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Abstract

We develop new robust discrete choice tools to learn about the average willingness to pay for a

price subsidy and its effects on demand given exogenous, discrete variation in prices. Our starting

point is a nonparametric, nonseparable model of choice. We exploit the insight that our welfare

parameters in this model can be expressed as functions of demand for the different alternatives.

However, while the variation in the data reveals the value of demand at the observed prices,

the parameters generally depend on its values beyond these prices. We show how to sharply

characterize what we can learn when demand is specified to be entirely nonparametric or to be

parameterized in a flexible manner, both of which imply that the parameters are not necessarily

point identified. We use our tools to analyze the welfare effects of price subsidies provided by

school vouchers in the DC Opportunity Scholarship Program. We find that the provision of the

status quo voucher and a wide range of counterfactual vouchers of different amounts can have

positive and potentially large benefits net of costs. The positive effect can be explained by the

popularity of low-tuition schools in the program; removing them from the program can result

in a negative net benefit. We also find that various standard logit specifications, in comparison,

limit attention to demand functions with low demand for the voucher, which do not capture the

large magnitudes of benefits credibly consistent with the data.
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1 Introduction

Price subsidies are a common feature of many social programs that aim to encourage the use of

certain alternatives or make them more affordable to disadvantaged populations. Policy relevant

examples include school vouchers that subsidize tuition for eligible private schools (Epple et al.,

2017), subsidies on health insurance (Finkelstein et al., 2019), and price subsidies for various es-

sential goods in developing countries (Dupas, 2014). Quantifying individuals’ willingness to pay

for a price subsidy and its effects on demand are key inputs in performing cost benefit analyses of

implemented subsidies and in their counterfactual design.

In this paper, our first contribution is to develop new discrete choice tools that show how to

robustly learn about such welfare effects of a price subsidy given data with exogenous, discrete

variation in prices. The starting point of our analysis is a nonparametric, nonseparable model of

choice. In this model, we exploit the fact that our welfare parameters of interest can be expressed

in terms of the demand for the various alternatives. Exogenous, discrete variation in prices—which

arises naturally in randomized evaluations of price changes—reveals the value of demand at the

prices observed in the data. But, our parameters generally depend on values of demand beyond

those observed in the data, which introduces an identification problem.

The traditional approach to this problem is to consider parameterizations of demand through

various models such as logit and probit (e.g., Berry et al., 1995; McFadden, 1974; Train, 2009).

These parameterizations are carefully chosen such that they imply a unique demand function con-

sistent with the data, and hence that the welfare parameters are point identified. However, a

natural concern with this approach is that it may limit attention to only specific demand functions

that can potentially drive the welfare estimates and resulting policy conclusions.

To this end, our main methodological contribution is to show how to characterize what we

can learn about welfare under more flexible specifications of demand. Our baseline specification

leaves demand to be entirely nonparametric and only imposes a fundamental shape restriction

that takes demand for each alternative to be increasing in the prices of other alternatives. In this

case, there exists a space of infinite-dimensional demand functions consistent with the data and

the parameters are generally only partially identified. The key complication is how to compute

the sharp identified sets for the parameters generated by this space of functions. Our arguments

show how to carefully exploit the geometric structure of the parameters as well as the information

provided by the data and shape restrictions, such that the identified sets can be computed using

finite-dimensional optimization problems.

We also consider several extensions. First, we propose dimension reduction methods to ensure

tractability in cases where our baseline optimization problems can be large and potentially imprac-

tical. Specifically, we show how to obtain outer sets by considering sub-programs of the baseline

ones as well as how to get sharp sets under additional separability assumptions on demand that
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reduce the dimensions of the baseline programs. Second, we show how to extend our baseline result

to accommodate additional parametric restrictions on demand. This is in the spirit of traditional

methods, but we do not solely restrict attention to point identified demand functions and allow for

a range of parameterized demand functions to be consistent with the data.

Our final extension is motivated by the fact that the above arguments are essentially limited to

the case where individuals are assumed to be able to afford all alternatives. Such an assumption,

however, can be particularly suspect in our empirical setting as discussed below. We therefore also

show how to extend our analysis to learn about welfare under a latent liquidity constraint model

which limits the maximum amount individuals can pay for an alternative and where a price subsidy

is allowed to relax these constraints.

Our second contribution is to use the developed tools to perform a welfare analysis of the

price subsidy for eligible private schools provided by school vouchers. A large empirical literature

has estimated the effects of vouchers on various outcomes using data from programs that randomly

allocate vouchers (e.g., Abdulkadiroğlu et al., 2018; Angrist et al., 2002; Dynarski et al., 2018; Howell

et al., 2000; Krueger and Zhu, 2004; Mayer et al., 2002; Mills and Wolf, 2017; Muralidharan and

Sundararaman, 2015; Wolf et al., 2010). However, as surveyed in Epple et al. (2017), the evidence

from these studies is mixed: some find positive effects, while others find null or even negative effects.

Our motivation arises from the fact that, despite this mixed evidence on the effects on outcomes,

the data across these studies indicate that a non-trivial proportion of recipients choose to use the

voucher. Revealed preference arguments then suggest that recipients in general value vouchers and

hence that vouchers may be welfare-enhancing. Yet, little empirical work has attempted to quantify

these welfare benefits and analyze whether they can justify the costs of providing vouchers.

We apply our tools to data from the DC Opportunity Scholarship Program (OSP), a voucher

program in Washington, DC. The program randomly allocated a voucher worth up to $7,500 to

participants, inducing exogeneous binary variation in prices, namely the prices of schools with and

without the voucher. Our estimated bounds reveal that provision of the status quo amount as

well as a range of counterfactual amounts can have a positive and potentially large welfare benefit

net of the costs the government faces to provide them. We find that the positive effect can be

explained by the fact that there are a large number of popular, low-tuition schools in the program;

counterfactual exercises indicate that if these schools were removed from the program, the overall

net benefit might be negative.

In our setting, it is likely that some students are liquidity constrained as the program was geared

towards those from low-income families. We find that accounting for the fact that the voucher can

relax liquidity constraints can be important in regards to the conclusion one draws on the magnitude

of the benefits of the voucher. Specifically, in this case, the upper bound becomes arbitrarily large

unless one assumes a maximum willingness to pay for schools in the program. In this sense, the

magnitude could be significantly downward biased if one doesn’t account for liquidity constraints.
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Such potential biases are consistent with a growing number of recent work that highlight the

importance of accounting for unobserved heterogeneity in the fact that individuals may not be

choosing from the set of all alternatives in various settings (e.g., Abaluck and Adams-Prassl, 2021;

Barseghyan et al., 2021; Goeree, 2008).

When interpreting the above findings, it is worth highlighting certain features of our analysis.

We equate the welfare effect of receiving the voucher with the willingness to pay for it of parents,

who often make schooling decisions for their child. While this is a natural money metric for parents’

valuation for the voucher, it may not fully capture students welfare due to internal inefficiencies

in parental decisions resulting from either imperfect information on school effects or misaligned

objectives (e.g., Abdulkadiroğlu et al., 2018; Hastings and Weinstein, 2008), or capture social

welfare effects due to externalities (e.g., Acemoglu and Angrist, 2000). In this sense, our analysis

complements the traditional one that directly evaluates effects on test scores or other measures

of broader social gains, but leaves open the question of quantifying welfare based on underlying

preferences. Moreover, our analysis only captures the effects of vouchers through the decrease in

school prices it induces, and not through any potential general equilibrium effects on the school

system they can have (Friedman, 1962). Consequently, it is directly informative about the effect

of marginal policies that increase the supply of vouchers, rather than of those that scale up the

voucher program. It is therefore important to emphasize that our results provide a partial picture

on the overall welfare effects of vouchers, and one should be cautious when drawing broader policy

conclusions based on them.

We also compare our empirical results to those under various standard logit parameterizations.

In general, these parameterizations imply demand estimates that match well the variation in en-

rollment shares induced by the receipt of the voucher. However, we find that they do not capture

the range of demand functions that are credibly consistent with these shares, but limit attention

to those that have low demand for the voucher. Our main takeaway is that as a result, the logit

estimates do not capture the large benefits consistent with the data. For example, absent liquidity

constraints, our upper bounds reveal that benefits for the status quo voucher can be close to half

its value, but all the logit estimates allow them to equal only a fourth of its value. The difference is

even starker when accounting for liquidity constraints. The logit estimates in this case stay almost

the same as those without liquidity constraints, and do not capture the potentially large biases

from not accounting for such constraints as revealed by our bounds. Our comparison contributes

to a growing set of results that document similar attenuation of logit based estimates and highlight

the importance of nonparametric methods in various empirical settings (e.g., Compiani, 2022; Ho

and Pakes, 2014; Tebaldi et al., 2021).

In the following subsection we describe the relation of our analysis to the literature, after which

the remainder of the paper is organized as follows. Section 2 develops our baseline identification

analysis. Section 3 presents the extensions. Section 4 applies our tools to analyze the welfare effects
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of school vouchers in the OSP. Section 5 compares our empirical results to those using traditional

parametric methods. Section 6 concludes. Proofs and additional details pertinent to the analysis

are presented in the Supplementary Appendix. A Python package to implement our developed

tools is available at https://github.com/vishalkamat/npdemand.

1.1 Related Literature

A growing literature studies nonparametric identification of various quantities in discrete choice

settings. One approach pursued in this literature is to argue point identification, which is often

based on requiring large amounts of exogenous variation in the data (e.g., Berry and Haile, 2009,

2014; Briesch et al., 2010; Chiappori and Komunjer, 2009; Matzkin, 1993). However, in many

applications such as the ones we focus on, there exists only discrete variation, which generally gives

rise to the case of partial identification. A number of recent papers have developed tools to evaluate

various questions—such as estimating the effect of different prices and choice sets on demand,

characterizing the underlying utility functions, and testing the premise of utility maximization—in

setups that permit partial identification (e.g., Chesher et al., 2013; Kamat, 2021; Kitamura and

Stoye, 2018; Manski, 2007; Tebaldi et al., 2021). As in our analysis, these papers carefully exploit

the specific structure of their models and parameters to show how to construct the sharp identified

set. But, as our setup and the parameters of interest are different from theirs, the developed

arguments are distinct and complementary.

Our analysis is most closely related to recent work in the literature on nonparametric welfare

analysis. A building block of our analysis is the fact that we can express the average willingness

to pay in terms of demand. To show this, we apply results from Bhattacharya (2015, 2018) who

formally derived such expressions for the class of nonparametric choice models we consider. If

demand was point-identified, we could directly use these results to identify the welfare effects of

interest. Our novelty is to show how to exploit these results when demand might be only partially

identified. Recently, Bhattacharya (2021) derives analytic nonparametric bounds for welfare effects

in such cases for a binary choice problem with a single price dimension. As in our approach, the

paper’s arguments are based on demand functions that are constant over a carefully constructed

partition of the space of prices. However, as highlighted in Section 2.5.1, the arguments behind the

construction of this partition rely on the unidimensionality of the space and require novel extensions

to generalize to the case of multiple alternatives and prices we consider in our setup.

