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Abstract

How do movements in the distributions of bank size and income affect the macroeconomy?

To answer this question we develop a dynamic general equilibrium model with heteroge-

neous financial intermediaries, incomplete markets, and aggregate uncertainty. We find that

market incompleteness and uninsured idiosyncratic bank rate of return risk generate minimal

concentration in the bank net worth distribution, leading to an “as-if” result, whereby the

economy behaves as if it had a representative bank. However, introducing ex-ante hetero-

geneity in the banks’ rates of return significantly raises concentration and amplifies real and

financial fluctuations relative to the representative-bank case, as this increases a key suffi-

cient statistic, the average marginal propensity to lend. We then extend the model with two

empirically-validated features of the banking sector—countercyclical return risk and deposit

market power—and show that these amplify and dampen aggregate fluctuations, respec-

tively. Finally, because in the model with ex-ante heterogeneity the distribution of bank size

is highly concentrated, shocks to the largest banks can account for almost all of the aggregate

variation that is due to idiosyncratic risk, leading to granular banking and economic cycles.

The failure of granular banks (“too big to fail”) produces sizeable macroeconomic crises.
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1 Introduction

The 2007-2008 global financial crisis prompted a significant reassessment of the role finan-
cial intermediaries play in the macroeconomy (Gertler and Kiyotaki, 2010; Brunnermeier
and Sannikov, 2014). Fifteen years later, the 2023 U.S. regional banking crisis and the col-
lapse of Credit Suisse have once again brought banks into the spotlight for both academics
and regulators alike. As such, understanding how banks contribute to business-cycle fluc-
tuations remains a matter of critical economic importance.

Most of the existing studies have so far focused on a representative intermediary in
environments where the cross-section of banks plays no role.1 In this paper, we develop a
tractable, quantitative macroeconomic framework where a dynamic distribution of banks
has first-order effects on aggregate fluctuations. Our starting framework features ag-
gregate uncertainty and ex-post bank heterogeneity, which is due to incomplete markets
and uninsured idiosyncratic bank rate of return risk. Each financial intermediary invests
into risky claims on non-financial firms, sources deposits from households, and is sub-
ject to an agency friction. Under perfect insurance, and in the absence of idiosyncratic
shocks, our framework nests the canonical Real Business Cycle model and the Gertler
and Kiyotaki (2010) and Gertler and Karadi (2011) class of influential representative-bank
macro-banking models as special cases.

Our modeling approach eliminates scale invariance: all dynamic choices in the financial
sector depend on bank-specific net worth. The resulting equilibrium yields a non-trivial,
dynamic distribution of bank size. The presence of aggregate risk makes this distribution,
in principle, an infinitely-dimensional dynamic object and a relevant state variable. We
resort to numerical methods and to the Krusell and Smith (1996, 1998) algorithms to
solve the model fully non-linearly. We show that the equilibrium, reminiscent of the
result in the stochastic growth model of Krusell and Smith (1998), features ”approximate
aggregation”, whereby all aggregate variables can be accurately described as a function of
two states: exogenous aggregate productivity and the first moment of the bank net worth
distribution.

The combination of ex-post heterogeneity and aggregate uncertainty generates a bank
net worth fluctuation problem analogous to the canonical Bewley-Imrohoroğlu-Huggett-
Aiyagari framework (Bewley, 1977; Imrohoroğlu, 1989; Huggett, 1993; Aiyagari, 1994).
With these features, we show that the model produces an ”as-if” result, whereby the
economy behaves as if it were populated by a representative bank (Werning, 2015). In
order to understand this finding, we introduce the notion of marginal propensity to lend

1We discuss the handful of relevant exceptions in the literature portion of this section.
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(MPL), defined as the bank-specific response of lending to a marginal change in bank-
specific net worth. The key insight is that the general-equilibrium average MPL in the
model with ex-post heterogeneity is essentially identical to the MPL of the representative
bank. While the distribution of banks features some dispersion and net worth moves
around, it is still strongly at odds with the data: there are too few small banks with low
levels of net worth and the degree of concentration among the high-net worth banks is
too low. Hence, all net worth is accumulated by banks with approximately the same slope
of the lending policy function, leading to approximately symmetric lending choices. As
a result, exact aggregation is achieved, with the distribution having limited aggregate
effects.

Next, we extend the model by introducing a further core element: ex-ante heterogeneity
in the banks’ rate of return. In addition to stochastic shocks, banks now permanently
differ in terms of an ex-ante characteristic. This feature could be capturing, for example,
permanent differences in the quality of “screening devices” (Stiglitz and Weiss, 1981)
across banks. The model with both ex-ante and ex-post heterogeneity generates realistic,
right-skewed ergodic distributions of bank size (assets, deposits, and net worth). Both
asset and deposit markets are considerably concentrated, almost exclusively due to the
presence of permanent bank returns inequality. This version of the model also generates
financial and business-cycle statistics that approximate cyclical properties of the different
moments of the U.S. economy rather well.

We find that the baseline model with both ex-ante and ex-post bank heterogeneity,
unlike the starting version with only idiosyncratic risk, significantly amplifies real and
financial fluctuations relative to the representative-bank case. In this baseline economy,
the MPL is heterogeneous, increasing in permanent returns, and declining in bank size.
Smaller banks have a greater sensitivity of lending with respect to changes in net worth.
Crucially, the average MPL of the economy is greater than the MPL in a representative-
bank benchmark. Ex-ante heterogeneity introduces a mass of banks that are very large
and with a low MPL. However, their share is not high enough to counteract the larger
mass of small, high-MPL banks. As a result, the average MPL is larger relative to the
representative-bank case, and the economy—total bank lending and aggregate output in
particular—is more responsive to exogenous shocks.

Our model features distributional state-dependency: the transmission of aggregate
shocks depends on the degree of ex-ante financial fragility. Suppose that a negative ag-
gregate TFP shock hits the economy conditional on a financial shock that shifted, in the
previous quarter, the distribution of bank net worth leftward. We find that a negative
aggregate shock that occurs once the banking sector is already fragile generates a more
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severe financial and real-economy contraction. Excess contraction scales with the dura-
tion and severity of the prior financial shock. The mechanism for this outcome relies on
the MPL heterogeneity logic: the fragile economy features a higher starting average MPL
because a greater number of banks are close to zero net worth. As a result, any subsequent
negative aggregate shock becomes more detrimental.

Granularity plays a crucial role in shaping the business cycle in our model. More
than sixty per cent of the variation in aggregate output due to idiosyncratic risk can be
accounted for by shocks hitting only the top decile of the banking distribution. This pattern
is reminiscent of the Pareto principle and the ”eighty-twenty” rule (Gabaix, 2009). In our
model, idiosyncratic shocks to large banks alone can lead to endogenous real and financial
fluctuations even in the absence of any aggregate disturbances. This result complements
the findings in Carvalho and Grassi (2019) for the case of non-financial firms and further
advances the broader granular hypothesis agenda (Gabaix, 2011).

Our model is well-suited for the study of two salient dimensions of financial crises:
the ones deriving from large aggregate contractions and the ones deriving from bank
failures. For one, we employ the event-study approach that is popular in the open-
economy macroeconomics literature (Calvo et al., 2006; Mendoza, 2010), simulate the
model for a large number of periods, and identify crisis events as incidents of aggregate
output falling below a certain threshold. Our framework generates realistic banking
and economic crises. When the baseline economy is parameterized to fit the collapse
of U.S. GDP during the Great Recession, the representative-bank economy can account
for less than one-third of the actual observed contraction of output in the data. Also,
the contraction in bank assets and net worth during a financial crisis episode is an order
of magnitude larger in the Bewley Banks economy relative to the representative-bank
case. Second, we focus on the macroeconomic consequences of bank failures. We study the
economic impact of defaults of different bank types (large vs small). The failure of granular
banks (i.e., banks that belong to the highest size percentile) leads to large crises: fifty per
cent of the economy-wide bank equity is wiped out and aggregate output contracts by
seven and a half per cent. Hence, our model features simultaneously granularity and a
too-big-to-fail property.

Finally, we extend the model with two empirically-validated features of the banking
sector: counter-cyclical rate of return risk and deposit market power. In the data, transitory
return risk faced by commercial banks is counter-cyclical, i.e., aggregate state-dependent.
In recessions, the first and the third moment of the distribution of idiosyncratic return
draws both fall. In other words, both the mean and the skewness of transitory returns
are pro-cyclical and banks get exposed to greater downside risk to their portfolios in
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bad aggregate states. We find that counter-cyclical idiosyncratic bank return risk per se
amplifies aggregate fluctuations. The intuition for this result is that entering a recession
triggers the switch towards a more left-skewed density of idiosyncratic draws: banks are
more heavily exposed to downside risk. Once this downside risk materializes, a fraction of
banks experiences extremely bad portfolio outcomes. Bank lending contracts, aggregate
production stalls, and consumption falls.

Departing from the perfect competition assumption, we finally introduce market
power on the deposit side of banks. Households save either in mutual funds or bank
deposits, but derive utility from the special liquidity services provided by deposits. Inter-
nalizing this effect, banks charge a markdown below the risk-free rate. Because marginal
liquidity preferences are aggregate state-dependent, markdowns vary over the business
cycle. Moreover, since banks are heterogeneous, markdown choices explicitly depend
on bank size, the distribution of which is itself aggregate state-dependent. The model
generates counter-cyclical deposit markdowns, in line with the data. This result hinges
on the endogenous stickiness of the interest rate on deposits. In a bad aggregate state,
bank lending and output both contract, but gradually, due the slow response of net worth.
Since the contraction is persistent, and follows a hump-shaped dynamic, consumption
growth falls, leading to a fall in the risk-free real interest rate. Banks, however, exercise
their market power in order to dampen a deposit flight and lower the deposit rate by less
than the risk-free rate, leading to a counter-cyclical markdown. Overall, deposit market
power dampens the effects of aggregate shocks relative to the baseline model with perfect
competition. Banks, by raising markdowns in bad aggregate states, try to protect the
demand for deposits, thereby allowing depositors (households) at the margin to smooth
their response to shocks, preventing deposit withdrawals and the resulting contraction in
lending.

