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Abstract: I study repeated games with anonymous random matching where players can add or remove sig-
nals from their records. The ability to manipulate records introduces monotonicity constraints on players’
continuation values, under which sufficiently long-lived players will almost never cooperate. When players’
expected lifespans are intermediate, their ability to sustain cooperation depends on (i) whether their actions
are complements or substitutes and (ii) whether manipulation takes the form of adding or removing signals.
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1 Introduction

When will a group of selfish individuals cooperate with one another? This classic question has motivated

the game-theoretic literature on community enforcement. In small communities with relatively few players,

Kandori (1992), Ellison (1994), and Deb, Sugaya and Wolitzky (2020) show that players can cooperate even

when they have no information about others’ histories. In large communities with many players, which are

usually modeled as a continuum, Takahashi (2010) shows that sustaining cooperation requires players to

have some information about their partners’ histories. Such information is called a player’s record, which

may consist of signals about his past actions and possibly also signals about his previous partners’ actions.

This paper studies community enforcement in large communities where players’ records are endogenous

in the sense that they can add or remove signals from their records. One domain of applications is online

reviews in which firms may persuade consumers to erase negative reviews or to write positive ones. My

analysis implies that (i) the maximal amount of cooperation a community can sustain is not monotone

with respect to its members’ expected lifespans, and (ii) whether the complementarity of players’ actions is

conducive to cooperation depends on whether manipulation takes the form of adding or removing signals.

To provide an overview of my model and results, consider a simple example with a continuum of players.

*Northwestern University. Email: harrydp@northwestern.edu. I thank Daron Acemoglu, S. Nageeb Ali, V Bhaskar, Marcos
Campos, Costas Cavounidis, Yifan Dai, Drew Fudenberg, Mehmet Ekmekci, Andrea Galeotti, Justice Harasha, Kevin He, Johannes
Hörner, Junichiro Ishida, Bruno Jullien, Michihiro Kandori, David Levine, Alessandro Lizzeri, Daniel Luo, Stephen Morris, Wo-
jciech Olszewski, Daisuke Oyama, Larry Samuelson, Satoru Takahashi, Caroline Thomas, Juuso Välimäki, Alexander Wolitzky,
and four referees for helpful comments. I thank the NSF grants SES-1947021 and SES-2337566 for financial support.

1



In each period, all the active players are randomly matched into pairs to play the prisoner’s dilemma. Each

player’s action generates a signal, and his record consists of a sequence of signals. At the end of each

period, a fixed fraction of players irreversibly exit the game (i.e., become inactive), replaced by the same

mass of new players. This exit process introduces an additional source of discounting, alongside players’

time preferences. In the next period, the remaining active players are matched with new partners.

My modeling innovation is that before players are matched with new partners, they can manipulate their

records subject to feasibility constraints. I consider two forms of manipulation, which correspond to two

classes of feasibility constraints. I say that a player can erase signals if he can choose his record to be any

subsequence of the signals generated by his past actions. I say that a player can add signals if he can choose

any record such that the sequence of signals generated by his past actions is a subsequence of that record. I

assume that their new partners can only observe their manipulated records but not their age in the game.

My main result, Theorem 1, shows that sufficiently long-lived players will almost never cooperate in any

equilibrium (i) if they can erase signals or (ii) if they can add signals and their signals are noisy.

The intuition behind Theorem 1 is that players’ ability to erase or add signals introduces monotonicity

constraints on their continuation values. In the case where a player can erase signals, he can always replicate

his current record in the next period. This implies that in any equilibrium, his continuation value must be

non-decreasing over time. As a result, he has an incentive to cooperate only if doing so can significantly

increase his continuation value, so the expected number of periods in which he cooperates must be bounded

above. When this player has a sufficiently long expected lifespan, any bounded number of periods carry

negligible weight, so the average probability with which he cooperates must be close to zero.

When a player can add signals, his continuation value is non-increasing over time since he can always

replicate his future records in the current period. As a result, he has an incentive to cooperate only if his

continuation value after he defects is significantly lower than his current continuation value. Assuming that

the signals that monitor his actions are noisy, his continuation value after he cooperates must also be lower

than his current continuation value. Hence, the expected number of periods in which the player has an

incentive to cooperate is bounded above. By the same logic as in the case of erasing signals, when a player’s

expected lifespan diverges to infinity, the average probability with which he cooperates vanishes to zero.

Theorem 1 suggests that sufficiently long-lived players will almost never cooperate. Sufficiently short-

lived players have no incentive to cooperate since their discount factors are too low. A natural question is:

Can players sustain some cooperation in some equilibria when their expected lifespans are intermediate?1

1There is always an equilibrium where players always defect, which rules out sustaining cooperation in all equilibria. I also
show that the average probability of cooperation is uniformly bounded below 1 in all equilibria under all time preferences and
expected lifespans (or equivalently, survival probabilities). This rules out the possibility of sustaining full cooperation.
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Theorem 2 shows that as long as players are not too impatient, have intermediate expected lifespans,

and the signals that monitor their actions are precise enough, they can sustain some cooperation either

when they can only erase signals and have submodular payoffs or when they can only add signals and have

supermodular payoffs. This together with Theorem 1 suggests that the maximal level of cooperation is not

monotone with respect to players’ expected lifespans.2 The cooperative equilibria I construct are purifiable,

which means that they are robust when players have a small amount of private payoff information.

Theorem 3 shows that regardless of their time preferences and survival probabilities, players will always

defect in all purifiable equilibria either when they can erase signals and have supermodular payoffs or when

monitoring is noisy, they can add signals, and have submodular payoffs. My result implies that when players

can only erase signals, the complementarity of their actions undermines their abilities to sustain cooperation.

This conclusion stands in contrast to the ones in Takahashi (2010), Heller and Mohlin (2018), and Clark,

Fudenberg and Wolitzky (2021), which suggest that the complementarity of players’ actions is conducive to

cooperation in community enforcement models where players can neither add nor erase signals.

This paper is related to the existing works on community enforcement, and in particular, those that ana-

lyze games with a continuum of players such as Takahashi (2010), Heller and Mohlin (2018), Bhaskar and

Thomas (2019), and Clark, Fudenberg and Wolitzky (2021). Friedman and Resnick (2001) study repeated

prisoner’s dilemma in large populations where each player can either disclose all of his past signals or erase

all of them. In contrast, the players in my model can decide whether and when to erase or to add each signal.