Our analysis is also conceptually related to the work of Mogstad et al. (2018) in an alterna-

tive setting of a binary treatment model. Their identification problem shares a similar structure

where the parameters of interest can be expressed in terms of primitive functions—marginal treat-

ment effects in their setup—that are only partially identified by the data. Indeed, our approach

to incorporate parametric restrictions follows that in their paper. In contrast, as highlighted in
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Section 2.5.1, their arguments to compute nonparametric bounds rely on the unidimensionality

of their primitive functions, which arises due to the focus on a binary treatment. In this sense,

our arguments which allow for multidimensional functions can provide insights on how to obtain

nonparametric bounds in settings with multiple treatments (e.g., Kamat et al., 2023).

Our empirical analysis contributes to the literature on the evaluation of school voucher pro-

grams, and particularly a smaller group of papers that uses choice models to study various school

choice-related questions of interest (e.g., Allende, 2019; Arcidiacono et al., 2021; Carneiro et al.,

2019; Gazmuri, 2019; Neilson, 2013). While these papers consider richer models that allow studying

various effects of vouchers that go beyond the scope of our analysis, such as general equilibrium

effects through school competition or peer quality, they do so using fully parameterized models.

Our analysis complements these studies by evaluating a narrower, yet relevant question, but doing

so using robust nonparametric tools.

2 Baseline Identification Analysis

2.1 Model

Let J be a discrete set of choice alternatives such that |J |≥ 2. For each individual i, suppose that

we observe (Di, Pi), whereDi denotes the chosen alternative from J , and Pi = (Pij : j ∈ J ) denotes

a vector of prices for each alternative that the individual faces. Let Pobs denote the support of the

observed price vector, which we assume to be discrete. Certain alternatives potentially may not

exhibit any price variation in which case we normalize their prices to 0. We assume the observed

choice is the product of an underlying utility maximizing decision. Specifically, denoting by Yi

the individual’s (unobserved) disposable income and by Uij : R → R their (unobserved) utility

function for alternative j ∈ J , we take the observed choice to be given by

Di = argmax
j∈J

Uij(Yi − Pij) (1)

i.e. the alternative maximizing the utility of the disposable income net of its price.

Apart from the utility maximizing structure, we highlight that our choice model is nonpara-

metric and nonseparable, and allows for completely general unobserved heterogeneity. This is in

contrast to traditional models employed in the literature that impose a combination of additional

restrictions such as functional forms on the utility and parametric distributions on the unobserved

heterogeneity—see Section 5 for details. A limitation of our setup, however, is that we do not

model a supply side that generates prices as well as other factors beyond prices that may affect

choice. As noted in Section 1 in terms of our empirical findings, this has potential implications on

the interpretation and scope of our counterfactuals.
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Given the above structure, our analysis exploits the fact that our parameters of interest can

be expressed in terms of demand functions. In turn, we frame our problem in terms of these

functions and consider various assumptions directly on them. The demand functions correspond to

the distribution of choices across individuals at a given value of the price vector. More formally, let

P =
∏

j∈J Pj denote the domain of price vectors, where Pj = {0} if prices of the jth alternative

are normalized to 0 and Pj = R otherwise, and let Di(p) = argmaxj∈J Uij(Yi − pj) denote the

individual’s choice had the price vector been set to p ∈ P. Using this additional notation, we can

respectively define the unconditional and conditional on Pi = p′ ∈ Pobs demand by

qj(p) = Prob{Di(p) = j} , (2)

qj(p|p′) = Prob{Di(p) = j|Pi = p′} (3)

for each j ∈ J and p ∈ P. Our analysis is primarily based on the unconditional demand functions.

But we also define conditional demand functions as they allow us to formally state the fact that our

analysis throughout takes the observed variation in prices to be exogenous. In particular, we do so

by assuming the following relation between the conditional and unconditional demand functions:

Assumption E. (Exogeneity) For each j ∈ J , qj(p) = qj(p|p′) for all p ∈ P and p′ ∈ Pobs.

Assumption E states that demand is invariant to values of the observed price vector, and captures

that the observed price is exogenous of the remaining underlying variables affecting choices. This

implies that conditional and unconditional demand are equal, and hence that the underlying de-

mand functions can be uniquely captured by the vector q ≡ (qj : j ∈ J ) of unconditional demand

functions. As a result, in the remainder of our analysis, we focus solely on unconditional demand;

whenever we refer to demand, it is understood we are referring to unconditional demand.

In our analysis, we also consider various additional assumptions on demand that restrict q to

lie in some space of functions. Let F generically denote this restricted space of functions. We

postpone the description of these assumptions until after we present our parameters of interest and

the objective of our analysis, as they will better motivate their purpose.

2.2 Parameters of Interest

We are interesting in evaluating the welfare effect of a price subsidy that decreases prices between

two pre-specified price vectors.1 Let pa, pb ∈ P respectively denote the larger and smaller pre-

specified vectors in this price decrease in the sense that pbj ≤ paj for j ∈ J .

1The welfare effects for general price changes cannot be simply expressed in terms of demand defined in (2),

but require defining demand at counterfactual prices as well as disposable income—see Bhattacharya (2015, 2018).

Identification in this case therefore not only requires variation and assumptions along the price dimension but also

along that of disposable income, which we leave for future work. We note, however, that our analysis straightforwardly

applies to evaluate the effects of general price changes solely on demand, i.e. (7) with ga,b = 0.
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We measure the welfare effect of the price subsidy by the willingness to pay for it. It provides

a natural money metric for the gains and, equivalently, corresponds to the negative of the compen-

sating variation for the price decrease induced by the subsidy. Formally, an individual’s willingness

to pay for the subsidy can be defined by the variable Ba,b
i that solves

max
j∈J

Uij(Yi − paj ) = max
j∈J

Uij(Yi − pbj −Ba,b
i ) , (4)

i.e. the amount of money to be subtracted from the individual’s income under the lower price so

that they are indifferent and obtain the same utility as that under the higher price. Our analysis

focuses on the average willingness to pay which is defined by

E[Ba,b
i ] . (5)

As mentioned, our analysis exploits the fact that our parameters can be expressed as functions

of the demand functions. In order to show this for (5), we exploit results from Bhattacharya (2015,

2018) who precisely showed this in the context of a nonparametric, nonseparable model of choice

as that in (1). In the following proposition, we reproduce this result in terms of our notation. To

this end, it is useful to first introduce some additional notation. Let ∆a,b
1 ≤ . . . ≤ ∆a,b

|J | denote

the ordered values of paj − pbj across j ∈ J , i.e. the price decrements for the different alternatives,

and let J a,b
l = {j ∈ J : paj − pbj ≥ ∆a,b

l } denote the alternatives whose price decrease is at

least greater than the lth ordered price decrement. Moreover, with some abuse of notation, let

min{pa, pb+ t} = (min{paj , pbj + t} : j ∈ J ) for t ∈ R denote the element wise minimum. Using this

notation, we can then formally state the result as follows.

Proposition 1. For each individual i, suppose Uij is continuous and strictly increasing for each

j ∈ J . Then we have that Ba,b
i defined in (4) exists and is unique, and that

E[Ba,b
i ] = ∆a,b

1 +

|J |−1∑
l=1

∑
j∈J a,b

l+1

∆a,b
l+1∫

∆a,b
l

qj

(
min{pa, pb + t}

)
dt . (6)

Proposition 1 requires utility to be increasing, which is captured by our restrictions on demand.

Moreover, it requires them to be continuous. Importantly, this means that the utilities may not

be able to implicitly capture a scenario where an individual is unable to afford an alternative

at a higher price but can do so at a lower price, since this implies that the price change could

discontinuously affect utility. See Section 3.3 where we make this point more precisely and show

how to extend our analysis under an explicit model of liquidity constraints.

To intuitively understand the expression in (6), observe for the lth price decrement that the

price decrease for the alternatives in J a,b
l+1 jointly goes from ∆a,b

l to ∆a,b
l+1. As this price decrease can

simply be viewed as a cash transfer conditional on choosing alternatives in J a,b
l+1, the willingness
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to pay for it can potentially be only between the minimum and maximum value of the transfer,

namely ∆a,b
l and ∆a,b

l+1. The expression in turn states that the average willingness to pay for the lth

decrement corresponds to the area under the demand curve for the alternatives in J a,b
l+1 as prices

jointly vary between the minimum and maximum values in the presence of the transfer, and the

total average willingness to pay is the sum across all the decrements. See Bhattacharya (2015,

Section 2.1) for more discussion on the intuition.

In addition to the above, we are also interested in parameters that evaluate the effect of the

price subsidy on demand. Moreover, we are interested in those that measure the difference in the

welfare effect and a weighted change in demand, which can for example allow us to compare the

benefits and costs of the subsidy as we do in our application. For the purposes of our analysis, these

various parameters all share a common underlying structure, which can be captured by a general

parameter that can be expressed as a function of q as follows

θ(q) = ga,b

∆a,b
1 +

|J |−1∑
l=1

∑
j∈J a,b

l+1

∆a,b
l+1∫

∆a,b
l

qj

(
min{pa, pb + t}

)
dt

+
∑
j∈J

gaj qj(p
a) + gbjqj(p

b) , (7)

where ga,b, {gaj : j ∈ J } and {gbj : j ∈ J } are pre-specified values that depend on the parameter

of interest, i.e. the various parameters all correspond to linear combinations of the expression in

(6) and demand evaluated at pa and pb. Indeed, taking ga,b = 1 and gaj = gbj = 0 for j ∈ J , we

have the parameter in (6). Alternatively, changing gaj and gbj to be the costs one may associate

with the demand for alternative j ∈ J under prices pa and pb, we can also analyze welfare net of

the costs associated with the price decrease. More generally, by specifying various other values for

ga,b, {gaj : j ∈ J } and {gbj : j ∈ J }, we can analyze a range of parameters that capture the welfare

and demand effects of the price subsidy—see our application in Section 4 for more concreteness.

2.3 Identified Set

The goal of the analysis is to learn about a pre-specified parameter of interest θ(q) given by (7).

