1 (iii), for any X = {θi}N

i=1 ∈ supp µ and any θi ∈ X,

πV
θi
(X) =

1
2 ∑K

k=1
1

λk
(θ′i ϕk)

2 − 1
2N

((
∑K

k=1
1

λk

(
∑θj∈X θ′jϕk

)2
)
− 2q̄′

(
∑j∈X θj

)
+ q̄′Sq̄

)
+ 1

2(N−1)

((
∑K

k=1
1

λk

(
∑j∈X\{θi} θ′jϕk

)2
)
− 2q̄′

(
∑j∈X\{θi} θj

)
+ q̄′Sq̄

)
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Then by Proposition 1 (iii), since {θi}N
i=1 are independent, we have

Eµ[π
V
a (X)] = Eµ[v(X, q̄)]− NEµ[π

V
θi
(X)|θi ∈ X]

=

N
2

(
∑K

k=1
1

λk
(VarF(θ

′ϕk) + EF(θ
′ϕk)

2)
)
− 1

2N

(
∑K

k=1
1

λk
(N VarF(θ

′ϕk) + N2EF(θ
′ϕk)

2)
)

+q̄′EF[θ]− 1
2N q̄′Sq̄ − N

2

(
∑K

k=1
1

λk
(VarF(θ

′ϕk) + EF(θ
′ϕk)

2)
)

+ 1
2

(
∑K

k=1
1

λk
(N VarF(θ

′ϕk) + N2EF(θ
′ϕk)

2)
)
− Nq̄′EF[θ] +

1
2 q̄′Sq̄

− N
2(N−1)

(
∑K

k=1
1

λk
((N − 1)VarF(θ

′ϕk) + (N − 1)2EF(θ
′ϕk)

2)
)
+ Nq̄′EF[θ]− N

2(N−1) q̄′Sq̄

=
q̄′EF[θ] +

−(N−1)+N(N−1)−N2

2N(N−1) q̄′Sq̄ + N2−N−N(N−1)
2

(
∑K

k=1
1

λk
EF(θ

′ϕk)
2
)

+−1+N−N
2 ∑K

k=1
1

λk
VarF(θ

′ϕk)

= q̄′EF[θ]−
2N − 1

2N(N − 1)
q̄′Sq̄ − 1

2

K

∑
k=1

1
λk

VarF(θ
′ϕk),

as desired.
(ii): Follows immediately by Proposition 6 (iii) and independence of {θi}N

i=1.
(iii): From (i) and (ii), expected revenue is higher in the Vickrey auction if

q̄′EF[θ]−
2N − 1

2N(N − 1)
q̄′Sq̄ − 1

2

K

∑
k=1

1
λk

VarF(θ
′ϕk) > q̄′EF[θ]−

N − 1
N(N − 2)

q̄′Sq̄

⇔
(

2N − 2
N(N − 2)

− 2N − 1
N(N − 1)

)
q̄′Sq̄,=

1
(N − 1)(N − 2)

q̄′Sq̄ >
K

∑
k=1

1
λk

VarF(θ
′ϕk),

as desired. □

Proof of Proposition 8 (No Truthful Bidding in a Split Vickrey Auction) Observe that in a split
auction, by the clearing rule, we must have

q̄ = q̄− + q̄+ = ∑
i∈X−

b−1
i (p∗(bX−)) + ∑

i∈X+

b−1
i (p∗(bX+)) = ∑

i∈X
b−1

i (p∗(bX−))

⇒ p∗(b) = p∗(bX+) = p∗(bX−), q∗i (bX−) = q∗i (bX+) = b−1
i (p∗(b)) = q∗i (b).

It follows from Proposition 1 (ii) that q∗i (b
V
X−

) = qe
i (X, q̄) for each i ∈ X− and q∗i (b

V
X+

) = qe
i (X, q̄)

for each i ∈ X+. Then since the Vickrey payment rule uniquely implements the efficient allocation
in dominant strategies (Holmström, 1979), bidding bV

i = ∇ui is a dominant strategy for bidder i if
and only if his payment when the bids b are submitted to the split auction is equal to tV

i (b).
To see that it is not, suppose i ∈ X+. Let ri(qi, bX+\{i}|q̄+) be bidder i’s residual supply in

a forward auction for quantity q̄+, and let q̄+(b) ≡ ∑j∈X+
q∗j (b) be the quantity available in the

forward auction when the profile of bids is b.
If b is such that q∗i (b) = qi, then

q̄+(b) = qi + ∑
j∈X+\{i}

b−1
j (p∗(bX+)) = qi + ∑

j∈X+\{i}
b−1

j (ri(qi, b−i)).