Ali and Miller (2016) study repeated games with a finite number of players where players can selectively

disclose the actions of their previous partners to their current partners. Due to players’ incentives to conceal

past deviations, equilibria that forgive past deviators can sustain more cooperation than those with permanent

ostracism. My model of erasing signals can be interpreted as players selectively disclosing signals about

their past actions to their current partners, which contrasts to the setting studied by Ali and Miller (2016).3

Smirnov and Starkov (2022), Hauser (2023), and Sun (2024) study dynamic censoring games where

players’ payoffs depend on an exogenous state. In contrast, players’ payoffs depend only on their actions

in my model. Pei (2023) studies a repeated game with incomplete information in which a long-lived player

can erase past actions from his record. That paper presents a bad reputation result, driven by the observation

that the speed of learning vanishes as the expected lifespan of the long-lived player diverges to infinity. By

contrast, the current model has complete information so the speed of learning is irrelevant.
2Wiseman (2017) and Sandroni and Urgun (2018) also show that higher effective discount factors can undermine cooperation.

In contrast to the current paper that focuses on repeated games, their results are obtained in stochastic games with absorbing states.
3Sugaya and Wolitzky (2020) establish an anti-folk theorem when there is a finite number of players, each player has private in-

formation about his type (rational or committed), and players face uncertainty regarding the composition of types in the population.
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Ghosh and Ray (1996) and Fujiwara-Greve and Okuno-Fujiwara (2009) study repeated games with

voluntary separation where players may interact with the same partner in multiple periods. In their models,

each player’s outside option is his continuation value from separation and joining the unmatched pool. This

feature contrasts to my model where each player’s outside option is his current or future continuation value.

2 The Baseline Model

I introduce a framework that allows for asymmetric stage games as well as erasing and adding signals.

Consider a doubly infinite repeated game where time is indexed by k = ... − 1, 0, 1, ... There are two

populations of players i ∈ I ≡ {1, 2}. Each period, a unit mass of players from each population are active.

Each player discounts future payoffs for two reasons. First, by the end of each period, a fraction 1− δi

of the active players in population i irreversibly become inactive and are replaced by the same mass of new

players, with δi ∈ [0, 1). Second, conditional on remaining active in period k+1, each player in population

i is indifferent between 1 unit of utility in period k + 1 and δ̂i ∈ [0, 1) unit in period k. Hence, each player

in population i has an expected lifespan (1− δi)
−1 and an effective discount factor δi ≡ δ̂i · δi.4

Each period, all the active players are matched into pairs uniformly at random to play a two-player

normal form game G ≡ (I, A, u), where A ≡ A1 × A2 is the set of action profiles with Ai a finite set of

actions for players from population i (which I refer to as player i) and ui : A → R is player i’s stage-game

payoff. Each player in population i maximizes the expected value of
∑+∞

k=1(1−δi)δ
k−1
i ui(ai,k, a−i,k) where

(ai,k, a−i,k) ∈ Ai ×A−i stands for the action profile played by his match in the kth period of his life.

For every match, players’ actions generate signals (s1, s2) according to f(·|ai, a−i) ∈ ∆(S1 × S2),

where si is player i’s signal with distribution fi(·|ai, a−i) ∈ ∆(Si). I assume that S1 and S2 are finite sets.

Player i’s record consists of a sequence of elements in Si. Let Ri ≡
⋃+∞

n=0 S
n
i denote the set of player

i’s records, with a typical element denoted by ri ∈ Ri. By definition, the empty record ∅ belongs to Ri.

My modeling innovation is that before each player is matched with a new partner, he may manipulate

his record by erasing or adding signals. I discuss alternative forms of endogenous records in Section 5.

I say that player i can erase signals if before being matched in period k + 1, he can erase the signal

si,k ∈ Si generated by his pair in period k as well as any signal that belongs to his period-k record ri,k.

Formally, this is to say that player i can choose any subsequence of (ri,k, si,k) to be his period-(k + 1)

record. If player i can only erase signals, then before interacting with his first partner, his record must be ∅.

I say that player i can add signals if, before being matched with any partner, he can add any finite
4I distinguish between players’ time preferences and survival probabilities since they play different roles. This is reminiscent of

the steady state learning models in Fudenberg and Levine (1993), Fudenberg and He (2018), and Clark and Fudenberg (2021).
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number of elements in Si to his record, in addition to that generated by his past match. In this case, a newly

born player i can choose his record from Ri before being matched with his first partner. If ri,k is a player i’s

record in period k and si,k ∈ Si is the signal generated by his pair’s action profile in period k, then player i

can choose his period-(k+ 1) record to be any ri,k+1 ∈ Ri such that (ri,k, si,k) is a subsequence of ri,k+1.5

After each player i is matched, he observes his record ri and his partner’s record r−i (the one after

manipulation) before choosing ai. Players cannot directly observe any additional information about their

partners, such as their partners’ age in the game and which signals were erased or added by their partners.

Players can make inferences about these variables via Bayes rule after observing their partners’ records.

Player i’s strategy is denoted by σi ≡ (σ∅
i , σ

a
i , σ

m
i ), where σ∅

i ∈ ∆(Ri) is his record choice before

being matched with his first partner,6 σa
i : Ri × R−i → ∆(Ai) is a mapping from his current record ri and

his current partner’s record r−i to his current-period action, and σm
i : Ri × Si → ∆(Ri) is a mapping from

his current-period record ri and his current-period signal si to the record his next partner observes.

Depending on whether and how player i can manipulate records, his choice of (σ∅
i , σ

m
i ) faces different

feasibility constraints. When player i can neither erase nor add signals as in Clark, Fudenberg and Wolitzky

(2021), σm
i (ri, si) assigns probability 1 to (ri, si). If player i can erase signals, then σm

i (ri, si) can assign

positive probability to any subsequence of (ri, si). If player i can add signals, then σ∅
i can assign positive

probability to any element in Ri and σm
i (ri, si) can assign positive probability to any r′i ∈ Ri such that

(ri, si) is a subsequence of r′i. As long as player i cannot add signals, σ∅
i must assign probability 1 to ∅.