Given that the function θ is known, what we can learn about the parameter translates to what

we know about q through the data and imposed assumptions. From the data, we observe the

distribution of (Di, Pi), which for the purposes of the identification analysis is assumed to be

perfectly known without uncertainty—we discuss estimation and inference in Section 4. Given the

structure in (1), the definition of demand in (2)-(3) and Assumption E, it follows that demand

must satisfy

qj(p) = Prob[Di = j|Pi = p] (8)

for j ∈ J and p ∈ Pobs, i.e. the random variation in prices reveals the value of demand at prices

observed in the data. From the assumptions, we have that demand is restricted to lie in a space
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of functions F. The admissible space of demand that satisfies the data and assumptions can be

defined by

Q = {q ∈ F : q satisfies (8)} . (9)

What can be learned about the parameter of interest can then be formally captured by the

identified set, which is defined by

θ(Q) = {θ0 ∈ R : θ(q) = θ0 for some q ∈ Q} ≡ Θ , (10)

i.e. the image of the space of admissible functions Q under the function θ. Our goal is to compute

the identified set under the assumptions we impose on demand, which we describe next.

2.4 Demand Specification

Given our nonparametric model, the demand functions remain entirely unrestricted apart from the

logical ones arising from the fact that they are distributions, namely

qj(p) ≥ 0 for j ∈ J , (11)∑
j∈J

qj(p) = 1 , (12)

for p ∈ P, i.e. demand is positive and sum to one. On the other hand, observe that while the data

restrictions in (8) reveal the value of demand at certain prices, the parameters of interest generally

depend on values beyond these prices. To reach informative conclusions, our analysis therefore

considers additional assumptions that restrict how demand varies with prices.

In our baseline analysis, we consider the following nonparametric shape restriction, which then

defines Q in (9)—see Sections 3.1 and 3.2 for extensions to additional restrictions.

Assumption B. (Baseline) For each j ∈ J , qj is weakly increasing in pm for each m ∈ J \ {j}.

Assumption B, referred to as weak substitutes in Berry et al. (2013), is a fundamental shape

restriction present in the majority of discrete choice models and is implied by taking Uij to be

increasing for each j ∈ J . It specifically imposes that for each p, p′ ∈ P such that pj > p′j for

j ∈ J ′ ⊆ J and pj = p′j for j ∈ J \ J ′, we have that

qj(p) ≥ qj(p
′) (13)

for each j ∈ J \J ′. Under this specification, observe that the restricted space for demand is given

by FB = {q ∈ F : q satisfies (11)− (13)}, and, in turn, the admissible space of functions in (9) by

QB =
{
q ∈ F : q satisfies (11)− (13) and (8)

}
, (14)

where F denotes the set of all functions from P to R|J |.
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2.5 Computing the Identified Set

In principle, the identified set in (10) can be computed by searching over q in Q and taking their

image under the function θ. However, under our baseline specification above, doing so is infeasible

as QB is an infinite-dimensional space. We conclude this section by showing how to proceed in this

case. The main idea is to show how to replace QB by a finite-dimensional space Qfd
B such that there

is no loss of information in the sense that θ(QB) = θ(Qfd
B ). This allows translating the problem to

a tractable finite-dimensional one of simply searching through Qfd
B . In particular, taking W to be

a finite partition of P, we consider a finite dimensional space of functions given by

Qfd
B =

{
q ∈ QB : qj(p) =

∑
w∈W

1w(p) · βj(w) for some {βj(w)}w∈W for each j ∈ J
}

, (15)

where 1w(p) ≡ 1{p ∈ w}, and {βj(w) : w ∈ W, j ∈ J } are unknown parameters, i.e. a subset of

QB such that q is parameterized to be constant over the elements of W. The main challenge is how

to choose the partition W such that θ(QB) = θ(Qfd
B ). As shown below, we carefully do so such that

the resulting q is sufficiently rich to define the parameter of interest and preserve the information

provided by the data and shape restrictions.

2.5.1 Partitioning the Space of Prices

Denoting by Pa,b
l = {p ∈ P : pj = min{paj , pbj + t} for t ∈ (∆a,b

l ,∆a,b
l+1), j ∈ J } for 1 ≤ l ≤ |J |−1

and {p} for p ∈ {pa, pb} ∪ Pobs the various sets of prices that underlie the parameter in (7) and

data restrictions in (8), let{
Pa,b
l : 1 ≤ l ≤ |J |−1

}
∪
{
{p} : p ∈

{
pa, pb

}
∪ Pobs

}
≡ {P∗

1 , . . . ,P∗
L} (16)

denote the collection of these price sets. Given these sets of prices, we define a collection of sets

that is the key building block in our construction of W. In this definition and in what follows, for

a set v ⊆ R|J |, we take v[j] = {t ∈ R : pj = t for some p ∈ v} to denote the set of values of v in the

jth coordinate.

Definition V. (Partition V) Let V denote a finite partition of P∗ =
⋃L

l=1 P∗
l such that: (i) for

each l ∈ {1, . . . , L}, there exists Vl ⊆ V such that P∗
l =

⋃
v∈Vl

v; (ii) for each v ∈ V and j ∈ J , v[j]

is an interval; and (iii) for all v, v′ ∈ V and each j ∈ J , either v[j] = v′[j] or v[j] ∩ v′[j] = ∅.

Definition V states that V is a finite partition of the union of the sets in (16) such that its elements

satisfy certain properties: (i) their unions allow building the sets in (16); (ii) they are connected

in each coordinate; and (iii) each pair of elements either completely overlap or are disjoint in

each coordinate. Intuitively, we highlight that the first property, as the sets in (16) underlie the

parameter of interest and data restrictions, is what ensures that our finite-dimensional q will be

10



Figure 1: Various sets of prices for an example with J = {1, 2} and Pobs = {p′}, where pa2 − pb2 >

pa1 − pb1 ≡ 0 and p′ is such that p′1 < pa1 = pb1 and pb2 < p′2 < pa2

Pa,b
1

{pa}

{pb}

{p′}

p2

p1

p′2

pa2

pb2

p′1 pa1 = pb1

(a) Sets underlying P∗

v4

v3

v2

v5

v1

p2

p1

p′2

pa2

pb2

p′1 pa1 = pb1

(b) V ≡ {v1, . . . , v5} satisfying Definition V

sufficiently rich to define the parameter and data restrictions. On the other hand, the latter two

properties, which implies that the sets can be ordered and pairwise compared across each coordinate,

is what ensures that our q will preserve the information provided by the shape restrictions in (13),

which we can observe are based on pairwise comparisons of prices.

To better understand the various sets of prices, Figure 1(a) first graphically illustrates those in

(16) in the context of a stylized example with two alternatives. They are given by {Pa,b
1 } ∪ {{p} :

p ∈ {pa, pb, p′}}, where we can explicitly write Pa,b
1 as

Pa,b
1 = {p ∈ R2

+ : p1 = pa1, p2 = pb2 + t, t ∈ (∆a,b
1 ,∆a,b

2 )} ,

with ∆a,b
1 = 0 and ∆a,b

2 = pa2−pb2 as p
a
2−pb2 > pa1−pb1 ≡ 0. Figure 1(b) then illustrates a partition of

the union of these sets satisfying Definition V. Specifically, while these sets satisfy Definition V(i)

by construction and Definition V(ii) as they are connected, Figure 1(a) reveals that {p′} partially

overlaps with Pa,b
1 in the second coordinate and hence that they do not satisfy Definition V(iii).

Figure 1(b) in turn partitions Pa,b
1 where it intersects with {p′} to obtain a finer collection of

sets that also satisfies Definition V(iii). Moreover, observe that by construction it is the coarsest

collection of such sets. In Appendix S.1, we describe how the idea behind this construction can be

extended to generally obtain a partition V from the sets in (16) and argue that it corresponds to

the coarsest possible partition.

Using V, we construct W as follows. For each j ∈ J , observe that the collection of sets

determined by the prices in v ∈ V in the jth coordinate, i.e. {v[j] : v ∈ V}, generates a partition

of [pbj + ∆a,b
1 , paj ] ∪ {pj : Pobs}.2 Moreover, denoting by p

1,j
≤ . . . ≤ p

Mj ,j
and p̄1,j ≤ . . . ≤ p̄Mj ,j

the ordered values of {pj : p ∈ Pobs, pj ≤ pbj + ∆a,b
1 } ∪ {pbj + ∆a,b

1 } and {pj : p ∈ Pobs, pj ≥
2Note that stating {v[j] : v ∈ V} is a partition of [pbj +∆a,b

1 , paj ] is not formally correct as Pa,b
l for 1 ≤ l ≤ |J |−1

are open and hence their end points are not necessarily contained in the partition. To ensure it is a partition, we

11



paj} ∪ {paj}, respectively, consider the collection of sets determined by the intervals between these

values {(−∞, p
1,j

)}∪{(p
m−1,j

, p
m,j

)}Mj

m=2∪{(p̄m−1,j , p̄m,j)}Mj

m=2∪{(p̄M̄j ,j
,∞)}, which partitions the

remaining space R \ ([pbj +∆a,b
1 , paj ] ∪ {pj : Pobs}). We together have that

Vj ={(−∞, p
1,j

)} ∪ {(p
m−1,j

, p
m,j

)}Mj

m=2 ∪ {v[j]}v∈V ∪ {(p̄m−1,j , p̄m,j)}Mj

m=2 ∪ {(p̄M̄j ,j
,∞)} (17)

generates a partition for the domain of prices for the jth coordinate when its price is not normalized

to 0, while Vj simply equals {{0}} when its price is normalized. For example, for that in Figure 1,

these partitions given V in Figure 1(b) correspond to

V1 =
{
(−∞, p′1), {p′1}, (p′1, p

a
1), {pa1}, (pa1,∞)

}
,

V2 =
{
(−∞, pb2), {pb2}, (pb2, p

′
2), {p′2}, (p′2, p

a
2), {pa2}, (pa2,∞)

}
.

Given these partitions in each dimension, we then take W to be their Cartesian product, i.e.

W =
∏
j∈J

Vj ≡ {w1, . . . , wM} . (18)

It is useful to highlight that our construction of W simplifies in the case where demand is

unidimensional—essentially arising when all alternatives except one have prices normalized to 0. As

noted in Section 1.1, this special case is similar to the identification problem studied in Bhattacharya

(2021) and Mogstad et al. (2018), who propose a finite dimensional space comparable to that in (15)

as a solution. In this case, we need not impose that V satisfies Definition V(iii) as it is automatically

implied by the fact that V is a partition. In the multidimensional case, this is not so and we need

to explicitly introduce it to ensure that the information provided by the shape restrictions in (13)

is preserved. Moreover, given V, the construction of W follows more straightforwardly in the

unidimensional case as the sets in V and those outside it, i.e. those in (17), directly generate a

partition of the space of prices for a single coordinate. For the multidimensional case, an additional

complication remains of how to combine these one dimensional partitions to partition the entire

space of prices, which we propose to solve by taking their Cartesian product as in (18).