Related Literature The paper relates to several literature strands that span macroeco-
nomics, banking, and financial economics. To begin with, our work belongs to the new,
burgeoning literature on heterogeneous financial intermediaries. Among others, the lit-
erature includes such contributions as Gerali et al. (2010); Martinez-Miera and Repullo
(2010); Christiano and Ikeda (2013); Cuciniello and Signoretti (2015); Boissay et al. (2016);
Jamilov (2020); Rios Rull et al. (2020); Dempsey (2024); Goldstein et al. (2023); Abadi et al.
(2023). Coimbra and Rey (2023) develop a general equilibrium model with financial inter-
mediaries that are ex-ante heterogeneous in Value-at-Risk constraints, i.e., preferences for
risk-taking. Corbae and D’Erasmo (2021) build a quantitative model of banking industry
dynamics with uninsured idiosyncratic return risk and imperfect credit-market competi-

5



tion. Bianchi and Bigio (2022) study the credit channel of macroeconomic transmission
in a macro-banking framework with stochastic deposit withdrawal shocks. Begenau and
Landvoigt (2021) build a quantitative model with two banking sectors that approximate
the empirically-documented divide between standard commercial and “shadow” banks.
Mendicino et al. (2024) study optimal bank capital requirements in a quantitative model
with “twin defaults”: simultaneous failures of financial and non-financial firms. Our
contribution relative to this stream of papers is to (i) study the interaction of both ex-ante
and ex-post bank heterogeneity with aggregate uncertainty, (ii) emphasize the marginal
propensity to lend as a sufficient statistic for equilibrium model dynamics, (iii) and ex-
tend the baseline framework with counter-cyclical bank income risk and deposit market
power—two salient features of the data.

Furthermore, we are contributing to the so-called “macro-finance” section of the lit-
erature that embeds the financial intermediary sector into macroeconomic frameworks.
(Cúrdia and Woodford, 2001; Brunnermeier and Pedersen, 2009; Adrian and Shin, 2010;
Jermann and Quadrini, 2013; He and Krishnamurthy, 2013; Adrian and Shin, 2014; Clerc
et al., 2015; Elenev et al., 2021; Bocola and Lorenzoni, 2023; Amador and Bianchi, 2024).
The broad idea can be understood as quantifying the impact of general-form financial
frictions on aggregate dynamics (Kiyotaki and Moore, 1997; Bernanke et al., 1999; Cooley
and Quadrini, 2001). Our paper’s modelling approach is related to the seminal setup in
Gertler and Kiyotaki (2010) and Gertler and Karadi (2011), which has been furthered in
such works as Gertler et al. (2012), Bocola (2016), Gertler et al. (2016), Nuno and Thomas
(2017), Gertler et al. (2020), and Faccini et al. (2024). Our study particularly emphasizes
the departure from the representative intermediary assumption and its first-order impact
on business-cycle fluctuations.

Our paper builds on a vast banking literature (Diamond, 1984; Bernanke and Blinder,
1988; Holmstrom and Tirole, 1997; Diamond and Dybvig, 1983; Carlstrom and Fuerst,
1997; Bernanke and Gertler, 1995; Allen and Gale, 1998; Hellman et al., 2000; Allen and
Gale, 2004). The counter-cyclical return risk extension of our baseline model is inspired
by the studies that find similar patterns for households and non-financial firms and show
that those matter for business cycles (Storesletten et al., 2004; Guvenen et al., 2014; Krueger
et al., 2016). Finally, the deposit market power extension of our framework is modelled
in the spirit of the deposits channel of monetary policy (Drechsler et al., 2017, 2021; Wang
et al., 2022) and the money-in-utility framework (Sidrauski, 1967; Galı́, 2008). Some of the
contributions to the vibrant literature on banking competition include Boyd and Nicolo
(2005); Egan et al. (2017); Heider et al. (2019); Kurlat (2019); Polo (2021); Whited et al.
(2021); Di Tella and Kurlat (2021); Wang (2024).
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2 Model

This section lays out a business-cycle model with heterogeneous banks. Time is discrete
and infinite. The economy is populated by four agents: a representative household, a rep-
resentative capital good producer, a representative final good producer, and a continuum
of heterogeneous financial intermediaries (banks, for short) that are indexed by j ∈ [0, 1].

2.1 Households

The representative household’s preferences are separable inter-temporally and discounted
at the rate of β ∈ (0, 1). The household derives utility from consumption, Ct, and disutility
from labor (measured in hours), Ht. Preferences are given by:

maxEt

∞∑
k=0

βkU
(
Ct+k,Ht+k

)
(1)

Denote with ψ the elasticity of intertemporal substitution, 1
χ2

the elasticity of labor
supply, and χ1 the parameter that gauges labor disutility. The period utility function is
of CRRA form and features intra-temporal non-separability between consumption and
hours in the spirit of Greenwood et al. (1988):

U(Ct,Ht) =


1

1−ψ

(
Ct − χ1

H1+χ2
t

1+χ2

)1−ψ

, ψ , 1

ln
(
Ct − χ1

H1+χ2
t

1+χ2

)
, ψ = 1

(2)

Households can save in the form of one-period deposits, bt( j), in bank j. Deposits pay a
non-contingent gross rate of return Rt. Let Wt be the wage rate, Tt lump-sum taxes, and
Πt bank dividend transfers, all of which are taken as given. Households maximize utility
subject to a sequence of budget constraints:

Ct +

∫ 1

0
bt( j)dj ≤

∫ 1

0
Rtbt−1( j) +HtWt +Πt + Tt (3)

The first-order condition for bank deposits is given by:

Rt+1 =

[
Et

(βu′
(
Ct+1

)
u′

(
Ct

) )]−1

(4)
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where Λt+1 ≡ βu′(Ct+1)
u′(Ct)

denotes the stochastic discount factor. Finally, the first-order
condition for labor supply is given by:

Ht =

(
Wt

χ1

) 1
χ2

(5)

2.2 Non-Financial Firms

There is a continuum of measure one of perfectly competitive firms that produce the final
good, Yt, using an identical constant returns to scale Cobb-Douglas production function
with aggregate capital, Kt, and labor, Ht, as inputs:

Yt = AtKα
t H1−α

t , 0 < α < 1 (6)

where At is aggregate productivity. At is stochastic and takes on two possible values: AH

and AL which represent, respectively, good and bad states. The shock follows a first-order
Markov structure with πa the matrix of transition probabilities.

There is a continuum of identical capital producing firms indexed by i. These firms are
cash-strapped and depend on banks for external financing. Individual bank-level claims
on firms, lt( j), are perfect substitutes and get aggregated into the stock of total claims as
follows:

Lt =

∫ 1

0
lt( j)dj (7)

Each capital producing firm intakes claims Lt(i) and produces Φ(Lt(i)) new units of the
capital good, where Φ(.) is a transformation function such that Φ′ > 0 and Φ′′ < 0. The
decision problem of each producer is thus:

max
Lt(i)

QtΦ
(
Lt(i)

)
− Lt(i)

Given the symmetry for capital producers (Lt(i) = Lt), the aggregate price of capital is

pinned down as follows: Qt =

[
Φ′

(
Lt

)]−1

. Finally, the return on capital—which banks will

be taking as given—is given by:

Rk
t+1 =

At+1αKα−1
t+1 H1−α

t+1

Qt
(8)

After being used in the production of the final good, capital fully depreciates.
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2.3 Banks

There is a continuum of banks indexed by j. The role of banks in the economy is to source
deposits, bt( j), from households and invest into the capital producing firms via claims, lt( j).
Deposits pay a state non-contingent interest rate, Rt. Banks are risk neutral, accumulate
net worth, nt( j), maximize the present discounted value of their franchise value, Vt( j), and
exit the economy with an exogenous probability (1 − σ) > 0, upon which their franchise
gets transferred to the household in the form of dividends.2

Ex-Ante and Ex-Post Heterogeneity Banks are ex-ante heterogeneous due to permanent
differences in the efficiency of intermediation κ ∈ Θ. A higher κ( j) allows bank j to
consistently identify more profitable lending opportunities, yielding permanently higher
returns for the same amount of claims held. For example, this could be due to differences
in monitoring skills and ability (Diamond, 1984) or screening devices (Stiglitz and Weiss,
1981).

In addition, markets are incomplete and bank returns feature uninsured idiosyncratic
rate of return risk, ξt( j), in the spirit of Benhabib and Bisin (2018) and Benhabib et al. (2019).
All banks earn a common aggregate net return on capital, rk

t , which is perturbed by the
aforementioned permanent and transitory components of rate of return heterogeneity.
The bank-level gross total portfolio return, RT

t ( j), is therefore:3

RT
t ( j) = 1 + κ( j)ξt( j)rk

t (9)

At the beginning of time, permanent return types κ( j) are drawn by nature from
a power law distribution, specifically a Type 1 Pareto density with a shape parameter
ακ > 0 and a normalizing minimal value km:

κ( j) ∼ P(ακ, km), Prob(κ > km) =
(

km

κ

)ακ
(10)

The transitory rate of return risk, ξ ∈ Ξ, follows an AR(1) process with shocks drawn
from a Gaussian distribution:

ξt( j) = (1 − ρξ)µξ + ρξξt−1( j) + ϵt( j), ϵ ∼ N(0, σξ) (11)
2Observe that there is no endogenous bank exit and dividends are paid out only once. In contrast,

Corbae and D’Erasmo (2021) allow for endogenous exit and pre-exit dividend payments.
3The permanent-transitory risk mixture is common to other work in the literature. See, e.g., Guvenen

et al. (2023) in the context of household income risk and wealth taxation. See also the review article by
Kaplan and Violante (2022) with a summary of ex-post and ex-ante heterogeneity approaches in modern
macroeconomics.
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Balance Sheet Banks start each period with an initial stock of net worth n ∈ N ⊂ R+.
Each banking franchise is required to pay operational, non-interest variable expenses that
are increasing and convex in book assets under management: ζ1lt( j)ζ2 with ζ1 > 0 and
ζ2 > 1.4 Importantly, the convexity of these costs breaks scale invariance and makes bank
size (net worth) a relevant state variable. The law of motion of bank-level net worth, nt( j),
can be written as:

nt+1( j) = RT
t+1( j)lt( j) − Rt+1bt( j) − ζ1lt( j)ζ2 (12)

At all times and for all banks, the balance sheet constraint must hold:

bt( j) + nt( j) = lt( j) (13)

Agency Friction We follow Gertler and Kiyotaki (2010) and Gertler and Karadi (2011)
and postulate that the banking sector is subject to an agency friction. Bankers have an
incentive to divert a fraction λ > 0 of the franchise value, Vt( j), for personal use. If a
diversion is successful, the franchise is bankrupt and only the remaining fraction, (1 − λ),
is recovered by depositors. In order to limit the banker’s incentive to divert assets, bank
assets should not exceed an endogenous threshold given by the franchise value of the
bank. This yields the following incentive constraint that limits the leverage multiple:

λlt( j) ≤ Vt( j) (14)

Dynamic Bank Problem We now adopt a recursive notation and drop the time and ( j)
indexations temporarily. The aggregate state of the economy is characterized by (Γ,A).
Γ is a probability measure defined on the Borel algebra B that is generated by the open
subsets of the product space B = N ×Θ × Ξ, representing the endogenous, time-varying
cross-sectional distribution of bank net worth, permanent return types, and transitory
return draws. The part of the law of motion of the aggregate state that concerns A is
exogenous and can be described by the transition matrix πa. The law of motion of the
distribution is denoted by F, such that Γ′ = F(Γ,A,A’).