The solution concept is steady state Nash equilibrium, or equilibrium for short, which consists of a

strategy profile σ ≡ (σ1, σ2) and a record distribution µ ∈ ∆(R1 × R2) such that (i) for every i ∈ {1, 2},

σi maximizes the expected value of
∑+∞

k=1(1− δi)δ
k−1
i ui(ai,k, a−i,k) when the record distribution is µ and

players in the other population use strategy σ−i and (ii) µ is a steady state record distribution when players

behave according to σ. An equilibrium exists in this repeated game since G is finite and players (i) always

playing the same Nash equilibrium in G and (ii) never erasing or adding any signal is part of an equilibrium.

3 Main Result: Anti-Folk Theorem with Sufficiently Long-Lived Players

Even though players can erase or add signals, they may still have incentives to cooperate (i.e., to take

actions that are suboptimal in the stage game) when their effective discount factors are large enough. This
5I comment on several extensions in Section 5, which include the newly added signals must come after (ri,k, si,k) in the

sequence of signals, players can only observe the summary statistics of others’ signals but not the exact sequence, and so on.
6As will become clear after I present the feasibility constraints, a player’s record choice before being matched with his first

partner is relevant only if he can add signals. My main result, Theorem 1, extends when players cannot add signals before being
matched with his first partner since his first-period action carries negligible weight when his survival probability is close to 1.
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is because: (i) in the case where players can only erase signals, they cannot fabricate good signals, so they

may have incentives to cooperate if they are rewarded for having many good signals in their records; and (ii)

in the case where players can only add signals, they cannot erase any bad signal generated by their actions,

so they may have incentives to cooperate if they are punished for having many bad signals in their records.

My main result shows that the above logic breaks down when players are sufficiently long-lived. For

any σ ≡ (σ1, σ2) and µ, the average probability with which players in population i taking action ai ∈ Ai,

denoted by Π
(σ,µ)
i (ai), is defined as the probability that

∑
(r1,r2)∈R1×R2

µ(r1, r2)σ
a
i (r1, r2) assigns to ai.

Definition. Player i’s signal distribution fi has non-shifting support if for every a−i ∈ A−i, ai, a′i ∈ Ai,

and si ∈ Si, we have fi(si|ai, a−i) > 0 if and only if fi(si|a′i, a−i) > 0.

My non-shifting support condition requires that the support of player i’s signal distribution to be inde-

pendent of his own action, which is to say that monitoring is noisy. It is weaker than fi having full support,

a condition commonly used in repeated games and reputations (e.g., Cripps, Mailath and Samuelson 2004).

Theorem 1. Suppose players in population i have a strictly dominant action a∗i ∈ Ai.

1. If players in population i can erase signals, then for every δ̂i ∈ (0, 1) and ε > 0, there exists δ∗ ∈

(0, 1) such that Π(σ,µ)
i (a∗i ) ≥ 1− ε for every equilibrium (σ, µ) when δi > δ∗.

2. If population i can add signals and fi has non-shifting support, then for every δ̂i ∈ (0, 1) and ε > 0,

there exists δ∗ ∈ (0, 1) such that Π(σ,µ)
i (a∗i ) ≥ 1− ε for every equilibrium (σ, µ) when δi > δ∗.7

Theorem 1 implies that as long as players are sufficiently long-lived and can either erase or add signals,

they will almost always take their strictly dominant actions in all equilibria. In the prisoner’s dilemma, it

implies that sufficiently long-lived players will almost never cooperate. This result holds independently of

the other population’s stage-game payoffs, survival probabilities, time preferences, and whether and how

they can manipulate their records. It applies for all finite action sets and signal spaces, even when these sets

are sufficiently rich. It also applies when player i’s effective discount factor δi is arbitrarily close to 1, such

as when both δ̂i and δi go to 1 but δi goes to 1 faster than δ̂i. This stands in contrast to the standard logic

in repeated games, that fix player i’s time preference δ̂i, an increase in his survival probability δi leads to a

higher effective discount factor δi, which will strengthen his incentive to sacrifice his current-period payoff

in exchange for a higher payoff in the future and hence, may lead to more cooperation in equilibrium.
7To see why non-shifting support is not redundant in the case of adding signals, consider the prisoner’s dilemma and suppose

Si = Ai and si perfectly reveals ai, i.e., fi(si = ai|ai, a−i) = 1 for every i and ai. There is an equilibrium with full cooperation
in grim-trigger strategies where each player cooperates if and only if no defect is contained in his and his partner’s record.
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I present the proof of Theorem 1 in Section 3.1. The intuition is that players’ ability to either erase or add

signals introduces monotonicity constraints on their continuation values in the sense that their equilibrium

continuation values must be either non-decreasing over time or non-increasing over time.

Suppose first that player i can erase signals. He can always replicate his current record in the next period,

by taking an arbitrary action and then erase his signal si. This implies that in equilibrium, his continuation

value must be non-decreasing over time. In order to motivate player i to take any action a′i that is not his

strictly dominant action a∗i , his expected continuation value after playing a′i needs to increase by at least

something proportional to 1− δi. This implies that the expected number of periods in which player i taking

actions other than a∗i is no more than something proportional to (1 − δi)
−1. When players in population i

are sufficiently long-lived (i.e., δi → 1), the bounded number of periods in which they have incentives to

cooperate will carry negligible weight, so the average probability that they cooperate must be close to 0.

Suppose next that player i can add signals. His continuation value is non-increasing over time since he

can always replicate his future record in the current period. This implies that at every history where player

i has an incentive to take action a′i ̸= a∗i , his expected continuation value after playing a∗i needs to decrease

by at least something proportional to 1− δi relative to his current continuation value. Assuming that fi has

non-shifting support, his expected continuation value after taking any other action also needs to decrease by

at least something proportional to 1 − δi. By the same logic as in the case of erasing signals, the expected

number of periods in which player i has an incentive to cooperate is no more than something proportional

to (1− δi)
−1. As player i’s expected lifespan diverges, the average probability of cooperation vanishes.

In Appendix A, I explain how to show Corollary 1, which is a result that applies to all stage games

(including ones without dominant actions), by iteratively applying the above logic and by using the fact that

the matching process is uniform. Let A∗
i ⊂ Ai denote the set of player i’s rationalizable actions in G.

Corollary 1. Suppose for every i ∈ {1, 2}, either players in population i can erase signals, or they can

add signals and fi has non-shifting support. For every δ̂1, δ̂2 ∈ (0, 1) and ε > 0, there exists δ∗ ∈ (0, 1)

such that when δ1, δ2 > δ∗, mini∈{1,2}
∑

ai∈A∗
i
Π

(σ,µ)
i (ai) ≥ 1− ε in every equilibrium (σ, µ).