2.5.2 Equivalent Finite Dimensional Characterization

Taking our constructed W and finite-dimensional space Qfd
B in (15), we can transform our problem

in terms of β ≡ (β′
j : j ∈ J )′, where βj = (βj(w1), . . . , βj(wM )), i.e. the variable parameterizing

q ∈ Qfd
B . As θ is continuous in q and q is continuous in β, let θB be the continuous function of β

such that θ(q) = θB(β). Moreover, Qfd
B can be written in terms of β by

B =

{
β ∈ Rdβ :

(∑
w∈W

1w · βj(w) : j ∈ J
)

∈ QB

}
, (19)

need to carefully alter the boundaries of certain v ∈ V to be either closed or open. However, for expositional ease,

we abstract away from doing so as this distinction is not practically important for our analysis as our parameter of

interest in (7) only takes Lebesgue integrals over these sets.

12



where dβ denotes the dimension of β, i.e. the set of values of β that ensure that the corresponding

q is in QB. We then have that

θ
(
Qfd

B

)
= {θ0 ∈ R : θB(β) = θ0 for some β ∈ B} ≡ ΘB . (20)

For example, for the setup in Figure 1, we have

θB(β) =ga,b
(
(p′2 − pb2)β2(w

′) + (pa2 − p′2)β2(w
′′)
)
+

∑
j∈{1,2}

gaj βj({pa}) + gbjβj({pb}) , (21)

where w′ = {pa1} × [pb2, p
′
2] and w′′ = {pa1} × [p′2, p

a
2], while B is given by the set of all β satisfying

βj({p}) = Prob[Dj = j|Pi = p] for p ∈ {p′}, j ∈ J , (22)

βj(w) ≥ 0 for w ∈ W, j ∈ J , (23)∑
j∈J

βj(w) = 1 for w ∈ W , (24)

which capture the restrictions in (8), (11) and (12), respectively, and

βj(w) ≥ βj(w
′) (25)

for all w,w′ ∈ W and j ∈ J \J ′, where J ′ ⊆ J , such that t > t′ for all t ∈ w[j], t
′ ∈ w′

[j] for j ∈ J ′

and w[j] = w[j′] for j ∈ J \ J ′, which captures the restriction in (13).

Indeed, we can observe that computing θ(Qfd
B ) is a finite-dimensional problem corresponding to

searching through β. However, as Qfd
B ⊂ QB, a concern is that we may only have θ(Qfd

B ) ⊆ θ(QB)

rather than θ(Qfd
B ) = θ(QB). The following proposition shows this is not the case and the finite-

dimensional problem in fact preserves all the information.

Proposition 2. Suppose that Q = QB. Then, the identified set in (10) is equal to that in (20),

i.e. Θ = ΘB. In addition, if B is empty then by definition ΘB is empty; whereas, if B is non-empty

then ΘB = [θB, θ̄B], where

θB = min
β∈B

θB(β) and θ̄B = max
β∈B

θB(β) . (26)

Proposition 2 exploits the idea that as the parameter and data restrictions are defined as

integrals over certain sets, directly taking q to be a constant over a partition with values equal to

these integrals is sufficient to learn about the parameter of interest rather than working with the

underlying q. The proof formally illustrates this by showing that for each q ∈ QB we can construct

a version of the finite-dimensional variable β ∈ B that generates the same parameter value as q,

i.e. θ(q) = θB(β). This construction corresponds to taking

βj(w) =

∫ 1

0
qj(p(t, w))dt , (27)
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for w ∈ W and j ∈ J , where p(t, w) = (pj(t, w) : j ∈ J ) such that pj(t, w) = w[j] + (w̄[j] − w[j]) · t
with w[j] = inf w[j] and w̄[j] = sup w[j], i.e. taking the constant value over w to be equal to a specific

integral. As W is constructed based on V that satisfies Definition V, these integrals can be shown

to equal those underlying the parameter and data restriction by construction given Definition V(i)

and to preserve the shape restrictions as they can be ordered given Definition V(ii)-(iii), which

together ensure that this constructed β falls in B and θ(q) = θB(β).

We conclude this section by highlighting that Proposition 2 also shows that the finite-dimensional

problem boils down to solely solving two optimization problems in (26), which produce the end-

points of the identified set. Moreover, as in (21) and (23)-(25), the proof of the proposition explicitly

derives θB and B, the objective and constraint set of these optimization problems, respectively,

which are all revealed to be linear in β. This implies that the optimization problems are linear

programs, a useful observation in their implementation.

3 Extensions

In this section, we briefly consider several extensions of our baseline analysis, whose details are

provided in the appendix for brevity.

3.1 Dimension Reduction

While the optimization problems in Proposition 2 are linear programs, they can nonetheless be

computationally expensive when the dimension of the optimizing variable β is large. As the dimen-

sion of the optimizing variable equals |J ||W|, where |W| is given by
∏

j∈J |Vj |, observe that such

a case arises especially when |J | is large, as in our empirical application. To ensure tractability

in such cases, we propose below two lower-dimensional linear programs that are easier to compute

and can continue to allow us to learn about our parameter.

Our first proposal considers sub-programs of (26) that obtain outer sets containing ΘB. In

particular, given how V how was constructed, observe that the following subset of W

Wr =

w ∈ W : w =
∏
j∈J

v[j] for some v ∈ V

 ≡ {wr
1, . . . , w

r
Mr} ,

captures the collection of price sets that play a role in the definition of the parameter, and in

turn the subvector of β defined over these sets given by βr = (βr′
j : j ∈ J )′ ≡ ϕ(β), where

βr
j = (βj(w

r
1), . . . , βj(w

r
Mr)), is sufficient in determining θB in the sense that there exists a linear

function θrB such that θrB(β
r) = θB(β). Moreover, for the purposes of dimension reduction, observe

that its dimension is given by |J ||V|, which can be substantially smaller than that of β. The
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lower-dimensional linear programs we then consider are those in terms of βr given by

θrB = min
βr∈Br

θrB(β
r) and θ̄rB = max

βr∈Br
θrB(β

r) , (28)

where Br denotes a set of βr determined by linear constraints. Indeed, if Br = ϕ(B), we have

by construction that these programs are equivalent to those in (26). In turn, taking Br to be

such that ϕ(B) ⊆ Br implies θrB ≤ θB and θ̄rB ≥ θ̄B, and hence provides an outer set for ΘB,

i.e. ΘB ∈
[
θrB, θ̄

r
B

]
. In Appendix S.2.1, we provide a natural choice of such a Br determined by

restrictions on βr implied by those in B, which we implement in our empirical analysis, and find to

be tractable and result in informative conclusions.

Our second proposal is to additionally impose separability on the demand functions given which

we can sharply compute the identified set in a tractable manner. In our empirical analysis, we

specifically consider the following separability assumption that imposes that demand to be a sum

of lower-dimensional functions:

Assumption S. (Separability) For each j ∈ J , qj(p) =
∑

m∈J
hjm(pm) for some unknown functions

{hjm : m ∈ J }.

Assumption S imposes demand to be additively separable in prices of all the alternatives. In

Appendix S.2.2, we consider a more general separability assumption and show how Proposition 2

can be extended such that we can similarly use two linear programs as in (26) to compute the

identified set under these additional assumptions. For the purposes of dimension reduction, we

note here that the dimensions of these corresponding programs are strictly smaller than that of β.

For example, in the case of Assumption S, it is given by |J |∑j∈J |Vj |, which we can observe to be

substantially smaller than that of β.

3.2 Parametric Specifications

Our baseline analysis allowed demand to be solely nonparametric. Below, in the spirit of traditional

methods discussed in Section 5, we show how our analysis can be extended to allow for flexible

functional form restrictions on demand. Our analysis straightforwardly allows for the following

general class of functional forms on q.

Assumption P. (Parametric) For each j ∈ J ,

qj(p) =

Kj∑
k=0

αjk · bjk(p) (29)

for some unknown parameters {αjk : 0 ≤ k ≤ Kj} and known functions {bjk : 0 ≤ k ≤ Kj}.
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Assumption P imposes that demand is a linear function of some basis of prices, where the variable

α ≡ (α′
j : j ∈ J )′ with αj = (αj0, . . . , αjKj ) parameterizes demand. As discussed below, we focus on

linear functions for their computational benefits. The assumption allows for a range of flexibility

through the choice of bjk and Kj . For example, in our application in Section 4, we consider

parsimonious polynomial specifications that are parameterizations of the separable functions in

Assumption S given by

qj(p) =
∑
m∈J

K∑
k=0

αjmk · pkm (30)

for each j ∈ J and some unknown parameters {αjmk : m ∈ J , 0 ≤ k ≤ K}. Analogous to tradi-

tional methods, Assumption P allows demand to be point identified in special cases, loosely when

the number of unknown parameters in αj for each j ∈ J is taken to be equal to the cardinality of

the support of observed price variation. However, it also allows for more general cases, where these

functions may not be point-identified.3

In Appendix S.2.3, we show how to compute the identified set when q satisfies Assumption P in

addition to the restrictions in QB. In contrast to the nonparametric specification, as the admissible

space of demand is a finite-dimensional parameterized space, say QP , we can directly compute the

identified set here by searching over q ∈ QP . The arguments to do so are symmetric to those in

Section 2.5.2 to compute θ(Qfd
B ). Specifically, we first transform θ(QP ) in terms of α, i.e. the

variable parameterizing q ∈ QP through (29). We then show that the linear structure of the basis

functions in (29) as well as the function θ and restrictions determining QB can be exploited to

compute bounds as in (26) by solving two linear programs.