The relevant idiosyncratic state vector includes net worth, n, as well as the permanent
and transitory components of return heterogeneity, κ and ξ. The stream of future flows
of net worth is discounted by β and augmented by the exogenous dividend rule (1 − σ).
Banks take their initial net worth as given and choose how much to invest into firms, l,
and how much to borrow from households, b. The competitive structure in both asset and

4Alternatively, the adjustment of the quantity of loans is costly and the cost must be incurred at the bank
franchise level.
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deposit markets, exogenous processes, and aggregate prices are taken as given. Taking
into account that banks cannot operate with negative equity, the dynamic banking problem
takes the following form:

V(n, κ, ξ;Γ,A) = max
{l,b,n′}≥0

{
βE [(1 − σ)n′ + σV(n′, κ, ξ′;Γ′,A′|ξ,A)]

}
(15)

subject to:

n′ =
[
1 + κE

(
ξ′rk′(Γ′,A′|Γ,A)

)]
l − R′b − ζ1lζ2

b + n = l

λl ≤ V(n, κ, ξ;Γ,A)

Γ′ = F(Γ,A,A′)

Partial Equilibrium We can obtain a partial-equilibrium solution to the banking prob-
lem, in which the law of motion Γ and all aggregate quantities and prices are taken as
given. First, we substitute out the balance sheet constraint and the law of motion of net
worth in order to obtain a simplified version of the problem:

V(n, κ, ξ;Γ,A) = max
l≥0

{
EΩ

[(
1 + κξ′rk′(Γ′,A′|Γ,A) − R′

)
l − ζ1lζ2 + R

′

n
]}

subject to:

λl ≤ V(n, κ, ξ;Γ,A)

Γ′ = F(Γ,A,A′)

where we have definedΩ ≡ β
(
1−σ+σV(n′,κ,ξ′;Γ′,A′|ξ,A)

n′

)
as the bankers’ augmented discount

factor. Risk-neutral banks lever up until the leverage constraint binds. Then, the policy
function for banks’ choice of assets, L, as an implicit function of the choice variable, l, is:

L(n, κ, ξ;Γ,A) =
E
{
Ω

(
R′n − ζ1lζ2

)}
λ − E

{
Ω

(
1 + κξ′rk′(Γ′,A′|Γ,A) − R′

)} (16)

The complete solution to the banking problem is therefore a pair (V,L), i.e., the value
function and the corresponding policy function for claims.

Before proceeding, it is useful to briefly compare the formula for L above with the
analogous expression LGK in the representative-bank benchmark (Gertler and Kiyotaki
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(2010), equation 27):

LGK =
E
{
ΩR′

}
λ − E

{
Ω (1 + rk′(Γ′,A′|Γ,A) − R′)

}n

There are two substantive differences. First, note the presence of non-interest expenses
in the numerator of equation (16). This departure implies that the scale of the bank
matters and net worth is a relevant state variable, which is not the case in the standard
model. Second, observe the presence of permanent and stochastic heterogeneity, κ and ξ,
in equation 16. This suggests that—irrespective of whether the model is scale invariant or
not—banks’ lending choices will vary by the level of both κ and ξ. Taken together, the two
departures confirm that the relevant idiosyncratic state vector of the banking problem is
(n, κ, ξ), which is substantively richer than in the standard framework.

Marginal Propensity to Lend It is useful to introduce the concept of marginal propensity
to lend (MPL), defined as the change in bank-level lending out of a marginal change in
bank’s net worth. The MPL can be computed directly from equation (16):

MPL =
E {ΩR′}

λ − E
{
Ω (1 + κξ′rk′(Γ′,A′|Γ,A) − R′)

}
+ ζ1ζ2lζ2−1

(17)

It is clear from this formula that the MPL varies by both permanent and transitory
returns (κ and ξ, respectively) as well by size (l). Note that the MPL is increasing in κ
and ξ and decreasing in size. It is again useful to compare (17) to its representative-bank
counterpart in Gertler and Kiyotaki (2010):

MPLGK =
E
{
ΩR′

}
λ − E

{
Ω (1 + rk′(Γ′,A′|Γ,A) − R′)

}
Notice that the MPLGK in this case does not vary by bank—either by size or by the return
profile—and is determined solely by aggregate variables. Conversely, the sensitivity of
lending to net worth changes will vary by bank in our framework. It is important to
emphasize that this still pertains to a partial-equilibrium logic, i.e., when the banks’
distribution and aggregate quantities and prices are taken as given. We now describe the
general equilibrium properties of the model.
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2.4 Dynamics of the Banking Distribution

In order to solve the banking problem above, individual banks must forecast the distri-
bution, Γ. This is necessary in order to determine the next period’s return on aggregate
capital, Rk

t+1, which depends on the future capital stock, Kt+1, which is in turn pinned down
by claims, Lt+1. However, Γ is a high-dimensional object, endogenous, and time-varying.
We build on the canonical Krusell and Smith (1998) method and assume that banks form
linear, limited-information forecasts based on a small set of I moments of the distribution
m ≡ (m1,m2, . . . ,mI). The law of motion can then be reformulated in terms of the dynamics
of these moments: m′ = F(m,A,A′).

Specifically, we choose I = 1 and assume that F is log-linear. We later verify that
tracking the first moment is sufficient. The forecast for the first moment (mean) of the
distribution of net worth, N̄, is thus as follows:

A = AL : log N̄′ = βN
L,0 + β

N
L,1N̄ (18)

A = AH : log N̄′ = βN
H,0 + β

N
H,1N̄ (19)

The forecast for the first moment of the distribution of bank claims, L̄, conditional on net
worth, is:

A = AL : log L̄′ = βL
L,0 + β

L
L,1N̄ (20)

A = AH : log L̄′ = βL
H,0 + β

L
H,1N̄ (21)

Conditional on the forecasted L̄t+1, quantities Kt+1 and Ht+1, and prices Wt and Qt are
pinned down by the joint solution to the non-financial firm problem and the labor supply
condition. As a result, the forecast for Rk

t+1 can be successfully constructed and the banking
problem can be solved. See Appendix C.1 for details on our computational algorithm.
See also Appendix C.2 for numerical accuracy checks.

2.5 Market Clearing and General Equilibrium

In order to close the model, we impose the market clearing conditions. The goods market
equilibrium is as follows:5

Yt = Ct (22)

5As is common in the literature, we assume that aggregate non-interest expenses are rebated lump-sum
to the household for their financial services.
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Equilibrium in the credit market requires:∫
ξ

∫
κ

∫
n

n∗(n, κ, ξ)Γt−1dndκdξ +
∫
ξ

∫
κ

∫
n

b∗(n, κ, ξ)Γtdndκdξ =
∫
ξ

∫
κ

∫
n
L(n, κ, ξ)Γtdndκdξ

(23)
where n∗, b∗, and L(n, κ, ξ) are policy functions for net worth, deposit supply, and claims,
respectively. Equilibrium in the asset market reads as follows:

Kt+1 = Φ

(∫
ξ

∫
κ

∫
n
L(n, κ, ξ)Γtdndκdξ

)
(24)

Finally, the labor market clears by Walras’ law.

Equilibrium A recursive competitive equilibrium consists of the law of motion of the
banking distribution Γ, the bank value and policy functions (V,L), and policy functions
for the household (C∗,H∗,B∗) such that, given a vector of aggregate pricing functions
{R,Rk,Q,W}, (i) the value and policy functions of all agents solve the corresponding
decision problems; (ii) Γ is consistent with agents’ optimization; (iii) prices are determined
by first-order conditions as above; (iv) all markets clear.

2.6 Discussion

Before proceeding, we briefly discuss some of our modeling choices and implications.
First, a critical building block of our model is market incompleteness and uninsured
idiosyncratic bank rate of return risk. In the classic banking model of Diamond (1984),
idiosyncratic bank income risk is eliminated if banks can fully diversify their lending and
investment positions. In practice, however, bank portfolios are often concentrated and
unhedged, which comes with financial and real-economy consequences (Galaasen et al.,
2021). The object ξt( j) thus captures, in a parsimonious and reduced-form way, the banks’
exposure to idiosyncratic firm performance shocks and the inability to hedge that risk.

Second, we have assumed that the sole general type of liability that banks can issue
to raise funds is short-term non-contingent debt. In reality, state-contingent debt (outside
equity) provides an additional hedging instrument against idiosyncratic and aggregate
fluctuations in net worth. Gertler et al. (2012) build a macroeconomic model with a
representative bank that has the option to issue outside equity and, as a result, navigate
its risk exposure. While it is in principle possible to introduce costly outside equity
issuance into our baseline model, our results are unlikely to change materially if the cost
is sufficiently high and/or convex in the short run. Banks with low levels of net worth—
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which, as we will see, are critical for our analysis—would be particularly unlikely to bear
such cost, yielding similar distributional implications.

Third, an additional source of external funds for banks can be the wholesale funding
(interbank) market. Lending and borrowing on the interbank market can help banks
navigate the short-run liquidity and net worth fluctuation problems. Bianchi and Bigio
(2022) build a macro-finance framework with a representative intermediary, idiosyncratic
deposit withdrawal risk, and an over-the-counter interbank market. They show that
frictional interbank trading can have first-order effects on the macroeconomy and the
conduct of monetary and liquidity policies. While important in practice, we abstract from
this non-trivial extension in this paper and leave it for future research.

Fourth and finally, our benchmark framework studies a competitive banking sector
while a deposit market power extension is introduced in Section 6.3. However, our
model abstracts from imperfect competition in the loan market. Corbae and D’Erasmo
(2021) (CD, henceforth) study banking industry dynamics in an empirically consistent,
quantitative macro-banking environment with loan market power and credit markups.
CD also compute a competitive equilibrium version of their model in order to compare to
the benchmark with loan market power. Specifically, since CD’s dominant-fringe model
nests the perfectly competitive version as a special case, they set the cost of big bank entry
large enough and calibrate the competitive model to match the same moments as in the
benchmark.

3 Taking the Model to the Data

This section describes how we take our model to the data. One model period corresponds
to a quarter. Table 1 summarizes the values of all parameters. Table 2 reports calibration
targets and select moments in the model and in the data.6 See Appendices A.1 and A.2
for more details on the data and the calibration targets.