3.1 Proof of Theorem 1

Fix an equilibrium (σ, µ). Recall that σa
i (ri, r−i) ∈ ∆(Ai) stands for player i’s equilibrium action when his

record is ri and his matched partner’s record is r−i. Let R∗
i ⊂ Ri denote the set of player i’s records that

occur with positive probability under µ. Let V (ri) denote player i’s expected continuation value when his

current-period record (after manipulation) is ri before knowing his current match. Let V ≡ supri∈R∗
i
V (ri)

and V ≡ infri∈R∗
i
V (ri) denote player i’s highest and lowest continuation values, respectively. Conditional
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on being active for at least k ∈ N periods, let Vk denote player i’s expected continuation value in the kth

period of his life and let πk denote his expected probability of taking actions that are not a∗i in the kth period

of his life. Let ui and ui denote player i’s highest stage-game payoff and minmax value, respectively. Let

c∗ ≡ min
a′i ̸=a∗i ,a−i∈A−i

{
ui(a

∗
i , a−i)− ui(a

′
i, a−i)

}
> 0, (3.1)

which is player i’s lowest stage-game cost of taking actions other than a∗i . I consider two cases separately.

First, suppose player i can erase signals. For every ri ∈ R∗
i and si ∈ Si, let Ri(ri, si) ⊂ R∗

i denote the

set of player i’s records that are subsequences of (ri, si). Since ri is a subsequence of (ri, si) and ri ∈ R∗
i ,

we know that Ri(ri, si) is a non-empty finite set. Hence, player i’s continuation value in the next period

is maxr′i∈Ri(ri,si) V (r′i) when his current-period record is ri and his current-period signal is si. We know

from ri ∈ Ri(ri, si) that maxr′i∈Ri(ri,si) V (r′i) ≥ V (ri). That is to say, player i’s continuation value is

non-decreasing over time, regardless of the realization of signal si. When player i with record ri is matched

with an opponent with record r−i, he has an incentive to take action a′i ̸= a∗i only if

(1−δi)ui(a
′
i, σ

a
−i(ri, r−i))+δi

∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i)) max

r′i∈Ri(ri,si)
V (r′i) ≥ (1−δi)ui(a

∗
i , σ

a
−i(ri, r−i))+δiV (ri),

where the RHS is player i’s payoff when he plays a∗i and then erases signal si regardless of its realization.

The above inequality together with the definition of c∗ implies that

∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i)) max

r′i∈Ri(ri,si)
V (r′i) ≥ V (ri) +

1− δi
δi

c∗,

which is to say that as long as player i has an incentive to play a′i at (ri, r−i), his expected continuation

value in the next period after playing a′i, which equals
∑

si∈Si
fi(si|a′i, σa

−i(ri, r−i))maxr′i∈Ri(ri,si) V (r′i),

is at least 1−δi
δi

c∗ greater than his continuation value at ri. This leads to a lower bound on Vk+1 − Vk:

Vk+1 − Vk ≥ 1− δi
δi

c∗πk. (3.2)

Since ui ≤ V ≤ Vk ≤ V ≤ ui for every k ∈ N, summing up (3.2) for all k ∈ N, we have

1− δi
δi

c∗
+∞∑
k=1

πk ≤
+∞∑
k=1

(
Vk+1 − Vk

)
≤ V − V ≤ ui − ui. (3.3)

Since player i survives with probability δi after each period, a fraction (1 − δi)δ
k−1
i of active player i has
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age k. Using (3.3), the law of total probabilities and the fact that πk ∈ [0, 1] for every k ∈ N, we have

1−Π
(σ,µ)
i (a∗i ) =

+∞∑
k=1

(1− δi)δ
k−1
i πk ≤ 1− δ

∑+∞
k=1 πk

i ≤ 1− δ
ui−ui

c∗ · δi
1−δi

i . (3.4)

Since δi ≡ δi · δ̂i, once we fix any δ̂i ∈ (0, 1) and let δi → 1, the RHS of (3.4) will converge to 0.

Second, suppose player i can add signals and fi has non-shifting support. For every ri ∈ R∗
i and

si ∈ Si, let R̂i(ri) denote the set of r′i ∈ R∗
i such that ri is a subsequence of r′i, and let R̂i(ri, si) denote

the set of r′i ∈ R∗
i such that (ri, si) is a subsequence of r′i. Fix ri ∈ R∗

i , player i’s continuation value in

the next period is max
r′i∈R̂i(ri,si)

V (r′i) when (i) his current-period record is ri and (ii) his action and his

current-period partner’s generate signal si.8 Since R̂i(ri, si) ⊂ R̂i(ri), it must be the case that V (ri) ≥

max
r′i∈R̂i(ri,si)

V (r′i). This is because otherwise, player i will have a strict incentive to deviate by choosing

argmax
r′i∈R̂i(ri,si)

V (r′i) before being matched with his current-period partner instead of choosing ri, which

violates the hypothesis that ri ∈ R∗
i . This suggests that player i’s continuation value is non-increasing over

time. When player i with record ri is matched with record r−i, he has an incentive to play a′i ̸= a∗i only if

(1− δi)ui(a
′
i, σ

a
−i(ri, r−i)) + δi

∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i)) max

r′i∈R̂i(ri,si)
V (r′i)

≥ (1− δi)ui(a
∗
i , σ

a
−i(ri, r−i)) + δi

∑
si∈Si

fi(si|a∗i , σa
−i(ri, r−i)) max

r′i∈R̂i(ri,si)
V (r′i). (3.5)

Inequality (3.5) together with the fact that V (ri) ≥ max
r′i∈R̂i(ri,si)

V (r′i) for every si ∈ Si implies that

(1−δi)ui(a
′
i, σ

a
−i(ri, r−i))+δiV (ri) ≥ (1−δi)ui(a

∗
i , σ

a
−i(ri, r−i))+δi

∑
si∈Si

fi(si|a∗i , σa
−i(ri, r−i)) max

r′i∈R̂i(ri,si)
V (r′i).