3.3 Liquidity Constraints

For our final extension, recall our baseline analysis relied on the expression in Proposition 1, which

required the utilities to be continuous. However, when individuals’ liquidity constraints restrict the

maximum price they can pay for an alternative as in our application in Section 4, this assumption

might be suspect. To see this, let J = J0∪J1, where J0 denotes the set of alternatives with prices

normalized to 0 and J1 denotes those for whom prices vary. Moreover, for each individual, let

Ei denote the (unobserved) maximum price they can afford to pay for those in J1, which implies

C1i(p) = {j ∈ J1 : pj ≤ Ei} is the underlying subset of affordable alternatives in J1 when prices

equal p ∈ P. In this case, denoting by Ũij : R → R the utility function for alternative j ∈ J , the

counterfactual choice at price p ∈ P is given by

Di(p) = argmax
j∈Ci(p)

Ũij(Yi − pj) , (31)

3However, note that the parameterization in (30) is non-nested with those under traditional methods, such as

the Logit specifications considered in Section 5, which impose non-linear and non-separable parameterizations.
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where Ci(p) = J0 ∪ C1i(p), i.e. the utility maximizing choice that accounts for the affordability of

alternatives in J1. Observe that this falls in our baseline setup in Section 2.1 by taking Uij that

does not separate the role of affordability of the alternatives in J1 to be related to Ũij and Ci(p)

such that Uij(Yi− pj) = Ũij(Yi− pj) if j ∈ Ci(p) and Uij(Yi− pj) = maxj0∈J0 Ũij0(Yi)− ϵ otherwise

for some ϵ > 0, i.e. it equals Ũij if the alternative is affordable, and sufficiently small so that it is

never preferred to an alternative in J0 otherwise. In turn, even if Ũij is continuous, Uij for j ∈ J1

can be discontinuous at Yi − Ei, i.e. when the price just relaxes the liquidity constraint.4

Below, we show how to extend our analysis using an alternative expression for the average value

of Ba,b
i that solves (4) in this case defined in terms of Ũij and Ci(p) by

max
j∈Ci(pa)

Ũij(Yi − paj ) = max
j∈Ci(pb)

Ũij(Yi − pbj −Ba,b
i ) . (32)

To do so, we impose the following additional assumption.

Assumption LC. (Liquidity Constraint) For each individual i, there exists some known r ∈ R

such that max
j0∈J0

Ũij0(Yi) > Ũij(Yi − pj) for pj ≥ r and j ∈ J1.

Assumption LC states that there exists an alternative with prices normalized to 0 that is always

preferred to alternatives with varying prices when their prices are large enough to be above some

given r. Alternatively, it imposes that the willingness to pay for the alternatives in J1 must be

bounded by r. Its strength is hence governed by the choice of r and can be made arbitrarily weak by

choosing r to be sufficiently large. For our purposes, following a common approach in the literature

(e.g., Bhattacharya, 2018, Section 2.2), this assumption allows one to model that an alternative is

not in the choice set in terms of prices. This is done by taking its price to be equal to r, so that it

is never preferred, through the following relationship

max
j∈Ci(p)

Ũij(Yi − pj) = max
j∈J

Ũij(Yi − p̃j(p,Ei)) , (33)

where, for each j ∈ J , p̃j is a function such that p̃j(p, e) = pj if pj ≤ e or j ∈ J0 and p̃j(p, e) = r

otherwise, i.e. it takes the price to be equal to pj if the jth alternative is affordable or has normalized

prices, and equal to r if not.

In the following proposition, we show that this relation allows us to express E[Ba,b
i ] in term of a

richer definition of demand than that in (2) that accounts for the individual’s maximum affordable

price. Specifically, taking the support of Ei to be contained in a known discrete set E , let

q̃j(p, e) = Prob
{
argmax

j∈J
Ũij(Yi − pj) = j, Ei = e

}
4In contrast, if additionally only a non-empty subset C0i ⊆ J0 was affordable, Uij for j ∈ J0 remains continuous

when similarly taking Uij(Yi) = Ũij(Yi) if j ∈ C0i and Uij(Yi) = maxj0∈C0i Ũij0(Yi)− ϵ otherwise as prices don’t vary

for these alternatives. In turn, note that the assumption of continuous utilities is not suspect for those in J0 even if

only a subset of them are affordable and we hence don’t explicitly introduce their affordability for ease of exposition.
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for p ∈ P and e ∈ E be this richer version of demand that corresponds to the joint probability

of choosing j ∈ J when all alternatives are affordable and the maximum affordable price equals

e ∈ E .5,6 The proposition essentially follows by applying the arguments from Proposition 1 for each

value of e ∈ E and then summing across these values. To formally state it, as in Proposition 1, for

each e ∈ E , let ∆̃a,b
1 (e) ≤ . . . ≤ ∆̃a,b

|J |(e) denote the ordered values of {p̃j(pa, e)− p̃j(p
b, e) : j ∈ J },

and let J̃ a,b
l (e) = {j ∈ J : p̃j(p

a, e) − p̃j(p
b, e) ≥ ∆̃a,b

l (e)} for 1 ≤ l ≤ |J |. Moreover, let

q̃(e) ≡∑j∈J q̃j(p, e) denote the probability that Ei = e ∈ E , and p̃(p, e) = (p̃j(p, e) : j ∈ J ). Using

this notation, we can state the expression in terms of q̃ ≡ (q̃j : j ∈ J ) as follows.

Proposition 3. For each individual i, let Assumption LC hold and suppose that Ũij is continuous

and strictly increasing for each j ∈ J . We then have that Ba,b
i exists and is unique, and that

E[Ba,b
i ] =

∑
e∈E

∆̃a,b
1 (e)q̃(e) +

|J |−1∑
l=1

∑
j∈J̃ a,b

l+1(e)

∆̃a,b
l+1(e)∫

∆̃a,b
l (e)

q̃j

(
min{p̃(pa, e), p̃(pb, e) + t}, e

)
dt

 . (34)

In this case, given the above expression and that the relation between q in (2) and q̃ equals

qj(p) =
∑

e∈E q̃j(p̃(p, e), e), our general parameter of interest in (7) can be stated in terms of q̃ as7

θ̃(q̃) = ga,b
∑
e∈E

∆̃a,b
1 (e)q̃(e) +

|J |−1∑
l=1

∑
j∈J̃ a,b

l+1(e)

∆̃a,b
l+1(e)∫

∆̃a,b
l (e)

q̃j

(
min{p̃(pa, e), p̃(pb, e) + t}, e

)
dt


+
∑
j∈J

gaj
∑
e∈E

q̃j(p̃(p
a, e), e) + gbj

∑
e∈E

q̃j(p̃(p
b, e), e) . (35)

In Appendix S.2.4, we illustrate how to extend the analysis in Section 2.5 to compute the identified

set for this parameter when the restrictions in (8) and (11)-(13) and the additional ones from

Assumption LC are written in terms of q̃. The main idea remains the same. Specifically, we can

first construct a partition as in (18) but for each value of e ∈ E , and then, as in Proposition 2,

show that taking q̃ to be constant over such a partition leads to no loss of information and allows

computing the identified set by solving two linear programs. Moreover, as in Sections 3.1 and

3.2, we can also extend this analysis to respectively allow for dimension reduction or parametric

assumptions implemented again given each value of e ∈ E .
5In Appendix S.2.4, we discuss how to extend the analysis to allow the support of Ei to be continuous by

choosing a specific partition as in our baseline analysis. However, we focus on the discrete case in our application for

computational reasons and hence focus on this case in the main text for simplicity.
6Note that we take the primitive to be the joint probability, rather than conditional probability of choosing j given

e and the distribution of e. We do so as this ensures that our parameters and restrictions continue to be linear in the

primitives, which our analysis heavily exploits. A limitation of this is that it precludes imposing shape or parametric

restrictions directly on these finer primitives. We leave such an extension for future work, which may require insights

from alternative tools in the literature on unobserved choice sets that introduce such richer primitives—see, e.g.,

Barseghyan et al. (2021) and references therein.
7As in Footnote 1, when ga,b = 0, our analysis can be applied to the case of general price changes and not only

p̃(pa, e) and p̃(pb, e), and also where the weights gaj and gbj depend on e ∈ E .
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4 Evaluation of the DC Opportunity Scholarship Program

4.1 Background

The DC Opportunity Scholarship Program (OSP) was a federally-funded school voucher program

established by Congress in January 2004, and which started accepting students for the 2004-2005

school year. The OSP was structured similarly to other voucher programs that existed at the time

(Epple et al., 2017). It was open to students residing in Washington, DC, and whose family income

was no higher than 185% of the federal poverty line ($18,850 for a family of four in 2004). It could

be used only for K-12 education, and at the time of initial receipt was renewable for up to five

years. It provided students a voucher worth $7,500 that could be used to offset tuition, fees, and

transportation at any private school of their choice participating in the program.

The law that established the program also mandated its evaluation, which culminated with a

final report to Congress (Wolf et al., 2010). The report exploited the fact that the OSP randomly

allocated vouchers to participating students. In particular, Congress expected the program to

be oversubscribed, i.e. the number of applicants would exceed the number of available vouchers.

As a result, it required that vouchers be randomly allocated to applicants through a lottery—see

Wolf et al. (2010) for details on the lottery. Wolf et al. (2010) used this random allocation by

comparing various outcomes of voucher recipients to non-recipients to experimentally evaluate the

effect of voucher receipt on these outcomes. As reported in their executive summary, they find

mixed evidence on the effects of providing a voucher. Specifically, while the receipt of a voucher

improved students’ chances of graduating high school and raised parent’s rating of school safety

and satisfaction, they find no conclusive evidence of any significant effects on various outcomes

corresponding to student achievement.

In what follows, we use the tools developed in the previous sections to complement these findings

by analyzing the welfare effects of the price subsidy induced by the status quo voucher amount as

well as counterfactual amounts. Our analysis is motivated by the fact that while the receipt of

the voucher revealed mixed evidence on outcomes, parents may nonetheless value the voucher,

potentially across dimensions not easily captured by the outcomes. Indeed, as highlighted below,

the data reveals that a non-trivial proportion of voucher recipients used the voucher, which implies

that they value receiving the voucher. Our analysis estimates these potential welfare benefits using

data collected by the OSP.

4.2 Data and Empirical Setting

We use the same data as that in Wolf et al. (2010). It contains detailed information on the school

setting for the first two years of the program, 2004 and 2005, and on a sample of 2,308 students
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who applied to the program in these years. Importantly, for our purposes, it includes the prices

of private schools in the program and the enrollment choices of students. Across the two years,

the composition of applicants and private schools in the program changed. To keep prices and the

set of eligible schools the same for all students, we focus on the second year of the program, 2005,

which contains around 80% of the entire sample. In particular, it yields an analysis sample of 1,816

students. In addition, while these students were tracked for at least four years, we focus on their

enrollment choices from the initial year to avoid complications from dynamics.

We start our analysis by describing how we translate the OSP setting in terms of our setup in

Section 2. For each student in the data, we take Di to denote their observed enrollment choice,

and we let it take values in J = Jv ∪ {g, n}, where Jv denotes the set of all private schools in

the program, and g and n denote the alternatives of enrolling in any government school (which

includes charter schools) and any private school not in the program, respectively.8 In 2005, there

were approximately 70 private schools in the program (out of a total of about 110 in Washington,

DC), and thus we have that |Jv|≈ 70 (rounded to the nearest ten for privacy purposes).