Hence, q̄+(qi, b−i) ≡ qi + ∑j∈X+\{i} q∗j (ri(qi, b−i)) is the total quantity sold in the forward auction
when bidder i places a bid that obtains qi, given bids b−i by the other participants in the split
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auction. Now observe that given any q̄+, ri(qi, bX+\{i}|q̄+) is defined by

qi + ∑
j∈X+\{i}

b−1
j (ri(qi, bX+\{i}|q̄+)) = q̄+.

It follows that ri(qi, bX+\{i}|q̄+(qi, b−i)) = ri(qi, b−i). Moreover, by the implicit function theorem,

Dq̄+ri(qi, bX+\{i}|q̄+) =
(

∑j∈X+\{i} Db−1
j (ri(qi, bX+\{i}|q̄+))

)−1

And by definition,

DQ+(qi, b−i) = I + ∑j∈X+\{i} Db−1
j (p)Dri(qi, b−i)|p=ri(qi ,b−i)

= I −
(

∑j∈X+\{i} Db−1
j (ri(qi, b−i))

) (
∑j∈X\{i} Db−1

j (ri(qi, b−i))
)−1

=
(

∑j∈X−∪{i} Db−1
j (ri(qi, b−i))

) (
∑j∈X\{i} Db−1

j (ri(qi, b−i))
)−1

Since each bi must have a negative definite Jacobian matrix, these derivative matrices have nonzero
determinant. Then by the inverse function theorem, q̄+(qi, b−i) is a one-to-one function of qi, and
ri(qi, bX+\{i}|q̄+) is a one-to-one function of q̄+.

It follows that for any b−i, ri(q, bX+\{i}|q̄+(qi, b−i)) ̸= ri(q, bX+\{i}|q̄+(q, b−i)) = ri(q, b−i) when-
ever q ̸= qi. Then for any b−i, there exists q̃i such that∫ q̃i

0
ri(q, bX+\{i}|q̄+(qi, b−i)) · dq ̸=

∫ q̃i

0
ri(r, b−i)dq.

Let b̃i(qi) = ri(q̃i, b−i). Then q∗i ({b̃i, b−i}) = q̃i. Then bidder i’s payment when the profile of
bids {b̃i, b−i} is submitted to the split auction is

∫ q̃i
0 ri(q, bX+\{i}|q̄+(qi, b−i)) · dq ̸=

∫ q̃i
0 ri(r, b−i)dq =

tV
i ({b̃i, b−i}), as desired. □

Proof of Proposition 7 (Equivalent Implementation with Eigenvector Packages) Existence of Φ
and separability of valuations in Φ follows from Lemma 6. Then the social planner’s problem
(2) is separable in Φ. Since bidder payoffs are quasilinear in transfers, it follows from applying
Proposition 1 in the K = 1 case for each ϕ ∈ Φ that conducting independent Vickrey auctions for
each ϕ ∈ Φ yields the Vickrey allocation and payoff profile.

For the UPA result, label Φ = {ϕk}K
k=1 and observe that

u(TΦx) =
K

∑
k=1

ûk
i (xk), ûk

i (xk) = θ′i ϕkxk − λkx2
k ,

where λk is the eigenvalue of S associated with ϕk. Then by Proposition 6 (ii), the ex post equilibrium
of a uniform-price auction for package ϕk results in the allocation

qϕk
i (X) =

1
|X|

(
ϕ′

k q̄ − |X| − 2
|X| − 1

1
λk

∑
j∈X

(θj − θi)
′ϕk

)
= ϕ′

kq∗i ({bU
j }j∈X),

Summing over the packages then yields ∑K
k=1 ϕkqϕk

i (X) = TΦTΦq∗i ({bU
j }j∈X) = q∗i ({bU

j }j∈X). Simi-
larly, from (15), equilibrium price in the ex post equilibrium of a uniform-price auction for package
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ϕ is given by pϕk = 1
|X| (∑ℓ∈X ϕ′

kθℓ)− |X|−1
(|X|−2)|X|λkϕ′

k q̄. It follows that each bidder’s payment is

K

∑
k=1

pϕk qϕk
i (X) =

K

∑
k=1

1
|X|q

∗
i ({bU

j }j∈X)
′ϕk

((
∑
ℓ∈X

ϕ′
kθℓ

)
− |X| − 1

|X| − 2
λkϕ′

k q̄

)

= q∗i ({bU
j }j∈X)

′
(

1
|X|TΦ

(
∑
ℓ∈X

T′
Φθℓ

)
− |X| − 1

|X| − 2
TΦΛT′

Φq̄

)
,

where Λ is the diagonal matrix of eigenvalues associated with Φ. From (15), this expression is just
q∗i ({bU

j }j∈X)
′p∗({bU

j }j∈X). Then since each bidder’s total transfer and allocation from the indepen-
dent uniform-price package auctions is the same as their UPA transfer and allocation, their payoff
must be the same as well. □
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