The above inequality together with the definition of c∗ in (3.1) implies that

∑
si∈Si

fi(si|a∗i , σa
−i(ri, r−i))

{
V (ri)− max

r′i∈R̂i(ri,si)
V (r′i)

}
≥ 1− δi

δi
c∗. (3.6)

Since fi has non-shifting support, the set Si(a−i) ≡ {si ∈ Si|fi(si|ai, a−i) > 0} is well-defined, so

q(fi) ≡ min
a′i ̸=a∗i ,a−i∈A−i,si∈Si(a−i)

fi(si|a′i, a−i)

fi(si|a∗i , a−i)

8The hypothesis that (σ, µ) is an equilibrium implies that player i has at least one best reply at every positive probability
information set where he needs to choose which additional signals to include in his record. Hence, maxr′i∈R̂i(ri,si)

V (r′i) exists.
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is strictly positive. Since V (ri)−max
r′i∈R̂i(ri,si)

V (r′i) ≥ 0 for every si ∈ Si, inequality (3.6) implies that

∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i))

{
V (ri)− max

r′i∈R̂i(ri,si)
V (r′i)

}
≥ 1− δi

δi
c∗q(fi) for every a′i ∈ Ai. (3.7)

Since (3.7) holds at every (ri, r−i) where player i plays a′i ̸= a∗i with positive probability, the definitions of

Vk, Vk+1, and πk imply that Vk − Vk+1 ≥ 1−δi
δi

c∗q(fi)πk. Summing this inequality up for all k ∈ N, we

have 1−δi
δi

c∗q(fi)
∑+∞

k=1 πk ≤
∑+∞

k=1

(
Vk − Vk+1

)
≤ V − V ≤ ui − ui. Similar to the derivation of (3.4),

1−Π
(σ,µ)
i (a∗i ) =

+∞∑
k=1

(1− δi)δ
k−1
i πk ≤ 1− δ

∑+∞
k=1 πk

i ≤ 1− δ
ui−ui
c∗q(fi)

· δi
1−δi

i . (3.8)

The RHS of (3.8) vanishes to 0 once we fix any δ̂i ∈ (0, 1) and fi with non-shifting support and let δi → 1.

4 Cooperation Between Players with Intermediate Expected Lifespans

Theorem 1 implies that sufficiently long-lived players will almost never cooperate. Sufficiently short-lived

players have no incentive to cooperate since their effective discount factors are too low. The rest of this

section examines whether players with intermediate expected lifespans can sustain cooperation.

I start from showing that the average probability of cooperation is uniformly bounded below 1 for all δi

and δ̂i. Inequalities (3.4) and (3.8) imply that player i’s average probability of taking actions other than his

dominant action a∗i is no more than 1 − δ
ui−ui

x
· δi
1−δi

i , where (i) x = c∗ when player i can erase signals and

(ii) x = c∗q(fi) when player i can add signals and fi has non-shifting support. Since δi log δi
1−δi

is decreasing

in δi ∈ [0, 1),
δi log δi
1− δi

≥ δi log δi
1− δi

≥ lim
δ→1

δ log δ

1− δ
= −1 for every δi ∈ [0, 1). (4.1)

Therefore, fixing the stage-game payoff ui and the signal distribution fi, we know that for all δi and δ̂i,

1−Π
(σ,µ)
i (a∗i ) ≤ 1− exp

(
− ui − ui

x

)
in every equilibrium (σ, µ). (4.2)

Inequality (4.2) implies that it is impossible to sustain full cooperation in any equilibrium either when

players can erase signals or when players can add signals and their signal distribution has non-shifting

support. The rest of this section examines whether some cooperation can be sustained in some equilibria.

I focus on equilibria that are purifiable as in Bhaskar and Thomas (2019) since mixed-strategy equilibria

may not be robust to private payoff information. Formally, I refer to G = (I, A, u) as the unperturbed stage
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game. For every ε > 0, an ε-perturbed stage game G(ε) ≡ (I, A, uε) is one where player i’s period k

stage-game payoff is uεi (ai, a−i) ≡ ui(ai, a−i) + εzi,k(ai), where zi,k(ai) is a random payoff shock. The

shocks zi,k(ai) are i.i.d. across actions, players, and periods. Before player i acts in period k, he observes

the realizations of his own current-period payoff shocks {zi,k(ai)}ai∈Ai but not the ones in the future and

of others. An equilibrium (σ, µ) of the unperturbed repeated game is purifiable if fixing the distribution

of zi,k(ai) that has bounded support and no atom, for every sequence εn → 0, there exist a sequence of

equilibria (σ(εn), µ(εn))n∈N of the repeated εn-perturbed stage games G(εn) that converge to (σ, µ).

As in the main results of Takahashi (2010), Heller and Mohlin (2018), and Clark, Fudenberg and

Wolitzky (2021), I restrict attention to records that are first-order, namely, the distribution of si, denoted

by fi(·|ai, a−i), is independent of a−i.9 I will write fi(·|ai) instead of fi(·|ai, a−i) in order to avoid cum-

bersome notation. I will state my results in the prisoner’s dilemma,10 with stage-game payoffs given by

- Cooperate Defect

Cooperate 1, 1 −l, 1 + g

Defect 1 + g,−l 0, 0

with g, l > 0.

In the above prisoner’s dilemma, I say that players’ payoffs are weakly supermodular if g ≤ l, are strictly

supermodular if g < l, are weakly submodular if g ≥ l, and are strictly submodular if g > l.

Theorem 2 shows that when players have intermediate expected lifespans and their actions are precisely

monitored, some cooperation can be sustained in purifiable equilibria either when players can only erase

signals and their payoffs are strictly submodular, or when they can only add signals and their payoffs are

strictly supermodular. For every ε > 0, I say that the monitoring structure is ε-precise if for every i ∈ {1, 2},

there exists s∗i ∈ Si such that fi(s∗i |ai = C) ≥ 1− ε and fi(s
∗
i |ai = D) ≤ ε. Hence, perfect monitoring is

ε-precise. For each ε > 0, there exists fi that is first order, ε-precise, and satisfies non-shifting support.

Theorem 2. Suppose all players’ records are first-order, either they can only erase signals and have

strictly submodular payoffs, or they can only add signals and have strictly supermodular payoffs. There

exist δ∗ ∈ (0, 1) and ε > 0 such that when the monitoring structure is ε-precise and δ̂1, δ̂2 > δ∗, there

exists a non-empty interval [δ′, δ′′] ⊂ (0, 1) such that as long as δ1, δ2 ∈ [δ′, δ′′], there exists a purifiable

equilibrium (σ, µ) such that Π(σ,µ)
i (C) > 0 for every i ∈ {1, 2}.