To define the support of the price vector Pi, note that the voucher affected only the prices

(tuition) of private schools in the program, and hence there is no variation in the prices of govern-

ment and private schools not in the program. The prices of the alternatives g and n are therefore

normalized to zero. For the private schools in the program, the variation in prices is determined by

the receipt of the status quo voucher. For each j ∈ Jv, let p
∗
j ∈ R+ denote the original price of the

school recorded in the data, and we take pj(τ) = max{p∗j −τ, 0} to denote its price under the appli-

cation of a voucher of amount of τ ∈ R+, as the voucher provided an amount of at most τ to cover

tuition. Moreover, let p(τ) = (pj(τ) : j ∈ J ) denote the vector of prices under a voucher amount

of τ ∈ R+, where note that pg(τ) = pn(τ) = 0 as their prices are normalized to 0. Denoting by τsq

the status quo amount, the support of the observed prices is then given by Pobs = {p(0), p(τsq)},
i.e. the prices with and without the status quo voucher. As the voucher was randomly assigned,

we have that Assumption E is satisfied.

The objective of our empirical analysis is to learn the welfare effects of the price decrease induced

by the voucher, i.e. (5) when pa = p(0) and pb = p(τ) given by

AB(τ) ≡ E[Ba,b
i ] . (36)

Indeed, when τ = τsq, this corresponds to the effect of providing the status quo voucher amount,

while when τ ̸= τsq, it corresponds to that of a counterfactual voucher amount. To benchmark these

benefits and perform a cost-benefit analysis, we also study additional parameters that measure the

costs the government may face when individuals receive the voucher relative those when they do not

receive it, which can be straightforwardly written as (7). In particular, denoting by {cj(τ) : j ∈ J }
8We separate the alternatives of enrolling in a government school and a private school not in the program, rather

than combining them into a single alternative, as we take the costs associated with them in (37) to be different.
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the costs that the government associates with enrollment in the different alternatives under a

voucher of amount τ , we take the average cost of the voucher to be

AC(τ) =
∑
j∈J

cj(τ)qj(p(τ))− cj(0)qj(p(0)) , (37)

and the average surplus measuring benefit net of cost by AS(τ) = AB(τ) − AC(τ). We take

cg(τ) = cg and cn(τ) = 0, i.e. the cost associated with government schools to be some known value cg

and that with private schools not in the program to be zero; and cj(τ) = min{pj(0), τ}+µ1{τ > 0},
i.e. the cost associated with private schools in the program to be the voucher amount spent to

cover the tuition reduction it induces plus some known administrative cost µ of operating the

program (i.e. charged only when the voucher amount is positive). Importantly, making our cost-

benefit analysis empirically interesting, observe that the average cost here captures the net cost of

providing the voucher as it includes the costs of funding the voucher at eligible private schools as

well as the potential cost savings from students moving out of government schools when offered

a voucher. Indeed, absent the latter costs, the average surplus will otherwise be non-positive by

construction as a student’s willingness to pay for a voucher is necessarily less than the value of

the price decrease it induces at the eligible private school they may enroll at and hence the cost of

funding the voucher at that school.

For the known values in the costs, we take cg = $5,355, which corresponds to the educational

expenditure reported by the US Census (2005). This is lower than total per-pupil expenditure from

the Census ($12,979, which includes some fixed costs), or educational expenditure as measured in

other sources ($8,105, Sable and Hill (2006)). However, as our surplus parameter is increasing

in cg, we choose the smaller, more conservative value. On the other hand, we take µ = $200,

which corresponds to cost of administration, adjudication and providing information to families

for an alternative school voucher program reported in Levin and Driver (1997)—see Figure S.1 for

robustness to a range of other values of cg and µ.9

In the OSP setting, as students were primarily from low-income families, they may be liquidity

constrained and unable to afford all the private schools, a feature commonly arising in education

decisions (Lochner and Monge-Naranjo, 2012). As highlighted in Section 3.3, this casts suspicion

on the assumptions in our baseline setup and hence could bias the resulting estimates. To this end,

in our analysis we also present results under the extension in Section 3.3 that allows students to be

liquidity constrained. When doing so, we take a baseline choice of r in Assumption LC to be equal

to $100,000, which is an order of magnitude larger than the average price of private schools in the

program and around five times the average income of families in the sample. This large value has two

benefits. First, it is conservative in the sense that it makes Assumption LC more likely to hold true.

Second, as we discuss in Section 5.1, it is more consistent with standard parametric models where

9All cost values reported in this paragraph have been adjusted to 2004 dollars.
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Table 1: Enrollment shares across school type by voucher receipt

With voucher Without Voucher Difference

Government schools 0.288 0.901 -0.613

[0.453] [0.299] (0.018)

Private schools not in program 0.014 0.020 -0.006

[0.117] [0.140] (0.006)

Private schools in program 0.698 0.079 0.619

[0.459] [0.270] (0.018)

Observations 1,090 730

Observations rounded to the nearest 10. Standard deviations in square brackets and robust standard errors in parentheses. SOURCE:

Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Department of Education, National

Center for Education Statistics previously unpublished tabulations.

r → ∞. Moreover, we take the discrete support of Ei to equal E = {0, 10,000, 20,000, 30,000}.10
Given the prices of private schools in the program presented in Section 4.3 below, this allows for

types of students who either cannot afford any private school in the program or all of them absent

the voucher, as well as intermediate types that can afford a small or large proportion of them.

4.3 Descriptive Statistics

To better understand our results, we first present some descriptive statistics for the two main

variables in the data our analysis exploits, namely the enrollment choices and original prices of the

private schools that determine the price variation—see Appendices S.5.1-S.5.2 for more details on

the data and various statistics on the schools and the sample of individuals.

Table 1 presents enrollment shares across the three types of schools, i.e. government schools

and private schools in and not in the program, by voucher receipt. A relatively large proportion

(69.8%) choose to take up the voucher as revealed by those enrolled in private schools in the

program. By revealed preference, this implies that recipients value the voucher. In addition, the

voucher increases the proportion enrolling in voucher private schools by 61.9 percentage points,

suggesting that prices play an important role in inducing private school enrollment. The voucher

also produces a nearly symmetric decline in the proportion enrolled in government schools (-61.3

10Discretizing Ei can potentially bias the results as the support may not be sufficiently fine to capture the change

in affordability of schools for some students under a price change. In Figure S.2(a), we analyze this by plotting

estimated bounds for the average surplus following our approach in Appendix S.2.4 that does not require discretizing

Ei. We find that only the upper bounds under the parametric specifications are affected for low voucher values. Note

that while our approach extends to the case without discretization, we focus on the discretized version in the main

text because, as noted in Appendix S.2.4, the dimensions of our programs are substantially larger otherwise, which

we find results in numerical complications when computing confidence intervals. Additionally, our approach without

discretization does not apply to the case where r is allowed to be individual-specific considered in Figure 3.
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Figure 2: Tuition prices across voucher private schools, and enrollment shares across them as well

as government and non-voucher private schools.
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(a) Tuition of private schools in the program
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(b) Enrollment shares

SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.

percentage points) implying that nearly all students induced into voucher schools would be in

government ones absent the voucher.

Figure 2 summarizes the variation in prices across the private schools in the program as well as

the enrollment shares across various ranges of these prices. Figure 2(a) reveals that a large number

of voucher schools had low prices—around 80% had prices below the status quo voucher amount.

Figure 2(b) reveals that the voucher induced a significant proportion to enroll in these low-price

schools—out of the 61.9 percentage point increase in the proportion attending a voucher private

school, a full 59 percentage points (95%) was into schools with prices less than the status quo

voucher amount. Similarly, a large proportion of recipients (81%) redeem the voucher at schools

with prices below the cost of a government school. Given that the majority of these recipients would

have enrolled in government schools absent the voucher as observed from Table 1, this suggests that

the government may face only small net costs or even savings from the provision of a voucher. Our

estimates below make this point more precisely.

4.4 Welfare Estimates

We report estimated lower and upper bounds for the parameters in (36)-(37) for both the status

quo amount of τ = τsq ≡ $7, 500 as well as counterfactual amounts under various specifications

of demand. Under the baseline specification, i.e. that in Section 2.4 and that described in Ap-

pendix S.2.4 in the case of liquidity constraints, the dimensions of the linear programs to do so are

intractable—see Table S.3, which reports the dimensions for the various specification when τ = τsq.

As discussed in Section 3.1, this is because these dimensions are extremely large when the number
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Table 2: Estimated bounds and 90% confidence intervals on welfare effects for status quo amount

Without Liquidity Constraints With Liquidity Constraints

NP P Separable, K NP P Separable, K

Baseline Separable 1 2 3 Baseline Separable 1 2 3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Lower CI 203 203 1,598 1,039 763 203 203 1,598 1,039 763

AB(τsq)
LB 362 362 1,751 1,174 897 362 362 1,751 1,174 897

UB 5,239 3,344 1,853 2,449 2,747 69,465 62,881 31,560 44,065 50,333

Upper CI 5,511 3,559 2,006 2,621 2,931 73,143 67,553 33,969 47,368 54,105

Lower CI -121 -121 -121 -121 -121 -121 -121 -121 -121 -121

AC(τsq)
LB

113 113 113 113 113 113 113 113 113 113
UB

Upper CI 303 303 303 303 303 303 303 303 303 303

Lower CI 77 77 1,453 883 619 77 77 1,453 883 619

AS(τsq)
LB 249 249 1,638 1,061 784 249 249 1,638 1,061 784

UB 5,126 3,231 1,740 2,336 2,634 69,352 62,768 31,447 43,952 50,220

Upper CI 5,441 3,465 1,931 2,545 2,849 72,980 67,665 34,044 47,493 54,198

AB(τsq), AC(τsq), and AS(τsq) denote average benefit, cost and surplus under status quo voucher amount of τsq as defined in (36)-(37) and their difference, respectively.

NP denotes Nonparametric and P denotes Parametric. LB and UB denote lower and upper bound estimates, respectively, and Lower and Upper CI denote lower and

upper values of the confidence interval, respectively. Lower and upper bound estimates are not repeated if they coincide. SOURCE: Evaluation of the DC Opportunity

Scholarship Program: Final Report (NCEE 2010-4018), U.S. Department of Education, National Center for Education Statistics previously unpublished tabulations.

of alternatives is large, which is the case here as |Jv| is close to 70. For our baseline specification, we

therefore compute outer bounds using sub-programs as in Section 3.1, which have a substantially

lower dimension as |V| and |V(e)| for e ∈ E in the case of liquidity constraints is small here. We also

compute bounds under the separability restriction in Assumption S as well as their parameterized

versions in (30) for values of K between 1 and 3, and their analogs under liquidity constraints in

(S.33) and (S.34), respectively. Note that while the outer bounds in the baseline case may not

always be sharp, comparing them to the sharp ones under the nonparametric separable case can

reveal when they are equal and hence sharp. Finally, when estimating the bounds by computing the

linear programs under these various specifications, we note that we replace the enrollment shares

P (Di = j|Pi = p) in the restriction in (8) by their sample analogs that are estimated using the em-

pirical distribution of the analysis sample.11 To account for the subsequent sampling uncertainty,

we then also report 90% confidence intervals, which we construct using a bootstrap procedure (with

1,000 draws) from Bugni et al. (2017) described in Appendix S.3.