3.1 Parameterization

We begin with the parameters that pertain to household preferences. We set relative risk
aversion, ψ, as well as the Frisch labor supply elasticity, 1

χ2
, to 1 following the literature

(Kaplan et al., 2018). The discount factor β is set to 0.996 in order to target an annualized

6While the discussion focuses on the baseline economy with ex-ante and ex-post bank heterogeneity,
we note that every relevant variation of the model is separately re-calibrated in order to hit the same target
moments.
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Table 1: Model Parametrization

Parameter Value Description Target/Source

Households

ψ 1 Risk aversion Literature
β 0.996 Discount factor Interest rate
χ1 18.6 Labor disutility Average hours 0.3
χ2 1 Labor supply elasticity Literature

Firms and Technology

α 0.33 Capital share Literature
a 4.59 Production technology Capital price 1
b 0.75 Production technology Price elasticity of lending 0.25

Banks

σ 0.973 Bank survival rate Gertler and Kiyotaki (2010)
λ 0.1295 Share of divertible assets Average leverage 6.5
ζ1 3.00E-05 Non-interest expsense, linear Non-interest cost to assets ratio 0.015
ζ2 2 Non-interest expsense, quadratic Normalization
ακ 1 Permanent types, Pareto Zipf’s law in Call Reports data

Stochastic Processes

σξ 0.085 Volatility, idiosyncratic risk Call Reports data
ρξ 0.553 Persistence, idiosyncratic risk Call Reports data
{AL,AH} {0.994, 1.006} States, aggregate risk Output volatility 0.01
{πLL, πHH} {0.9, 0.9} Transition matrix, aggregate risk Literature

Additional Parameters for Extensions

µH 0 Countercyclical return mean, high state Call Reports data
µL -0.02 Countercyclical return mean, low state Call Reports data
λH 0 Countercyclical returns skewness, high state Call Reports data
λL -0.5 Countercyclical returns skewness, low state Call Reports data
νb 0.12 Deposits in utility Average markdown 0.8
θb 38 Elasticity of substitution across deposits Markdown-size elasticity -0.0067

Notes: Model parameter values and brief descriptions.

risk-free rate of roughly 1.6%. The labor weight χ1 is internally calibrated so as to target
average hours worked of one third.

On the side of technology and firms, we assume that the elasticity of output to capital
is α = 0.33, which is standard. The capital production function is assumed to take the
following form:

Φ(L) = a(L)b a, b > 0 (25)

We calibrate the parameter a internally such that the average price of aggregate capital
Qt equals 1. Parameter b is set to 0.75 so that the elasticity of the price of capital to bank
lending is equal to 0.25. This value corresponds to the elasticity of the price of capital
with respect to firm investment that is typically found in the literature (Gilchrist and

16



Figure 1: Granular Banks in the Data
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Notes: Panels (a) and (b) plot log-rank and log-size (solid lines), along with lines of best linear fit (dashed lines), for assets and deposits,
respectively. The sample is restricted to the 4,000 largest U.S. banks as of 2020:q1.

Himmelberg, 1995; Gertler et al., 2020).
We now turn to the banking block. The bank survival rate σ is set to 0.973, following

the literature (Gertler and Kiyotaki, 2010). The share of divertible assets λ is internally
calibrated in order to hit an average leverage ratio—defined as claims over net worth in
the model and total loans over equity in the data—of 6.5. This value is obtained from
the population of commercial banks in the U.S. Call Reports. The linear parameter of
non-interest expenses, ζ1, is calibrated internally in order to hit the average non-interest
costs to total loans ratio of 1.5%. The target is obtained from the same Call Reports sample
of commercial banks. The power parameter, ζ2, is chosen such that the cost function is
quadratic.

Parameter ακ is key for our analysis as it governs the shape of the distribution of
permanent bank rate of return types κ. We proxy ακ directly from the Call Reports data.
Consider Pr(Size > S) = k/Sακ , which means that the likelihood of a bank being greater
than some S is proportional to 1

Sακ . We estimate ακ with maximum likelihood methods for
both total assets and total deposits, for 2020:q1, and for the largest 4,000 banks, and obtain
the values of 1.02 and 1.001 for assets and deposits, respectively.7 Additionally, consider
a rank-size rule that compares log-size against log-rank (Gabaix, 2009). A special case of
this comparison is the Zipf’s law, which arises if the relationship is approximated with
a straight negatively-sloped line. We run the rank-size test for the U.S. banking sector
based on the same sample as above.

Figure 1 plots log-rank of assets (panel A) and deposits (panel B) on the y-axes against
log-size on the x-axes. It also reports the estimated power law parameters α̂κ. The striking

7Results are highly robust across time.
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result is how tightly straight lines can summarize the data. The R2 of linear regressions
of log-rank on log-size, on both panels, is above 0.99. Thus, based on these two pieces
of evidence, we conclude that the Zipf’s law is a good representation of the U.S. banking
data and set ακ to 1 in our model. This result is consistent with the existing estimates in
the literature (Janicki and Prescott, 2004).

In practice, we discretize the distribution of types with eleven points, which is loosely
consistent with a deciles interpretation. We draw a large number of observations from a
Pareto density with ακ = 1 and compute eleven percentiles of the resulting draw. These
percentiles correspond to the eleven types of κ( j) that we use in the model. The draw is
normalized through the constant km such that the median (sixth) type has a κ( j) of unity.
See Appendix C for further details on the numerical procedures.

We next turn to the parameterization of stochastic processes. To calibrate the persis-
tence, ρξ, and volatility, σξ, of transitory return risk, we bring our return process (11) to
the data by estimating a linear panel fixed effects model with AR(1) disturbances in the
spirit of Baltagi and Wu (1999). Our main variable of interest is the return on loans (RoL),
defined as the ratio of interest income on loans over total loans. We residualize (log) RoL
from the time fixed effect and run a linear regression on a bank fixed effect and an AR(1)
component in the error term. We estimate a ρ̂ξ of 0.553 and σ̂ξ of 0.085. These are the
values that we assign to the model parameters.8

We calibrate aggregate uncertainty in the model as follows. First, the transition prob-

ability matrix is set to πa =

0.9 0.1
0.1 0.9

. These values are chosen parsimoniously such that

durations of good and bad times are the same. Second, we calibrate AL and AH internally
in order to target a standard deviation of aggregate output, Yt, in the recursive competitive
equilibrium, of 0.01. This value corresponds to the volatility of U.S. GDP fluctuations and
is standard in the literature.

Finally, the bottom panel of Table 1 reports parameters that are relevant for the two
extensions of the baseline model analyzed below: countercyclical bank return risk and
market power in the deposit market. We skip the discussion of these parameters for now
and return to them in Sections 6.1 and 6.3, respectively.

3.2 Targeted and Untargeted Moments

Table 2 summarizes our calibration targets and reports select moments of the model and
data. Our calibration procedure is able to hit all four of our targets with great precision.

8The empirical banking literature typically finds that uninsured idiosyncratic bank return risk is highly
non-persistent (Galaasen et al., 2021).
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Table 2: Calibration Targets and Select Moments

Moment Model Target / Data

Hours worked (target) 0.3 0.3
Average non-interest cost to loans ratio (target) 0.016 0.015
Average bank leverage (target) 6.5 6.5
Bank Assets Gini 0.69 0.94
Bank Deposits Gini 0.69 0.93
Marginal Propensity to Lend 6.26
σY (target) 0.01 0.01
σL/σY 1.27 2.46
σN/σY 1.43 1.90
σLev/σY 1.68 3.03
σMPL/σY 10.37
ρL,Y 0.97 0.36
ρN,Y 0.56 0.10
ρLev,Y 0.90 0.23
ρMPL,Y 0.89

Notes: Targets for calibration and select moments in the baseline model and the data. σx and ρx,y stand for standard deviation and
pairwise correlation coefficients, respectively. Banking moments are computed from U.S. Call Reports. Aggregate moments are
computed from St. Louis Fed economic data.

First, the average number of hours worked, the average non-interest costs to loans ratio,
and the average leverage ratio are all on target. Second, output volatility is 0.01 in the
model as it is in the data.

The Table also reports several untargeted moments of interest. First, we report Gini
coefficients for the model-implied distributions of bank assets and deposits. In the model,
we obtain a Gini coefficient of roughly 0.7. The model generates a realistic, concentrated
distribution of bank size. In the banking data, however, the Gini coefficients are above 0.9
as of 2020:q1 and in most years. Despite a considerable, order-of-magnitude improvement
over the representative-bank benchmark, our baseline economy cannot fully account for
the extreme levels of concentration in the U.S. banking sector. For example, it is difficult
to engineer a situation where the top quintile of banks controls 95% of assets, as it is
typically the case in the U.S., even when κ( j) follows Zipf’s law. One prominent approach
to further improve the distributional fit is to introduce non-measure-zero banks. Corbae
and D’Erasmo (2023) develop a “quality ladder” model with banks that are not of measure
zero, which subsequently widens the right tail of the size distribution. In addition, a
feature of the data that could be added to our framework is the mergers and acquisitions
market, which has historically accounted for a non-trivial share of bank exits. Endogenous
horizontal integration would allow large, high-profitability types to acquire franchises of
small, low-type competitors.
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Second, Table 2 shows that the average marginal propensity to lend (MPL) in our
model is 6.26. This means that in response to a 1% positive shock to bank net worth, the
average bank will increase lending by 6.26%. The magnitude is intuitive and corresponds
closely to the average leverage ratio, which is 6.5. Interestingly, we have not found any
empirical estimates of the MPL. Note that the MPL object captures bank-level lending
responses to bank-level net worth changes. The empirical banking literature has plenty
of estimates of bank-level lending responses to aggregate shocks. Estimating bank-level
MPLs remains therefore a fruitful avenue for future research.

Third, Table 2 documents several untargeted business-cycle moments. The model-
implied volatilities of aggregate claims, net worth, and bank leverage are all in the empir-
ical ballpark. Importantly, the banking sector in the model is considerably more volatile
than aggregate output, which is always the case in U.S. data. Time-series correlations of
aggregate lending, net worth, and leverage vis-a-vis aggregate output are also close to
but on average larger than in the data. Importantly, in our model both bank assets and
leverage are considerably more pro-cyclical than bank net worth, which is also always
true in U.S. data.

Finally, the Table also reports volatility and correlation with output for the average
MPL. The former is around 10% while the latter is around 0.9. In other words, the aggregate
model-implied MPL is highly contemporaneously procyclical and volatile. Again, as
discussed above, we have not found any counterparts for these two moments in the
empirical literature and hope that future research can fill this gap.

4 Model Properties

In this section we study selected properties of the model that are critical for the under-
standing of core mechanisms. First, we present and discuss aggregate and bank-level
policy functions. Second, we discuss the marginal propensity to lend and its role as a
sufficient statistic for aggregate fluctuations. Third and finally, we further elaborate on
the banking distribution and its concentration.