I explain the ideas behind the proof with details relegated to Appendix B. When players can only erase

signals and have strictly submodular payoffs, I categorize them into juniors who have no s∗i in their records

9The “first-order record” requirement can be relaxed for Theorem 2, but it will be needed for Theorem 3.
10In a working paper version (Pei 2024), I focus on general monotone games when players’ expected lifespans are intermediate.
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and seniors who have at least one s∗i . Seniors always defect. Juniors cooperate with seniors for sure and

cooperate with other juniors with probability qj ∈ (0, 1). Since payoffs are strictly submodular, if juniors

are indifferent between C and D when facing other juniors, then they strictly prefer C when facing seniors.

When players can only add signals and their payoffs are strictly supermodular, I categorize them into

juniors with no bad signal (i.e., signals other than s∗i ) in their records and seniors with at least one bad signal

in their records. In equilibrium, seniors defect against everyone, juniors cooperate with other juniors with

probability qi ∈ (0, 1), and defect for sure against seniors. Since payoffs are strictly supermodular, if juniors

are indifferent between C and D when facing juniors, then they strictly prefer D when facing seniors.

These strategy profiles are part of some purifiable equilibria when δ1 and δ2 are intermediate but not

when they are close to 1. This is because when players are sufficiently long-lived, there will be too few

juniors in the population to provide incentives, in which case juniors will have no incentive to cooperate.

Theorem 3 shows that the conditions in Theorem 2 on players’ payoffs are essential in the sense that

when players can erase signals and have weakly supermodular payoffs, or can add signals and have weakly

submodular payoffs, all players will always defect regardless of (δ1, δ2, δ̂1, δ̂2) and the signal precision.

Theorem 3. If players’ records are first order and either (i) payoffs are weakly supermodular and one

population i can erase signals or (ii) payoffs are weakly submodular, and one population i can add signals

and fi has non-shifting support,11 then Π
(σ,µ)
1 (C) = Π

(σ,µ)
2 (C) = 0 for every purifiable equilibrium (σ, µ).

The proof is in Appendix C, which uses the purifiability refinement as well as the fact that the matching

is uniform. To see why, let us start from the case where players in population 2 can erase signals. Pick any

player 1 and compare his incentives to cooperate with (i) player 2 who has the highest continuation value

(call him player 2∗) and (ii) any other player 2. Player 2∗ will defect for sure due to his ability to erase

signals. If players’ actions are complements (i.e., g ≤ l), any player 1 will have less incentive to cooperate

with player 2∗ than with any other player 2. If this is the case, then it is impossible to deliver player 2∗ a

strictly higher continuation value than to any other player 2.12 This will break down cooperation.

Similarly, when players in population 2 can add signals, player 2 with the lowest continuation value (call

him player 2†) will defect for sure. If players’ actions are substitutes (i.e., g ≥ l), then any player 1 will have

weakly stronger incentives to cooperate with player 2† than with any other player 2. This again implies that
11Recall that the non-shifting support condition only requires that the support of player i’s signal distribution to be independent

of his actions. Hence, for every ε > 0, there exist signal distributions that are first order, ε-precise, and satisfy non-shifting support.
12Purifiability is needed since in some non-purifiable equilibria, there exists player 1’s record r1 such that (i) all players from

population 2 will defect against player 1 with record r1 but (ii) r1 will cooperate with player 2 who has the highest continuation
value and will sometimes defect against player 2 with lower continuation values. This cannot happen in purifiable equilibria as
players’ behaviors can condition only on payoff-relevant information. See Bhaskar (1998) and Bhaskar, Mailath and Morris (2013).
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in all purifiable equilibria, it is impossible to deliver strictly lower continuation values to player 2† than to

any other player 2. As a result, players will have no incentive to cooperate due to the lack of punishments.13

5 Extensions

Theorem 1 extends to other settings where players’ continuation value is either non-decreasing or non-

increasing over time. For example, player i’s continuation value is non-increasing over time (i) when the

additional signals he included in his current-period record do not have to appear in his future records, or (ii)

before being matched with each new partner, all of a player’s newly added signals in the current period must

come after all the signals he generated and added before (in the sequence of signals).

In a working paper version (Pei 2024), I present a model with general record systems where players’

continuation value is non-decreasing over time. This includes, for example, when players can only erase

their most recent signal but not the ones they generated before, and when they can choose a subset of the

signals generated by their past actions and disclose those signals to their current partner, i.e., the signals they

did not disclose to their period-k partner can be disclosed to their period-(k + 1) partner.

Theorem 1 extends to settings where players can only observe a garbled version of their partners’

records, such as when players cannot observe the exact sequence of signals in their partners’ records and

can only observe some summary statistics (e.g., the number of times that each signal realization occurred in

the player’s record). It also extends to settings where players cannot perfectly control their partners’ obser-

vations, such as each player observes his partners’ records with some idiosyncratic observational noise.

Next, I extend Theorem 1 to settings where players’ continuation value is not necessarily monotone.

This includes, for example, when players choose their actions, they face uncertainty regarding whether they

can erase or add signals before being matched with their next partner. If this is the case, then players do

not know whether they can preserve their current record in the next period and whether their next-period

continuation value is no less than that in the period after next. The extension below nests my baseline model.

Formally, suppose whether each player i can erase or add signals before being matched with his period-k

partner is determined by an i.i.d. random variable mi,k ∈ {erase, add, both, none},14 where pe ≡ Pr(mi,k =

erase), pa ≡ Pr(mi,k = add), pb ≡ Pr(mi,k = both), and pn ≡ Pr(mi,k = none). Player i observes the

realization of mi,k when he chooses his period-k record before being matched with his period-k partner.
13The non-shifting support condition is required when players can only add signals, since my argument only implies that player

2’s highest and lowest continuation values at positive probability histories must coincide in all purifiable equilibria. Under perfect
monitoring, it cannot rule out grim-trigger equilibria since there will be only one continuation value on the equilibrium path.

14My result in this section, Theorem 4, applies both to the case where all players in population i face the same shock (i.e., in any
given period, either all of them can only erase signals, or all of them can only add signals, or all of them can do both, or all of them
cannot manipulate) and to the case where the shocks are i.i.d. across periods and players within population i.
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For any player i born before period k, suppose his period-(k − 1) record is ri,k−1 and his period-

(k − 1) signal is si,k−1. If mi,k = erase, then he can choose his period-k record from any subsequence of

(ri,k−1, si,k−1). If mi,k = add, then he can choose his period-k record to be any r′i such that (ri,k−1, si,k−1)

is a subsequence of r′i. If mi,k = both, then he can choose his period-k record from the entire set Ri.