Table 2 first presents our results for the status quo voucher amount. In the absence of liquidity

constraints, the average benefit estimates reveal that a large range of benefits are credibly consistent

with the data, with the upper bounds under the nonparametric baseline and most flexible para-

metric specifications given by $5,239 and $2,747, respectively, large relative to the entire voucher

value of $7,500. In contrast, the average cost, which is point identified as it is a function of demand

11We find that all the specifications exactly match the data and so the constraint sets for the programs are non-

empty. If this was not the case, one could straightforwardly apply the procedure from Mogstad et al. (2018) that

allows the specification to not exactly match the data due to sampling uncertainty.
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at the two values of prices observed in the data, equals $113 and is low compared to the voucher

amount of $7,500. As noted in Section 4.3, this is because a large proportion of recipients redeem

the voucher at low-cost private schools relative to government schools they would have enrolled

absent the voucher. Taking the benefits and costs together, the main finding is that the average

surplus is positive, which we can observe is statistically significant and robustly holds under the

baseline specification, and of a potentially large magnitude.

The second half of Table 2 accounts for liquidity constraints. We find that doing so the upper

bounds on the average benefit grow dramatically. Even under the most restrictive parametric

specification with K = 1, the upper bound ($31, 560) is close to four times the value of the voucher.

This means that not accounting for liquidity constraints could substantially downward bias the

possible magnitude of benefits that are consistent with the data. There is no change in the lower

bounds, however, meaning that our finding of positive net benefits is robust to accounting for

liquidity constraints. We also note that under the baseline specification, the upper bound is only

slightly smaller than the proportion of students choosing private schools in the program (69.8%

as reported in Table 1) times $100,000. This captures that those who take up the voucher might

all be choosing schools that were not previously affordable to them, and hence their willingness to

pay is bounded above by the difference between their maximum willingness to pay and the price of

their chosen school without the voucher. Given our choice of r in Assumption LC and that most

students choose relatively cheap schools absent the voucher, this is close to $100,000. In this sense,

the benefits can also be made arbitrarily large by taking a larger value of r. This is intuitive as

unless we sufficiently restrict the tails of the valuation for the alternative, we can have no logical

upper bound on the willingness to pay for it. This is consistent with related work in other settings

and viewed as a transparent benefit of a nonparametric approach (e.g., Tebaldi et al., 2021).

While taking r to be large ensures that Assumption LC is weak, it is arguably reasonable to

presume that students, especially given they are from low-income households, would not be willing

to pay such a large value for private schools. We explore this in Figure 3, where we allow r to be

individual-specific through a function of Ei. Specifically, we take Ri = Ei(1+δ), i.e. their maximum

willingness to pay for a private school in the program is δ% above their maximum affordable price,

and report bounds for the average surplus for a range of values of δ under the nonparametric baseline

specification.12 Given our support for Ei, observe that the possible values for Ri are substantially

below the conservative choice of r = $100, 000. Our results reveal that if one is willing to entertain

such values, the magnitude of the upper bounds substantially reduce. In particular, if we assume

that students are not willing to pay more than they can afford, by taking δ = 0, then the upper

bounds are the same as those in the case without liquidity constraints. This is intuitive as in this

12Our analysis in Appendix S.2.4 under discrete Ei straightforwardly extends to allow for r to depend on Ei by

replacing r in the price function p̃ with Ei(1+ δ) for each Ei = e ∈ E when defining the parameter of interest in (35)

and similarly when taking the restriction imposed on demand in (S.30) under Assumption LC. Figure S.2(b) analyzes

the sensitivity of the estimates to the support of E , and reveals that only the upper bounds are slightly affected.
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Figure 3: Estimated bounds on average surplus for status quo amount under liquidity constraints

when r is made individual-specific and taken to be Ri = (1 + δ)Ei
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Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Department of Education, National Center

for Education Statistics previously unpublished tabulations.

case the liquidity constraints never bind and hence do not affect choices. Alternatively, even if we

relax this and take δ to be greater than 0, the upper bounds remain substantially smaller than those

in Table 2. For example, when δ = 0.5, which can be motivated based on auxiliary post-secondary

data, the upper bound equals $11,548, which is around a fifth of the value of that in Table 2.13

In Figure 4, we next present the results for a range of counterfactual amounts beyond the status

quo, focusing again on our baseline value of r in the case of liquidity constraints. As in the case of the

status quo, the lower bounds with and without liquidity constraints continue to remain the same,

while the upper bounds in the presence of liquidity constraints are substantially larger. Moreover,

for values below the status quo amount, we continue to robustly find positive, potentially large net

benefits—Figure S.3 reveals that this is also generally statistically significant. In contrast, for those

above the status quo amount, the conclusion of positive effects is dependent on the strength of the

assumptions. Specifically, Figure 4(c) reveals that we will necessarily have positive net benefits for

such amounts only if we impose parametric restrictions. This can be explained by the underlying

average benefits and costs in Figures 4(a)-(b), where the bounds for the nonparametric specification

appear to be significantly tighter for voucher values below the status quo rather than those above

it. Intuitively, this is because, unlike the parametric specification, the nonparametric one allows

for unrestricted substitution patterns between schools and also, unlike values of the voucher below

the status quo, there is no additional data at higher voucher amounts to provide information on

13The 2004 National Postsecondary Student Aid Survey (NPSAS) reports percentiles of tuition net of grants as a

percent of family income. We take this as a useful setting to measure an upper bound on δ, since tuition for certain

schools is high and loans are more available to households. The NPSAS topcodes this measure at 100% (the 95th

percentile); to impute the highest level across households we regress the ratio of net tuition to income on a 7th order

polynomial of the percentile in the non-topcoded data and extrapolate to 100%, which returns an estimate of 153%.
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Figure 4: Estimated bounds on welfare effects for a range of voucher amounts
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AB(τ), AC(τ), and AS(τ) denote average benefit, cost and surplus as defined in (36)-(37) and their difference,

respectively. NP denotes Nonparametric and P denotes Parametric, and LC denotes the liquidity constrained

model. SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S.

Department of Education, National Center for Education Statistics previously unpublished tabulations.

the substitution patterns. In turn, the bounds are wide, highlighting that a range of patterns are

nonparametrically consistent with the data.

4.5 The Role of Low-Tuition Schools

We highlighted above that the positive effects arose in part due to the presence of low-tuition schools

in the program that many recipients attend, but that have a small net cost to the government. We

conclude this section by further exploring the importance of these schools under the status quo

voucher amount. Specifically, we analyze how our estimates change when we remove schools having

prices less than a certain amount from the program. For a given κ ∈ R+, let J κ = {j ∈ Jv :

pj(0) ≤ κ} denote the set of private schools in the program with prices no more than κ, and let

pκj (τ) be equal to pj(0) if j ∈ J κ and pj(τ) otherwise, i.e. the voucher amount is applied to only

schools with prices above κ. We then study the parameter in (5) when pa = p(0) and pb = pκ(τ),

ABκ (τsq) ≡ E[Ba,b
i ] , (38)

as well as the analogous version of those in (37),

ACκ (τsq) =
∑
j∈J

cκj (τsq) · qj(pκ(τsq))−
∑
j∈J

cj(0) · qj(p(0)) , (39)
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Figure 5: Estimated bounds on welfare effects when schools with tuition at most κ are removed

from the program
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(b) ACκ (τsq)
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(c) ASκ (τsq)

ABκ(τsq), ACκ(τsq), and ASκ(τsq) denote average benefit, cost and surplus defined in (38)-(39) and their difference,

respectively. NP denotes Nonparametric and P denotes Parametric. All models here take students to be not liquidity

constrained. SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018),

U.S. Department of Education, National Center for Education Statistics previously unpublished tabulations.

and then average surplus given by ASκ (τsq) = ABκ (τsq) − ACκ (τsq), where cκj (τsq) = cj(τsq) for

j ∈ J \ J κ
and cκj (τsq) = 0 for j ∈ J κ, i.e. the same costs as in (37) except that the schools that

are removed from the program are taken to have zero costs.

Figure 5 presents estimated bounds for a range of values of κ. Intuitively, as the baseline

specification imposes no restrictions on substitution patterns and as the data exhibits no variation

where the voucher is applied to only certain voucher schools, the bounds under this specification

can be wide. The bounds under the parametric specification in contrast can be substantially

smaller. Across all specifications, Figure 5(c) suggests that the removal of low-tuition schools from

the program generally results in the reduction of average surplus. Importantly, it reveals that

removing schools with tuition of $3,500 and lower could cause it to have a negative surplus. A

closer look at Figure 2(a) reveals that nearly 30% of schools in the program have tuition of at most

this value. The estimates reveal that these schools play a key role in explaining the positive net

benefits that we find. To provide some suggestive evidence on what features of these schools attract

voucher recipients, Table S.4 compares average characteristics between schools charging above and

below $3,500 in tuition. Consistent with spending less money on instruction and having alternative

sources of funding, the low-tuition schools have larger student-teacher ratios, are less likely to have

individual tutors or programs for students with learning difficulties, and are more likely to be

religious. Quantifying which of these features voucher recipients value, however, requires a richer

model that explicitly models their role in determining choice, which we leave for future work.
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5 Comparison to Traditional Parametric Methods

In this section, we compare our empirical results and conclusions from the previous section to those

we would obtain when applying traditional methods.

5.1 Logit Specifications

Recall from Section 2.3 that our identification problem requires imposing restrictions on how the

demand functions vary with price. Traditional methods do so by imposing a parametric functional

form on demand such that it is point identified by the variation in the data, which in turn point-

identifies our parameters of interest. These parametrizations are commonly implied by imposing

functional forms on the utilities and parametric distributions on the unobserved heterogeneity.

In our comparison, we consider versions of a standard logit parameterization of our empirical

model in Section 4.2 that begins by assuming

Uij(Yi − pj) = ξj − γipj + ϵij (40)

for j ∈ J , i.e utility is linear in prices, with alternative-specific intercepts, individual-specific price

coefficients, and individual and alternative-specific shocks.14 Denoting by Xi a vector of observed

individual covariates, the two versions we consider impose different distributions on the unobserved

heterogeneity γi and ϵij as follows:

Mixed Logit (ML): γi = γ̄0 + γ̄′1Xi + νi, where νi is normally distributed with mean 0 and

variance σ2; and ϵij is distributed independently across j as Type I extreme value.