4.1 Aggregate and Bank-level Laws of Motion

We begin with a key property of our model—approximate aggregation, whereby the
dynamics of the banking distribution can be approximated with a small number of mo-
ments. Figure 2 displays future aggregate net worth against current aggregate net worth
as implied by the recursive equilibrium of the model with ex-ante and ex-post bank het-
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Figure 2: Tomorrow’s vs Today’s Aggregate Net Worth

Notes: Tomorrow’s vs. today’s aggregate bank net worth for the baseline model. The top (bottom) line corresponds to the law of
motion of aggregate net worth in a high (low) TFP state. The middle line is the 45-degree line.

erogeneity. The top and bottom lines in the Figure represent laws of motion for aggregate
net worth in good and bad aggregate states, respectively. The middle line is the 45-degree
line. Clearly, the aggregate net worth policy function is linear and the fit is very good. This
is reminiscent of the same property characterizing laws of motion for aggregate capital
in the model with heterogeneous households and incomplete insurance of Krusell and
Smith (1998), KS henceforth. That property is at the root of the ”approximate aggregation”
result of KS whereby agents make very small mistakes when using the simple log-linear
forecasting rule with just one moment of the distribution, such as in (18). Remarkably,
approximate aggregation seems to also hold even in much richer environments such as
Krueger et al. (2016) who extend the KS economy with ex-ante household heterogeneity
and counter-cyclical earnings. In Appendix C.2 we elaborate upon this point further and
provide formal measures of fit—the model R2—and run other accuracy tests. Overall, this
insight validates our approach of tracking the first moment of the distribution of bank net
worth.

Figure 3 describes how the bank policy function for assets, L(n, κ, ξ), behaves across
states in the equilibrium. We present two cases to illustrate the mechanism. In both
panels, aggregate net worth is given at 21.76 and the aggregate state is good. The left
panel shows the lending choice as a function of n and κ for the average value of ξ, while
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Figure 3: Bank-level Lending Policy Function

Notes: An individual bank’s lending decision rule,L(n, κ, ξ; N̄,A), for the baseline model with ex-ante and ex-post bank heterogeneity.
Aggregate net worth, N̄, is set at 21.76. Aggregate productivity is in the good state. The left panel averages out idiosyncratic risk, ξ.
The right panel averages out permanent heterogeneity, κ.

the right panel shows the lending choice as a function of n and ξ for the average value of
κ.

Three aspects are worth noticing. First, in all cases lending is an increasing function of
net worth. Second, for a given value of net worth, lending is increasing in the permanent
type, κ. Because κ is Pareto-distributed, banks that belong to the highest, 11th, type
are disproportionally more efficient and are capable of lending a lot more for the same
unit of net worth. Third, as is clearly seen from the right panel, idiosyncratic risk, ξ,
is approximately irrelevant for the lending choice. This is strongly reminiscent of a
canonical “as-if” result (Krusell and Smith, 1998; Werning, 2015): in the presence of only
incomplete markets and uninsured idiosyncratic return risk, the economy behaves as if
it is populated by a single bank. The reason for this result is that, even though, in the
presence of incomplete markets and idiosyncratic shocks, the banking distribution still
moves around, most of net worth is accumulated by banks with the same slope of the
lending curve, yielding exact aggregation.
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Figure 4: Marginal Propensity to Lend

Notes: Marginal propensity to lend (MPL) functions in various models (y-axis), as a function of bank-level net worth (x-axis). The left
and right panels plot MPL functions for the models with only permanent heterogeneity, κ, and idiosyncratic risk, ξ, respectively. In the
respective cases, the κ and ξ dimensions have been averaged out. Dashed lines correspond to the MPL function in the representative-
bank economy.

4.2 Marginal Propensity to Lend

Figure 4 displays the marginal propensity to lend (MPL) as a function of bank net worth.
Recall that the MPL, as shown in equation 17, is defined as the change in bank-level lend-
ing in response to a marginal change in bank-level net worth. In the left panel, we solve
the special case of our model with just permanent heterogeneity and without idiosyn-
cratic shocks. In the right panel, conversely, we consider the case without permanent
heterogeneity and with idiosyncratic shocks.

We observe that in both situations the MPL is decreasing in bank net worth: smaller
banks have a greater elasticity of lending with respect to shocks to net worth. This
property is consistent with a classic evidence on the heterogeneous effects of the bank
lending channel (Kashyap and Stein, 1995, 2000). Crucially, for any level of net worth,
the MPL in the economy with permanent heterogeneity is greater than the MPL in a
representative-bank benchmark (left panel). Noticeably, in the version of the model with
ex-post heterogeneity only (right panel) the MPL is approximately identical to the one in
a representative-bank model. This result is related to the earlier discussion on the lending
policy function and re-confirms the as-if property: idiosyncratic shocks by themselves
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Figure 5: Marginal Propensity to Lend in the Distribution

Notes: Marginal propensity to lend (MPL) across the distribution of bank-level net worth in the recursive equilibrium of the baseline
model with both ex-ante and ex-post heterogeneity. Straight and dashed horizontal lines refer to average MPLs in the baseline economy
and the representative-bank benchmark, respectively. The left y-axis shows the density of the distribution and the right y-axis shows
the MPLs in percentage points.

deliver an aggregate lending elasticity that is hardly distinguishable from that of a model
with just a representative bank.

We now illustrate how the MPL behaves across the distribution of banks in the recursive
equilibrium of the model with both ex-ante and ex-post heterogeneity. Figure 5 plots four
objects: the density of bank net worth, the MPL of every bank in the baseline economy,
and the average MPLs of the baseline and the representative-bank models.9 Three results
are worth emphasizing. First, the net worth density has a power law shape, with a
high share of small (low net worth) banks and a low share of very large banks (high net
worth). We return to this relevant property of banking inequality and concentration in
the next section. Second, as already alluded to before, the MPL is decreasing in bank
net worth. Third, the average MPL in the baseline economy is larger than the MPL in a
corresponding representative-bank economy. Heterogeneity introduces a mass of banks
that are very large and with a low MPL. However, their share is not great enough to
counteract the larger mass of small, high-MPL banks. As a result, the average MPL in our
baseline economy is larger relative to the representative-bank counterpart.

9The shown histogram of net worth is for a given period in the simulation. Figure B7 in the Appendix
presents a waterfall graph that shows the evolution of the distribution over time.
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Figure 6: Banking Concentration in the Data
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(b) Deposits
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Notes: Panels (a) and (b) plot Lorenz curves and report Gini coefficients for total assets and total deposits in select years, respectively.
Data is from the U.S. Call Reports. The sample includes commercial banks.

In anticipation of the next sections, the MPL heterogeneity channel is the key reason
why business-cycle fluctuations—and particularly the response of total bank lending—are
amplified in our economy relative to the representative-bank benchmark.10

4.3 Bank Size Distribution and Concentration

A robust feature of U.S. banking data is the high level of market concentration. It is not
only considerably high at present times but has been rising since at least the 1980s (Corbae
and D’Erasmo, 2020). Figure 6 plots Lorenz curves—a standard market concentration
metric—for commercial bank total assets, using Call Reports data. The departure from
the equal allocation counterfactual (45-degree line) is substantial. The Gini coefficient has
increased by roughly 12% over the 1986-2020 period and currently stands at 0.94. To put
these numbers in further context, at present times the largest 25 banks control roughly
95% of all assets.

Interestingly, it appears that a lesser known fact is the rise of deposit market concentra-
tion over the same period and for the same sample. In panel (b), Figure 7 plots the Lorenz
curves for the U.S. commercial bank (domestic) deposit market, also using data from the
Call Reports. The rise of banking concentration is even more significant when size is

10Conceptually, the MPL object is related to several constructs in the literature. For example, the
marginal propensity to consume (Kaplan and Violante, 2022), the marginal propensity to take on risk in an
environment where heterogeneous households choose their portfolio risk exposure (Kekre and Lenel, 2022),
or the marginal propensity to invest in models with heterogeneous firms and financial frictions (Ottonello
and Winberry, 2020).
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Figure 7: Banking Concentration in the Model

Notes: Panels (a) and (b) plot Lorenz curves for bank claims, l, and deposits, b, in various versions of the model, respectively. Dotted
lines correspond to U.S. Call Reports data, 2010:q1.

proxied with deposits. Consider that the deposits Gini coefficient has grown by about
20% since 1986 and is currently at 0.93. Generally speaking, choosing the right proxy for
bank size is not immediately obvious. However, the 2023 U.S. regional banking crisis has
put at the center stage the present discounted value of deposit franchises (Drechsler et al.,
2017).

Figure 7 visualizes our model’s ability to generate a realistic degree of size concen-
tration. It plots the model-implied Lorenz curves for total assets (left panel) and total
deposits (right panel) in four different cases: (i) the baseline model with ex-ante and ex-
post heterogeneity, (ii) the benchmark case with a representative bank, (iii) the case with
only ex-post heterogeneity, and (iv) U.S. data, corresponding to 2020:q1. Any departure
from the perfect equality counterfactual (the representative-bank case) suggests that the
banking sector features some degree of inequality. Notice that the baseline economy is
considerably concentrated with Gini coefficients of around 0.70 for both assets and de-
posits; conversely the economy with just idiosyncratic risk displays a negligible degree
of concentration. The representative-bank counterfactual, in both cases, features a Gini
coefficient of exactly 0, by construction.

In the model with just ex-post heterogeneity, the bank net worth distribution has prop-
erties at odds with the data: there are too few low net-worth banks and there is too limited
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concentration among the very high net-worth banks. Hence, net worth is accumulated by
banks with approximately the same slope of the lending curve, leading to approximately
symmetric lending choices. With the introduction of permanent heterogeneity, however,
this symmetry breaks as the slope of the lending curve varies across the distribution. This
insight is at the heart of the previously discussed ”as-if” result, whereby banks’ choices
are approximately symmetric.

In summary, in this section we have discussed four properties of our framework. First,
given the linearity of the aggregate bank net worth law of motion, the model features
approximate aggregation—the aggregate productivity state and the mean of the net worth
distribution are sufficient statistics to describe aggregate dynamics. Second, permanent
heterogeneity breaks the symmetry of bank-level lending decisions and MPLs, yielding
a departure from the representative-bank benchmark. Third, MPLs are systematically
heterogeneous: declining in size and increasing in portfolio rates of return. The average
MPL of the model with heterogeneous banks is greater than the MPL of a representative
bank. Fourth and finally, our model delivers a realistically concentrated distribution of
bank size with a small number of banks controlling a disproportionally large share of
assets, deposits, and net worth.

5 Aggregate Fluctuations

In this section, we study the model’s dynamic responses to aggregate and idiosyncratic
shocks. We begin by analyzing the model’s behavior in reaction to aggregate Total Factor
Productivity (TFP) shocks, followed by an examination of the underlying mechanisms to
isolate the contributions of different channels. Next, we assess the model’s response to
granular shocks, specifically idiosyncratic disturbances affecting only a particular subset
of banks. Finally, we conduct long-run simulations of the model to study the occurrence
and impact of banking and economic crises.