If mi,k = none, then his record in period k must be (ri,k−1, si,k−1). For any player i born in period k,

before being matched with his partner in period k, he can choose anything in Ri to be his period-k record if

mi,k ∈ {add, both} and can only choose ∅ to be his period-k record if mi,k ∈ {erase, none}.

Theorem 4. Suppose players in population i have a strictly dominant action a∗i ∈ Ai.

1. For every ε > 0, there exists p∗ ∈ (0, 1) such that when pb + pe ≥ p∗, for every δ̂i ∈ (0, 1), there

exists δ∗ ∈ (0, 1) such that Π(σ,µ)
i (a∗i ) ≥ 1− ε for every equilibrium (σ, µ) when δi > δ∗.

2. For every ε > 0, there exists p∗ ∈ (0, 1) such that when pb+pa ≥ p∗, for every δ̂i ∈ (0, 1) and fi that

has non-shifting support, there exists δ∗ ∈ (0, 1) such that Π(σ,µ)
i (a∗i ) ≥ 1 − ε for every equilibrium

(σ, µ) when δi > δ∗.

Theorem 4 implies that if player i has a dominant action and can either erase or add signals with proba-

bility above some cutoff, then his average probability of cooperation is low when he is sufficiently long-lived.

Appendix D shows the first statement of Theorem 4, that is, the case where player i can erase signals

with probability above p∗. The case where player i can add signals with high probability and fi having

non-shifting support can be shown using a similar argument, which I omit in order to avoid repetition.

The main challenge is that unlike in the baseline model, it is unclear whether player i’s continuation

value will increase or decrease over time: it may increase in periods where mi,k ∈ {erase, none} and it

may decrease in periods where mi,k ∈ {add, none}. As a result, players’ continuation values are no longer

monotone over time, which contrasts to the baseline model. In addition, players may have incentives to

cooperate both when their continuation values reach the maximum and when their continuation values reach

the minimum. Hence, their incentives to cooperate do not vanish over time, unlike in the baseline model.

To conclude this section, I consider situations where a third party (e.g., an online platform) can reset a

player’s record. Such resets can be implemented either by erasing all signals from a player’s record, or by

adding some signal to a player’s record (e.g., adding a signal that marks the beginning of a reset).

First, suppose player i can only erase signals and that after each period, a platform randomly selects a

fraction pi ∈ [0, 1] of the active players in population i and erase all signals from their records.15 Since a

15If player i can add signals, then he can always add the erased signals back, in which case Theorem 1 still applies.
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player’s continuation value depends only on his record, once a player is selected by the platform, he will

effectively become a newly born player in the next period, so each player’s expected lifespan is shortened

from (1−δi)
−1 to (1−δi(1−pi))

−1. Although the extreme form of anti-folk theorem that players cooperate

with probability close to 0 may not extend, my uniform upper bound (4.2) still applies: It implies that the

average probability of cooperation is uniformly bounded below 1 regardless of pi. Hence, (4.2) illustrates

the limits of fostering cooperation via such policies and implies that the folk theorem fails more generally.

Second, suppose after each period, a platform randomly selects a fraction pi ∈ [0, 1] of the active players

in population i and adds a signal s∗i to their records. If player i can erase signals, then Theorem 1 extends

since before being matched with each new partner, player i can always erase the signal added by the platform

and preserve his record in the period before, so his continuation value is non-decreasing over time. If player

i cannot erase signals but can add signals, then Theorem 1 extends since player i can replicate his future

records in the current period (by adding s∗i himself) so his continuation value is non-increasing over time.

6 Concluding Remarks

This paper establishes an anti-folk theorem in community enforcement models, which shows that sufficiently

long-lived players will almost never cooperate. This result is driven by the monotonicity constraints on

players’ continuation values and these constraints are implied by players’ abilities to add or erase signals.

In summary, when players’ continuation values are non-decreasing over time (which must be the case

when they can erase signals from their records), they will have no incentive to cooperate once their contin-

uation values are close to the maximum. As a result, each player will only cooperate in a bounded number

of periods and these periods carry negligible weight once the player is sufficiently long-lived.

When players’ continuation values are non-increasing over time (which must be the case when they can

add signals), they will have no incentive to cooperate once their continuation values approach the minimum.

If the signals that monitor players’ actions are noisy, then in order to provide incentives to cooperate, players’

continuation value needs to decrease significantly relative to their current continuation value regardless of

the actions they take. This again suggests that each player has an incentive to cooperate for at most a bounded

number of periods and these periods carry negligible weight once the player is sufficiently long-lived.

My approach to endogenous records has two limitations. First, Theorems 1 and 4 require δi to be close

to 1. When δi is bounded below 1, although I can derive a uniform upper bound on the average probability of

cooperation, there is no precise characterization of the maximal probability of cooperation. Computing such

a probability is hard even for the prisoner’s dilemma since very little is known about (i) the set of equilibria
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in repeated games when δi is bounded below 1 and (ii) the structure of steady state Nash equilibria.

Second, when player i can only add signals, I focus on the case where he can include any finite number

of signals in any period. This modeling assumption ensures that his continuation value is non-increasing

over time. However, if player i can add no more than K signals in each period, his continuation value may

not be non-increasing over time. Whether Theorem 1 holds for a bounded K remains an open question.

A Proof of Corollary 1

Recall that in any finite 2-player game G, a pure action ai ∈ Ai is strictly dominated in the stage game

if and only if it is never a best reply and there exists η > 0 such that regardless of player −i’s action

α−i ∈ ∆(A−i), player i’s payoff from playing ai is less than his payoff from playing a best reply minus η.