Nested Logit (NL): γi = γ̄0 + γ̄′1Xi; and ϵi = (ϵij : j ∈ J ) has a CDF evaluated at ϵ equal

to exp(− ∑
k∈{1,2}

(
∑

j∈Nk

e−ϵj/λk)λk) for some λ1, λ2 ∈ R, where N1 = Jv ∪ {n}, N2 = {g}.

The ML specification introduces both observed and unobserved heterogeneity in the price coeffi-

cient, while NL introduces only observed heterogeneity, but allows dependence in the shocks across

alternatives in the same nest, where there are two nests with one consisting of private schools and

the other of government schools.15 We take Xi to be a vector of indicators for which bin the stu-

dent’s family income lies in, where we consider four bins determined by quartiles of its empirical

distribution—see Table S.1 for descriptive statistics on the family income. As noted, each of these

14We do not include distance to school as commonly done as our data does not contain information on it. Alter-

natively, we do not include school characteristics, such as those in Table S.2, as they are subsumed in the alternative-

specific intercepts, unless interacted with individual-specific coefficients. Given our focus is not on preferences for

these characteristics (e.g., Carneiro et al., 2019), we do not introduce such interactions for simplicity.
15In unreported results, we also consider the basic Logit case without unobserved heterogeneity or dependence.

As it produces qualitatively similar results to ML and NL, we focus on these richer specifications for brevity.
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specifications imply a parameteric functional form on the demand function. For brevity, we derive

and present these expressions in Appendix S.4.

We also consider analogous parameterized versions of the liquidity constrained model in (31).

Specifically, we take Ũij to be as that in (40) with different specifications again imposing different

assumptions on γi and ϵij , and C1i(p) to be implied by a linear model on Ei given by

Ei = γ̃0 + γ̃′1Xi + ν̃i , (41)

where ν̃i is normally distributed with mean 0 and variance σ̃2, and statistically independent of ϵi

and γi conditional on Xi. We consider two specifications for γi and ϵij , which correspond to ML

and NL above, but with γ̄1 equal to a vector of zeros. In particular, the variation in covariates here

is exploited to separate the role of the unobserved Ei in determining choice rather than in allowing

for observed heterogeneity in price responses—see, for e.g., Arcidiacono et al. (2021), who estimate

such a model in a related school voucher setup for a further discussion. As in the case without

liquidity constraints, these specifications imply a functional form, but on the richer definition of

demand, namely q̃. Moreover, given that the utilities take values on the entire real line, observe

that Assumption LC is satisfied here only when taking r → ∞—see Footnote 2 in Appendix S.4

for more details. In turn, q as well as the general parameter of interest can be written in terms of

this functional form as in (35) using p̃ taking r → ∞.16 See Appendix S.4 for these expressions

and their derivations.

Table S.5 reports maximum likelihood estimates for the parameters in the above specifications

using the same analysis sample as in Section 4.17 Note that the flexibility in the above parameteri-

zations is carefully chosen such that these parameters are point identified given the binary variation

in prices induced by the voucher, after imposing the usual location and scale normalizations (e.g.,

Train, 2009, Chapter 2.5). As the underlying parameters are point identified, it follows that the

corresponding demand functions are also point identified by plugging in the point identified pa-

rameter values in the expressions for demand, described in Appendix S.4, implied by the various

specifications. Similarly, as we do in what follows, we can estimate demand by plugging the param-

eter estimates from Table S.5 into these demand expressions. We then estimate our parameters of

interest by plugging estimated demand into (7) or, in the case of liquidity constraints that account

for the fact that Ei is continuous, the version of (35) described in Appendix S.4.18

16To this end, to be consistent with this logit implied value of r, note that in the comparison below when obtaining

bounds under our specifications in the case of liquidity constraints, we take our relatively large choice of r = 100,000

discussed in Section 4.2, rather than the more conservative ones considered in Figure 3.
17The likelihood is simply given by

∏N
i=1 qDi(Pi), where N denotes sample size and q corresponds to the implied

demand function under the given specification, whose expressions are derived in Appendix S.4.
18To this end, it is useful to note that the only difference between our analysis in Section 4 and the Logit

specifications is that the former takes Ei to be discrete as noted in Section 4.2, while the latter does not. However,

our results reported in Figure S.2 reveal that our choice of discretization only has a mild effect on the welfare estimates.
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Figure 6: Demand estimates under observed and counterfactual voucher amounts
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(a) Enrollment shares
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(b) Probability of voucher takeup
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(c) Probability of takeup at schools

unaffordable without voucher

NP denotes Nonparametric, and LC denotes the liquidity constrained model. In Panel (a), the numbers in parenthe-

ses denote bootstrap-based p-values using 1,000 draws for specification tests that implied shares equal the observed

ones. SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S.

Department of Education, National Center for Education Statistics previously unpublished tabulations.

5.2 Observed and Counterfactual Demand Estimates

Before proceeding to the welfare estimates under the different logit specifications, we present various

estimates of the demand functions implied by these specifications. In Figure 6(a), we first analyze

how well these demand functions match the observed shares by plotting them over the empirical

enrollment shares in Figure 2(b). Unlike our specifications that exactly match these shares, we

can observe that this is not the case with the logit specifications. Nonetheless, the discrepancies

are small. Heuristically, this is because there is only binary variation in the data, which is not too

demanding to match relative to the flexibility of the logit models. We also statistically test the

null hypothesis of no discrepancies by bootstrapping (using 1,000 draws) a test statistic based on

the sum of squared difference between the implied and observed shares. The p-values reported in

Figure 6(a) reveal that the discrepancies are not statistically significant.

Next, to analyze the implied demand functions at prices beyond those observed in the data,

Figure 6(b) presents demand for the voucher, i.e. probability of choosing j ∈ Jv. Here, in the case of

liquidity constraints, we plot demand taking all schools to be affordable, i.e. Prob[maxj∈J Ũij(Yi−
pj(τ)) ∈ Jv], to analyze how demand responds solely to price without relaxing liquidity constraints.

We can observe that the logit models do not capture the range of demand functions credibly

consistent with the data as revealed by our bounds, but instead all imply demand estimates that

lie close to our lower bounds, where demand for the voucher is the lowest—Figure S.4 reveals that
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Figure 7: Welfare estimates for status quo and counterfactual amounts under various specifications
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(a) Status quo amount
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(b) AS(τ)

NP denotes Nonparametric and LC denotes the liquidity constrained model. AS(τ) denotes average surplus defined

as the difference of (36) and (37). For the nonparametric baseline specification in Panel (a), the intervals denote

the estimated lower and upper bounds, and, for the logit specifications, the markers denote the point estimates and

the dashed intervals denote 90% confidence intervals computed using the percentile bootstrap with 1,000 draws.

SOURCE: Evaluation of the DC Opportunity Scholarship Program: Final Report (NCEE 2010-4018), U.S. Depart-

ment of Education, National Center for Education Statistics previously unpublished tabulations.

this holds even when accounting for statistical uncertainty. This feature is even more pronounced

in the case where students are allowed to be liquidity constrained; demand stays almost the same

to that without liquidity constraints, while our upper bounds transparently reveal that it can in

fact equal one.

Finally, to better understand the magnitude of how liquidity constraints affect choices, Figure

6(c) plots for the liquidity constraint models the probability of voucher take up at schools that

are unaffordable absent the voucher, i.e. Prob[maxj∈Ci(p(τ)) Ũij(Yi − pj(τ)) ∈ C̃i] with C̃i = {j ∈
Jv : pj(0) > Ei}. We can observe that while a positive proportion of students are impacted by

the relaxation of liquidity constraints under the logit models, the proportion is relatively small and

close to the lower bounds under the nonparametric specification. In contrast, the upper bounds

reveal that large magnitudes are potentially consistent with the data. Similar to above, this is

because under a flexible liquidity constrained model, the data allows all students who are taking

up the voucher to do so due to a relaxation of liquidity constraints.

5.3 Welfare Estimates

As the logit models systematically limit attention to demand functions where demand for the

voucher is lowest, it raises the concern that it may lead us to conclude that the welfare gains are

small. We conclude our analysis by assessing this concern relative to the conclusions we obtain in
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Section 4.4 from our robust estimates. To do so, Figure 7(a) presents the estimates for the average

benefit and cost for the status quo amount under the logit specifications along with estimated

bounds under our nonparametric baseline specification, and Figure 7(b) presents the resulting

average surplus estimates in this case as well as under various counterfactual amounts.19

We can observe that the logit specifications all generate estimates that lie within our bounds.

Intuitively, this is because the implied demand functions approximately fall in the estimated version

of QB as they match well the data, as observed in Figure 6(a), and satisfy the shape restrictions in

(13) as Uij is generally increasing given that the estimated price coefficients are negative. In turn,

as in our estimated bounds, they allow us to conclude that there is a positive net benefit for the

voucher—though the conclusion for amounts larger than the status quo is more definitive here as

our estimates caution that positive effects do not hold under the nonparametric specifications.

However, as the logit estimates all lie within a specific area of our bounds, they reveal a different

picture on the magnitudes of the benefits. In particular, while our bounds conclude that there

can potentially be large benefits, all the logit demand functions imply only small benefits. For

example, from Figure 7(a), we can observe that our upper bounds suggest benefits could be up to

three quarters of the value of the status quo voucher in the case without liquidity constraints, but

the logit estimates imply they will be no more than a fourth of its value. Moreover, as the logit

specifications accounting for liquidity constraints imply only a small proportion of individuals are

impacted by the relaxation of such constraints, the attenuation is even starker when accounting for

liquidity constraints. While our bounds transparently reveal the benefits can become arbitrarily

large, they stay almost the same in this case to those without liquidity constraints, and do not

capture that there may exist a large downward bias from not accounting for such constraints. In

summary, as this reveals that these low magnitudes of benefits are not driven by the data or shape

restrictions, we conclude that the demand parameterizations implied by the logit specifications can

indeed affect the conclusions one draws.

6 Conclusion

We develop new discrete choice tools to robustly learn about the average willingness to pay for a

price subsidy and its effects on demand given exogenous, discrete variation in prices. Our tools

show how to characterize what we can learn when demand is allowed to be nonparametric or flexibly

parameterized, both of which imply that our parameters are generally partially identified. We use

our tools to perform a welfare analysis of the price subsidy provided by school vouchers in the

DC Opportunity Scholarship Program. We compare our empirical results to those obtained under

standard logit parameterizations of demand and highlight how they can affect the conclusions.

19We consider only the nonparametric baseline specification here because, as noted in Footnote 3, the Logit

specifications are non-linear and non-separable and hence are non-nested with the remaining specifications.
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