5.1 Impulse Responses to TFP Shocks

We begin by comparing impulse responses to a negative aggregate TFP shock under
two scenarios: the baseline economy with heterogeneous banks (featuring both ex-ante
and ex-post heterogeneity), and the representative-bank special case. To obtain these
impulse response functions, we perform the following computational steps. First, we
run a simulation based on an already-solved economy with 2,000 banks for T = 2, 000
periods using both aggregate and idiosyncratic shocks. We discard a fraction of earlier
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Figure 8: Impulse Responses to an Aggregate TFP Shock

Notes: Impulse response functions to a one standard-deviation negative shock to aggregate TFP, At. The shock hits at t = 5. The straight
and dashed lines correspond to the baseline economy with both ex-ante and ex-post bank heterogeneity and the representative-bank
case, respectively.

periods. At time T∗ < T—represented on the figures by vertical lines—there is a sudden
one standard-deviation negative innovation to At that mean-reverts back to zero over time
at a rate 0.95 (a ”MIT shock”). Second, we run a second simulation which is identical
to the first except that there is no MIT shock occurring at T∗. Finally, to obtain impulse
responses we subtract the path of aggregates in the second simulation from the path of
aggregates in the first simulation.

Figure 8 presents the results. In the baseline economy, a negative TFP shock generates
a severe financial tightening: the economy-wide credit spread (excess return on capital)
spikes and the banks’ franchise value falls. As a result, the size of the banking sector
shrinks, with assets, deposits, and net worth all contracting. The aggregate marginal
propensity to lend (MPL) falls on impact due to lower returns, but recovers quickly
because of the persistent deterioration in bank net worth, which is negatively associated
with the MPL in the distribution. The bank lending channel transmits onto non-financial
firms which, upon receiving less funding from the banks, produce less capital, pushing
the price of capital downward. As a result, an aggregate recession ensues: total output,
consumption, and working hours all decline.

Relative to the behavior in the representative-bank case, the baseline economy exhibits
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Figure 9: Financial Fragility and Distributional State Dependency

Notes: Impulse response functions to a one standard-deviation negative shock to aggregate TFP, At, conditional on a prior negative
financial shock. The TFP shock hits at t = 5. The financial shock hits at t = 4 and lasts for three quarters. The straight and dashed
lines correspond to the baseline economy with both ex-ante and ex-post bank heterogeneity and with and without the financial shock,
respectively.

noticeable amplification of both financial and macroeconomic aggregates, particularly
bank lending, deposits, and total output. As we can see, output contracts by 20 per
cent more in the case with bank heterogeneity relative to the representative-bank limit.
The intuition for this result is best understood by again recalling MPL heterogeneity.
As Figures 4 and 5 have documented, the average MPL in the baseline economy with
permanent and stochastic heterogeneity is higher than the MPL of the representative
intermediary because of the presence of a large number of small and highly sensitive
banks. This leads to a greater average ex-ante economy-wide MPL and a substantial
ex-post decline in net worth, bank lending, and production.11

5.2 Financial Fragility

In our environment, the endogenous distribution of bank net worth, Γt, is a relevant state
variable. As such, all aggregate responses to exogenous shocks depend explicitly on its

11This intuition is analogous to the logic of a large class of models with heterogeneous households, such
as in the influential two-agent and heterogeneous-agent New Keynesian (TA/HANK) literature (Galı́ et al.,
2007; Bilbiie, 2008; McKay and Reis, 2016; Kaplan et al., 2018; Hagedorn et al., 2019; Auclert et al., 2024).
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shape and condition. In this vein, business cycles can be a function of the underlying
degree of financial fragility of the banking cross-section. In other words, our model should
be able to generate distributional aggregate state-dependency.

We operationalize this idea by comparing aggregate dynamics in the baseline case with
what we term the “fragile” economy. In the fragile economy, a negative financial shock
in period T∗ − 1 causes a leftward shift in the distribution of bank net worth. We assume
that this shock persists for three quarters. Impulse responses for the fragile economy are
derived similarly to before. Specifically, we run two model simulations, incorporating
both aggregate and idiosyncratic shocks, with the fragility-inducing financial shock oc-
curring at T∗ − 1. In the first simulation, we introduce a negative TFP shock at T∗, while in
the second simulation this shock is absent. The difference in responses between the two
simulations provides the identification of interest: the impact of aggregate TFP shocks
when the banking sector is in a normal state versus a fragile state.12

Figure 9 plots the results. In this experiment, a negative aggregate shock that occurs
once the banking sector is already fragile generates a significantly more severe financial
and real-economy contraction. The excess contraction scales with the duration and am-
plitude of the prior financial shock. The mechanism for this outcome relies on the MPL
heterogeneity logic: the fragile economy features a higher starting average MPL because
a greater number of banks are smaller and closer to the zero bound on net worth. As a
result, any subsequent negative aggregate shock has larger real effects on the economy.

5.3 Granular Bank Failures

Recall that concentration is a significant feature of the banking sector—both in U.S. data
and in our model, as illustrated in Figure 7. The seminal work by Gabaix (2011) intro-
duced the ”Granular Hypothesis,” which posits that idiosyncratic firm-level disturbances
can generate aggregate fluctuations, provided that some firms are abnormally large, or
granular. This hypothesis has been extensively studied in the context of non-financial
firms (Carvalho and Grassi, 2019), bank credit portfolios (Galaasen et al., 2021), and inter-
national trade (Gaubert and Itskhoki, 2021).

In practice, finance and banking regulators are concerned about the potential for a few
large, granular banks to cause a macroeconomic crisis if they fail. This concern is often
referred to as the ”too-big-to-fail” (TBTF) hazard, suggesting that the collapse of certain
large financial firms would have catastrophic consequences for the broader economy. The

12Numerically, we adjust the discrete grid in the direction of bank-specific net worth, n, by shifting it
leftward by one point with the exception of the lower bound. This lasts for the duration of the financial
shock.
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Figure 10: Granular Bank Failures

Notes: The aggregate impact of failures of banks belonging to a specific permanent return type, κ. Failure corresponds to a shock that
wipes out all net worth. The impact, in percentage points, is shown on the y-axes. Types, in order, are shown on the x-axes.

TBTF externality has been widely studied both empirically and theoretically (Farhi and
Tirole, 2012; Philippon and Wang, 2023). However, many existing quantitative macro-
banking models with a representative financial intermediary find it challenging to study
this issue. Our framework, which incorporates heterogeneous banks, is well-suited to
investigate this question.

To explore the TBTF problem, we conduct the following exercise. Using the equilibrium
lending policy function, L(n, κ, ξ), we calculate the lending response of each type κ in the
economy to a shock that reduces the net worth of all banks of that type to zero, while
maintaining the equilibrium net worth of all other types. Since banks cannot operate
with negative equity, this shock effectively represents bank failure.13 From the lending
response, we compute the impact on capital production, bank net worth in the subsequent
period, the price of capital, and aggregate output.

Figure 10 presents the results. Consider the 11th (right-most) column in the top-right
panel, which shows the lending response to the failure of all banks belonging to the
11th, most profitable type. The 11th column in the top-left panel shows the response of
aggregate output to the same shock, whereas the bottom panels display the corresponding
responses of bank net worth and capital price respectively. The results clearly demonstrate

13Importantly, as mentioned previously, we also assume that banks have a constraint on outside equity
issuance which prevents them from replenishing net worth on-demand in the short run.
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that the failure of granular banks has dramatic consequences for the economy. The
higher the type, the larger the ex-ante net worth of these banks, and the more severe the
macroeconomic effects resulting from their failure. The collapse of the highest-type banks
triggers a significant real and financial crisis: output contracts by about 7 percent, lending
drops by 17 percent, bank net worth plunges by around 45 percent, and the price of capital
falls nearly 5 percent. In contrast, the failure of smaller, lower-type banks has negligible
aggregate consequences.

We conclude that the TBTF hazard is indeed present in our model economy: the failure
of granular banks can provoke severe crises and recessions, whereas the role of smaller
banks in such outcomes is minimal.

5.4 Financial Crises

In this section, we employ our framework to characterize banking and economic crises that
may arise endogenously within a long simulation of the model. We adopt an event study
approach similar to Calvo et al. (2006) and Mendoza (2010). Specifically, we simulate a
sequence of aggregate and idiosyncratic shocks over 10,000 periods, generate a panel of
2,000 banks, and compute the aggregates using equilibrium policy and value functions
in each period. We define a crisis event as a decline in aggregate output triggered by an
aggregate Total Factor Productivity (TFP) shock falling below a specified threshold. All
other paths are untargeted. For each event, we store the paths of all relevant variables,
capturing both pre- and post-event periods. We then take averages across events, and
perform the same calculations for a representative-bank benchmark.

In Figure 11, we compare the baseline economy with ex-ante and ex-post bank hetero-
geneity (solid line) to an economy with a representative bank (dashed line). Additionally,
we plot the actual decline in U.S. real GDP from 2008-2010 for a quantitative comparison.
The trough of 2009 is our empirical target, which we aim to match in the baseline model
by selecting an appropriate shock threshold. Notably, the representative-bank economy
underestimates the depth of the output decline, missing the trough by approximately
one-third.

Our baseline model produces significantly sharper contractions in bank assets, de-
posits, and net worth during crisis episodes. Importantly, the decline in actual TFP is
quantitatively similar across both cases. Therefore, the difference in the financial and eco-
nomic aggregates’ responses stems from internal amplification mechanisms within the
model. This amplification arises directly from MPL heterogeneity, as discussed through-
out the paper: the baseline model exhibits much greater sensitivity to aggregate shocks
than the representative-bank case.
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Figure 11: Simulating the Great Financial Crisis

Notes: Event study analysis of financial crisis events based on a long simulation of the baseline economy and of the representative-bank
benchmark. An event is defined as a decline in aggregate output triggered by an aggregate Total Factor Productivity (TFP) shock
falling below a specified threshold. The threshold is calibrated to match the 2009 empirical trough of output in the baseline model.

Overall, in this section we conducted a quantitative investigation of business-cycle
dynamics in our model economy. We found that bank heterogeneity amplifies aggregate
fluctuations, primarily through the MPL heterogeneity channel. Since the distribution
of bank size (net worth) is an important state variable, our model exhibits aggregate
distributional state-dependency: standard aggregate shocks are amplified when they hit
an ex-ante fragile distribution. Finally, the high level of concentration of bank size gives
rise to a ”too-big-to-fail” property, as the failure of large banks can have considerable
implications for the broader macroeconomy.

6 Model Extensions

In this section, we explore two major extensions of the baseline model. First, we incor-
porate a key empirical feature: the observation that idiosyncratic return risk faced by
banks is counter-cyclical. Building on this extension, we also analyze granular economic
cycles triggered by idiosyncratic shocks that specifically affect only large banks. Second,
we relax the baseline assumption of perfect competition by introducing market power
in the deposit market. In this variation, banks are allowed to exert pricing power over
deposits. For both extensions, we provide empirical evidence that supports the relevance
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and validity of these modifications.

6.1 Counter-Cyclical Return Risk

An extensive body of literature has shown that households and non-financial firms ex-
perience greater idiosyncratic risk during recessions, largely due to the pro-cyclicality of
the third moment of income growth (Guvenen et al., 2014; Bloom et al., 2023). A natural
question arises: do banks face a similar pattern of heightened idiosyncratic risk during
economic downturns?

Counter-Cyclical Returns in the Data Recall that, in the baseline model, uninsured id-
iosyncratic bank rate of return risk, ξt( j), follows an AR(1) process with shocks drawn
from a Gaussian distribution. Now, we consider a situation where shocks ξt( j) are pos-
sibly aggregate state-dependent and, in particular, counter-cyclical. To fix ideas, we first
proceed with the data. We start with the same return on loans (RoL) measure that we
compute from Call Reports data. The quarter-on-quarter log-difference of this variable,
which we label ∆r j,t, constitutes our transitory loan return risk measure. This measure of
loan income risk is built in line with the literature (Guvenen et al., 2014).

Figure 12 depicts the distributions of ∆r j,t for U.S. expansions and recessions, defined
by the National Bureau of Economic Research (NBER) criterion, and over the 1984:1-
2020:1 period. The density of ∆r j,t is visibly pro-cyclical. To further shed light on the
cyclicality of moments of the RoL distribution, we aggregate ∆r j,t to the quarterly level by
computing the unweighted first, second, and third moments. The third moment is defined
by statistical skewness. Each series is then HP-filtered and, additionally, smoothed with
a moving-average filter with four lags. Panel (b) of the Figure plots the time series of
the resulting smoothed measures of the first and third moments. Both variables are
strongly pro-cyclical, with pairwise correlations with U.S. real GDP growth equal to 0.56
and 0.58, respectively, and statistically significant at the 1% level. A pro-cyclical left
skewness implies that the idiosyncratic rate of return risk faced by banks is counter-
cyclical. Put differently, the skewness of the distribution of returns becomes more negative
in recessions, so that conditional on a negative aggregate state the likelihood of a very low
idiosyncratic return draw increases.14

The pro-cyclicality of the skewness of bank income risk is a novel and important
finding. It suggests that banks face greater downside risk in recessions. The implication

14Interestingly, we find that the second moment of the distribution of RoL growth, defined by the
standard deviation, is essentially flat over the business cycle. This finding is consistent with the literature
(Busch et al., 2022).

34



Figure 12: Counter-Cyclical Returns in the Data
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Notes: Panel (a) plots densities of log-differenced bank returns on loans, ∆r j,t, for U.S. expansions and recessions separately. Panel (b)
plots the time series of the first and third moments of ∆r j,t; both series have been HP-filtered and smoothed with a moving-average
filter with four lags.

for our modeling approach is significant: it potentially requires a departure from the
standard Gaussian assumption on the distribution from which idiosyncratic return shocks
are drawn. This finding is consistent with and complements a growing literature that
points to the importance of the third moment in the dynamics of earnings growth for
households and firms (Guvenen et al., 2014; Bloom et al., 2023). All in all, the pro-
cyclicality of the first and third moments of the banks’ RoL growth distribution are key
motivating facts of an extension of our baseline theoretical framework.15

Counter-Cyclical Returns in the Model We now assume that the transitory rate of return
risk, ξt( j) ∈ Ξ, follows an AR(1) process with shocks ϵt( j) drawn from a non-Gaussian, ag-
gregate state-dependent distribution. Specifically, we employ the Hansen (1994) Skewed-t
density with time-varying parametersµϵ,t,λϵ,t ∈ (−1, 1), andηt ∈ (2,∞) which, respectively,
govern the mean, skewness, and degrees of freedom of the distribution. Formally:16

ξt( j) = (1 − ρξ)µξ + ρξξt−1( j) + ϵt( j) (26)

15Appendix A.4 provides several robustness tests for this empirical finding. First, we show that this
result also holds at the bank holding level of aggregation. Second, in order to account for a possible influence
of outliers, we plot the median and Kelley skewness. Finally, to show that our result is not driven by the
filtering approaches, we also show the raw, unfiltered series of the first and third moments. Our conclusions
do not change.

16Our approach complements other existing methods in the literature. For instance, see Bloom et al.
(2023) who model ξt( j) as a random variable that is drawn from a mixture of several normally distributed
random variables.
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Figure 13: Counter-Cyclical Returns in the Model

Notes: Impulse response functions to a one-standard deviation negative aggregate TFP shock in the baseline economy with ex-ante
and ex-post bank heterogeneity and a-cyclical income, in the extension with counter-cyclical returns, and in the representative-bank
benchmark.
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where zt( j) is a variable drawn from the standard Normal distribution with mean
µϵ,t, and the triad {a, b, c} are known constants. Following Hansen (1994), in order to
control the number of free parameters, we impose an exact mapping from λϵ,t onto ηt:
ηt = L+ U−L

1+exp(−λϵ,t)
(where U and L are constants) such that the only source of time-varying

deviation from normality is the skewness parameter λϵ,t. Figure B6 in the Appendix
illustrates how Hansen’s skew-t departs from the Gaussian density. The major difference
is the introduction of a sharp, prolonged left-tail. Left-skewness appears wheneverλϵ,t < 0.

There are four new parameters that require calibration, as summarized in Table 1. First,
µH and µL represent the means of the process z during good and bad aggregate states,
respectively. We set these values at 0 and -0.02, reflecting the average levels of aggregate
RoL growth during U.S. expansions and recessions, as illustrated in Figure 12. Second,
λH and λL correspond to the skewness parameter, λϵ,t, for good and bad aggregate states.
We assign values of 0 for λH and -0.5 for λL, based on the observation in Figure 12 that the
skewness of RoL growth decreases by about 0.5 points during recessions. Therefore, we
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assume that idiosyncratic shocks ξ are drawn from a Normal distribution in good states
and a left-skewed distribution in bad states.

With the Skew-t process calibrated, we can now analyze aggregate dynamics in the
model with counter-cyclical return risk. We consider impulse response functions to a
negative aggregate TFP shock under two scenarios. The first scenario is the baseline
model with Gaussian, a-cyclical income risk. In the second scenario, when the negative
TFP shock hits at T∗, both the mean and skewness of the idiosyncratic shock distribution
shift from µH and λH to µL and λL, respectively. Both parameters gradually revert to
normal levels with a mean-reversion rate of 0.95. During this period, all idiosyncratic
shocks ξ are drawn from the left-skewed distribution.

Figure 13 shows the results. Counter-cyclical idiosyncratic bank returns amplify ag-
gregate fluctuations compared to the baseline model with a-cyclical risk. The underlying
intuition is that entering a recession shifts the distribution of idiosyncratic returns towards
a more left-skewed shape, exposing banks to greater downside risk. As this downside
risk materializes, a fraction of banks faces particularly poor portfolio outcomes, leading to
contractions in bank lending, production slowdowns, and declines in hours worked. For
comparison, the figure also presents impulse responses for the representative-bank bench-
mark. Compared to the standard model, our extended framework with counter-cyclical
bank income risk exhibits significant amplification of aggregate shocks.

6.2 Granular Banking Cycles

We have previously demonstrated that bank heterogeneity can amplify aggregate fluctu-
ations. But can idiosyncratic shocks exclusively to granular banks—those of the highest
return type κ—generate business cycles? In other words, we are now explicitly testing
whether our model can produce granular banking dynamics. To this end, we will be em-
ploying the version of the model with counter-cyclical transitory income risk introduced
in Section 6.1. This exercise is complementary to, but distinct from, our earlier analysis of
banking failures in Section 5.3.

In Figure 14, we present results of an exercise comparing impulse responses across two
specifications. First, we simulate the model as before but introduce the following MIT
shock at period T∗: banks belonging to the 11th permanent return type, κ, experience a one-
quarter reduction in both the mean and skewness of the idiosyncratic shock distribution,
while aggregate TFP remains unchanged and no other agents in the economy are affected.
We refer to this as a ”granular shock.” Second, we run another simulation in which all
banks experience the same drop in the mean and skewness of their idiosyncratic shock
distribution at T∗. Finally, we compare these two simulations against a baseline where
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Figure 14: Granular Banking Cycles

Notes: Impulse response functions to one-time negative shocks at t = 5 to the first (µϵ) and third (λϵ) moments of the distribution of
idiosyncratic shocks, ξ. Red bars represent the case where only the banks belonging to the highest, 11th, permanent return type, κ, are
affected. Blue bars represent the case where all banks in the distribution are affected.

no shocks occur at T∗, allowing us to derive the impulse response functions, as shown in
Figure 14.

Results reveal that granular shocks (red bars) account for a significant por-
tion—approximately 60%—of the total variation in real and financial variables induced
by idiosyncratic shocks to all banks (blue bars). Given that granular shocks affect less
than 10% of the banks in the economy, but explain more than half of total fluctuations
caused by idiosyncratic shocks, the findings align closely with the canonical 80-20 Pareto
principle (Gabaix, 2009). We conclude that idiosyncratic shocks to large banks alone can
generate endogenous real and financial fluctuations, even in the absence of aggregate
disturbances such as traditional TFP shocks. This result complements the findings of Car-
valho and Grassi (2019) for non-financial firms and further supports the broader agenda
of the granular hypothesis (Gabaix, 2011).

6.3 Deposit Market Power

Our baseline model assumes perfect competition among banks. However, a key feature of
real-world data is the existence of bank market power, particularly in the deposit market
(Drechsler et al., 2017, 2021; Egan et al., 2017; Wang et al., 2022). In this section, we depart
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Figure 15: Deposit Market Power in the Data
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Notes: Panel (a) plots the logged and HP-filtered estimated deposit markdown series. Panel (b) shows the binned scatter plot of the
cross-sectional relationship between (log) total assets and estimated markdowns. All variables have been residualized from the time
fixed effect. Source: U.S. Call Reports.

from the assumption of perfect competition and examine both empirically and within the
model the quantitative implications of bank-level deposit market power. This allows us to
explore how market power affects banking dynamics and the broader economy, offering
a more realistic perspective on the role of banks in the financial system.

Deposit Markdowns in the Data We begin by presenting evidence of market power on
the liability side of banks’ balance sheets. Our empirical analysis utilizes Call Reports
data. The methodology we follow is similar to that of De Loecker et al. (2020) and Corbae
and D’Erasmo (2021). Specifically, we compute quarterly measures of bank-level deposit
markdowns, denoted by µb

j,t. The markdown µb
j,t is defined as the ratio of the marginal cost

of raising a unit of deposits to a proxy for the interest rate on risk-free asset holdings. This
methodology extends the measurement of credit markups from Corbae and D’Erasmo
(2021) to the context of deposit markdowns. Details on the data are provided in Appendix
A.1, while Appendix A.3 explains the estimation procedure.

Figure 15 presents key findings regarding the cyclical behavior of deposit markdowns
and their relationship with bank size. In Panel (a), we display the cyclical component
of deposit markdowns.17 To construct this series, we compute the quarterly unweighted
average of µb

t =
∑

j stµb
j,t, where st is the inverse of the number of banks in a given

quarter.18 The series is logged and filtered using the Hodrick-Prescott filter with the
standard smoothness parameter of 1600, and the same treatment is applied to the U.S.

17Appendix A.4 also includes the raw, unfiltered series in levels. It also presents the components that
constitute the markdown, i.e., the marginal cost and revenue from safe asset holdings.

18Appendix A.4 also confirms that the results hold when using quarterly weighted-averaging.
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real GDP series. The results show that deposit markdowns are counter-cyclical, with a
correlation of approximately -0.47 with filtered output, statistically significant at the 1%
level.

Panel (b) of Figure 15 shows the cross-sectional relationship between markdowns and
bank size, using binned scatterplots over 100 equally-sized bins of (log) total assets. The
y-axes display bin-specific unweighted averages, and all variables have been residualized
from the time fixed effect. These results indicate that market power on the liability side of
banks’ balance sheets is concentrated among larger banks, as markdowns decrease with
bank size. In other words, larger banks charge lower deposit markdowns, highlighting a
concentration of market power in the upper tail of the size distribution.

Before proceeding, we address a potential concern regarding the accuracy of our
markdown measures. The ”production function estimation” approach we follow might
introduce a bias due to the assumptions about the prices and quantities of deposit goods.
However, recent work by Grassi et al. (2022) on non-financial firms demonstrates that
while this approach may yield an inaccurate level of aggregate markups, the behavior
over time—particularly trends and cyclical components—remains highly correlated with
true markup measures. Therefore, we can be confident that our cyclical components
of markdowns are unbiased. Moreover, the Call Reports data provide precise balance
sheet information on deposit returns and quantities, ensuring that a substantial portion
of marginal costs is directly observable.

Markdowns in the Model Finally, we examine the quantitative implications of deposit
market power within the context of our extended model. A detailed description of this
model extension can be found in Appendix B.1. In this setup, households have two
options for saving. First, they can save in mutual funds, denoted by Mt, which offer a
guaranteed gross return Rt. Alternatively, households can save in bank deposits, which
provide bank-specific non-contingent returns, Rb

t ( j). Importantly, bank deposits offer spe-
cial liquidity services and contribute to the household’s utility in an additively separable
manner, consistent with the money-in-utility framework (Sidrauski, 1967; Walsh, 2010).
The household’s period utility function now takes the following form:

U(Ct,Ht,Bt) =


1

1−ψ

(
Ct − χ1

H1+χ2
t

1+χ2

)1−ψ

+ νbBt , ψ , 1

ln
(
Ct − χ1

H1+χ2
t

1+χ2

)
+ νbBt , ψ = 1

(28)

A new parameter, νb, governs the weight households place on deposit holdings in their
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utility. Internalizing this liquidity effect, banks set the retail deposit rate, Rb
t ( j), by marking

it down with µb
t ( j) ≤ 1 over the risk-free rate Rt. Additionally, we assume that deposit

franchises are imperfect substitutes, and the elasticity of substitution between them is
denoted by θb > 0. The first-order condition with respect to bt( j) leads to the following
expression for deposit interest rates:

Rb
t+1( j) = Rt+1


1 −


UB,t (Ct,Ht,Bt)
UC,t (Ct,Ht,Bt)︸            ︷︷            ︸

Marginal Liquidity Preferences

Product Differentiation︷   ︸︸   ︷(
bt( j)
Bt

) 1
θb




(29)

where UB,t and UC,t denote marginal utility operators, and Rt+1 =
[
βEt

UC,t+1(Ct+1,Ht+1,Bt+1)
UC,t(Ct,Ht,Bt)

]−1

is the risk-free interest rate, which is pinned down by a first-order condition with respect
to risk-less mutual fund holdings. The dynamic, heterogeneous deposit markdown can
then be defined as follows:

µb
t ( j) =

Rb
t+1( j)
Rt+1

≤ 1

With the deposits-in-utility framework, marginal liquidity preferences vary with the
aggregate state, causing markdowns to fluctuate over the business cycle. Moreover,
since banks are heterogeneous and deposit franchises are not perfect substitutes, the
markdowns banks choose depend explicitly on their idiosyncratic state vector. This leads
to the emergence of a dynamic distribution of deposit market power in equilibrium.

We calibrate the two new parameters, νb and θb, as follows. In the data, the average
deposit markdown—particularly in the latter years—is roughly 0.8 and we internally
calibrate νb in order to target this moment. Parameter θb is internally calibrated to target
the elasticity between bank-level markdowns and total assets, which in the data is -
0.0067.19 The bottom panel of Table 1 summarizes this parameterization approach.

Figure 16 illustrates impulse responses to a negative aggregate TFP shock under two
scenarios: the baseline model and the extended model with deposit market power. The ex-
tended model successfully replicates the counter-cyclical behavior of deposit markdowns,
in line with the data. The mechanism behind this result works as follows. In a bad
aggregate state, bank lending and output both contract, but gradually, due to the slow
response of net worth. Since the contraction is persistent, and follows a hump-shaped
dynamic, consumption growth falls, leading to a fall in the risk-free real interest rate.

19We arrive at this value by running a panel regression with time and bank fixed effects of our estimated
markdowns on bank assets based on the same Call Reports sample of banks as before.
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Figure 16: Deposit Market Power in the Model

Notes: Impulse response functions to a one-standard deviation negative aggregate TFP shock in the baseline economy with ex-ante
and ex-post bank heterogeneity and perfect banking competition, and in the extension with deposit market power.

Banks, however, exercise their market power in order to dampen deposit flight and lower
the deposit rate by less than the risk-free rate, leading to a counter-cyclical markdown. In
other words, the deposit interest rate is endogenously sticky and the spread between the
risk-free rate and the deposit retail rate shrinks.

Overall, deposit market power dampens the effects of aggregate shocks relative to a
representative-bank model with perfect competition. Banks, by raising markdowns in
bad aggregate states, try to protect the demand for deposits, thereby allowing depositors
(households) at the margin to smooth their response to shocks and preventing more severe
deposit withdrawals and contractions in lending and real activity.

To summarize, in this section, we introduced two key features of U.S. banking data
into our baseline model. First, we incorporated non-Gaussian idiosyncratic bank rate of
return risk, characterized by pro-cyclical skewness. Second, we relaxed the assumption
of perfect competition and introduced monopolistic competition in the deposit market.
We demonstrated that both extensions significantly affect business-cycle fluctuations,
highlighting the importance of these features in capturing real-world banking dynamics.
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7 Additional Results and Robustness Tests

In the Appendix, we conduct several additional exercises, and here we offer a brief
summary of select insights.

First, Appendix B.2 decomposes baseline impulse response functions into partial and
general equilibrium effects. We find that the bulk of the transmission mechanism operates
through the interest rate channel (direct effect), while the return on capital channel (indirect
effect) plays a smaller, dampening role.

Second, in Appendix B.3, we relax the assumption of Pareto-distributed permanent
types κ and assume instead that they follow a Normal distribution. In this specification,
the mean and median values of κ across the eleven types are set to unity, as they are in the
representative-bank benchmark. Despite the less dispersed and concentrated distribution
of bank size, our amplification results remain robust due to the marginal propensity to
lend (MPL) heterogeneity channel. Even in this setting, the average MPL exceeds that of
the representative bank.

Finally, Appendix C provides computational details. Sections C.1 and C.2 describe our
numerical algorithm and outline the accuracy checks performed to validate the results.
Lastly, Section C.3 performs the Andrews et al. (2017) parameter sensitivity test.

8 Conclusions

We have developed a new tractable, dynamic stochastic general equilibrium framework
with uninsured idiosyncratic bank rate of return risk, incomplete markets, and aggregate
uncertainty. Our setup builds on the canonical macro-banking models of Gertler and
Kiyotaki (2010) and Gertler and Karadi (2011) and nests them as special cases. Our
approach breaks scale invariance, a feature that typically characterizes standard models
with a representative intermediary. In this vein, the bank net worth distribution becomes
a key dynamic object that has first-order effects on aggregate fluctuations. We introduce
and characterize the marginal propensity to lend (MPL) as a sufficient statistic for the
responses to aggregate shocks.

A version of our model with only incomplete markets and idiosyncratic shocks (ex-
post heterogeneity) is isomorphic to a representative-bank benchmark. This result is due
to a quasi-symmetry property of the model: the average MPL across the distribution
is approximately identical to the MPL of a representative bank. Put differently, the
equilibrium bank net worth distribution features a negligible degree of concentration
relative to the data. Therefore, net worth accumulates among banks with a very similar

43



slope of the lending policy function, leading in turn to quasi-symmetric choices.
However, a model with ex-ante heterogeneity in bank profitability significantly breaks

the isomorphism with the representative-bank economy. In that case, the net worth
distribution features a much higher degree of concentration (at the top), closer to the data.
This version of the model delivers significant real and financial amplification in response
to aggregate shocks relative to a model with a representative bank. This is mainly due to
the heterogeneity in the MPL statistic, with the average MPL in the model exceeding the
one in the corresponding representative-bank economy. We then study two extensions of
the baseline model that are rooted in micro banking data: counter-cyclical bank income
risk and deposit market power. The former feature leads to further amplification of
aggregate shocks, whereas the latter generates dampening and counter-cyclical deposit
markdowns, a feature of the data replicated by our model.

Our framework is tractable and portable. We envision at least three extensions for
future research. First, introducing nominal rigidities to study how bank heterogeneity
affects the transmission mechanism of monetary policy.20 Second, using our Bewley Banks
environment to study unconventional credit policies such as bank-level equity injections,
possibly when the economy has hit the effective lower bound on interest rates. Third,
relaxing the closed economy assumption to characterize the different behavior of domestic
vs. global banks.

9 Data Availability Statement

The data and code underlying this research is available on Zenodo at https://doi.org/
10.5281/zenodo.14810048.

20In Bellifemine et al. (2023) we study the monetary policy transmission mechanism in a Bewley Banks
environment with nominal rigidities.
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