Using the same argument as that in the proof of Theorem 1, one can show that for every δ̂i ∈ (0, 1),

there exists δ∗ ∈ (0, 1) such that when δi > δ∗, the average probability that player i takes strictly dominated

actions is less than ε in all equilibria. Let A1
i ⊂ Ai denote the set of player i’s actions that survive the first

round of deletion but not the second round. If A1
i is non-empty, then there exists η > 0 that depends only

on ui such that all actions in A1
i are still strictly dominated by at least η when the probability that player

−i takes strictly dominated actions is no more than η. According to the Markov’s inequality, if the average

probability with which player −i takes strictly dominated actions is no more than ε, then histories where

player −i takes strictly dominated actions with probability more than η occurs with probability less than

ε/η. Using the argument in Theorem 1, we know that for every δ̂i ∈ (0, 1), there exists δ∗ ∈ (0, 1) such

that when δi > δ∗, the probability that player i takes actions in A1
i is at most ε + ε/η. The conclusion of

Corollary 1 is obtained once we iterate the above process for at most |A1|+ |A2| rounds.

B Proof of Theorem 2

I focus on the case where players can erase signals and have strictly submodular payoffs. The case where

players can add signals and have strictly supermodular payoffs is symmetric, which I omit to avoid repetition.

To simplify notation, let f∗
i ≡ fi(s

∗
i |ai = C) and f ′

i ≡ fi(s
∗
i |ai = D). There exists ε > 0 such that

for every ε < ε, f∗
i > f ′

i when (f1, f2) is ε-precise. Let V i denote the continuation value of seniors in

population i and let V i denote the continuation value of juniors in population i. Let qi denote the probability

that juniors play C against other juniors and let µi denote the fraction of players in population i that are
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juniors. A junior in population i’s indifference condition when facing a junior in population j is given by

(1−δi)ui(C, qjC+(1−qj)D)+δi(f
∗
i V i+(1−f∗

i )V i) = (1−δi)ui(D, qjC+(1−qj)D)+δi(f
′
iV i+(1−f ′

i)V i),

which implies that

V i − V i =
1− δi
δi

· 1

f∗
i − f ′

i

·
(
qjg + (1− qj)l

)
. (B.1)

Since it is always weakly optimal for juniors to cooperate, his continuation value V i can be written as

V i = µj

{
(1−δi)ui(C, qjC+(1−qj)D)+δi

(
f∗
i V i+(1−f∗

i )V i

)}
+(1−µj)

{
(1−δi)ui(C,D)+δi

(
f∗
i V i+(1−f∗

i )V i

)}
.

Plugging in (B.1) for the difference between V i and V i, we obtain that

V i = µjqj − (1− µjqj)l +
f∗
i

f∗
i − f ′

i

(
qjg + (1− qj)l

)
. (B.2)

A senior’s continuation value is V i = µj(1 + g). This together with equations (B.1) and (B.2) implies that

µj(1+ g) = µjqj − (1−µjqj)l+
f∗
i

f∗
i − f ′

i

(
qjg+(1− qj)l

)
+

1− δi
δi

· 1

f∗
i − f ′

i

·
(
qjg+(1− qj)l

)
. (B.3)

For every η > 0, there exists ε > 0 such that as long as monitoring is ε-precise, there exists η ∈ (−η, η)

such that

(1− qj)µj =
1− δi
δi

· l

1 + g
+ qj

g − l

1 + g

(
δ−1
i − µj

)
+ η. (B.4)

Since g > l, the LHS of (B.4) is strictly decreasing in qj and equals 0 when qj = 1 and the RHS of (B.4)

is strictly increasing in qj and is always strictly positive when |η| < l
1+g · 1−δi

δi
. This implies that there

exists a solution to (B.4) for η small enough if and only if the LHS is greater than the RHS when qj = 0, or

equivalently,

µj >
1− δi
δi

· l

1 + g
for every i, j ∈ {1, 2} with i ̸= j. (B.5)

where steady state record distributions, µi and µj , must satisfy

µi = (1− δi) + δi

{
µiµj

(
(1− qi)(1− f ′

i) + qi(1− f∗
i )
)
+ µi(1− µj)(1− f∗

i )
}
. (B.6)

Equation (B.6) implies that µi ≥ 1− δi for every i ∈ {1, 2}, and therefore, it is sufficient to show that there
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exists a non-empty interval [δ′, δ′′] ⊂ (0, 1) such that when δ1, δ2 ∈ [δ′, δ′′], we have

µj ≥ 1− δj >
1− δi
δi

· l

1 + g
. (B.7)

This is indeed the case when δ̂i is close enough to 1 for every i ∈ {1, 2}, under which (B.7) is satisfied as

long as δj is not too close to 1. Such an equilibrium is purifiable since players have strict incentives at all

except for one information set, which is when a junior is matched with another junior.

C Proof of Theorem 3

Fix any equilibrium (σ, µ). Let R∗
i ⊂ Ri denote the set of player i’s records that occur with positive

probability under µ. Let Vi(ri) denote player i’s continuation value when his record is ri before knowing

his current partner’s record. Let V i ≡ supri∈R∗
i
Vi(ri) and let V i ≡ infri∈R∗

i
Vi(ri), which are player i’s

highest and lowest continuation values, respectively, at records that occur with positive probability under µ.

Lemma 1. Suppose players in population 1 can erase signals or they can add signals and f1 has non-

shifting support. If there exist an equilibrium (σ, µ) and a record profile (r1, r2) ∈ R∗
1×R∗

2 such that player

1 plays C with positive probability at (r1, r2), then it must be the case that V 1 > V 1.

Proof. First, suppose players in population 1 can erase signals. For each player 1, his incentive to play C at

(r1, r2) ∈ R∗
1 ×R∗

2 implies that

(1− δ1)u1(C, σ
a
2(r1, r2)) + δ1V 1 ≥ (1− δ1)u1(D,σa

2(r1, r2)) + δ1V1(r1). (C.1)

Therefore, V 1 > V1(r1) ≥ V 1 where the last inequality comes from the hypothesis that r1 ∈ R∗
1.

Next, suppose players in population 1 can add signals. For each player 1, his incentive to play C at

(r1, r2) ∈ R∗
1 ×R∗

2 implies that

(1− δ1)u1(C, σ
a
2(r1, r2)) + δ1

∑
s1∈S1

f1(s1|C, σa
2(r1, r2)) max

r′1∈R̂1(r1,s1)
V1(r

′
1) ≥

(1− δ1)u1(D,σa
2(r1, r2)) + δ1

∑
s1∈S1

f1(s1|D,σa
2(r1, r2)) max

r′1∈R̂1(r1,s1)
V1(r

′
1). (C.2)

If f1 has non-shifting support, let S1(σ
a
2(r1, r2)) denote the set of player 1’s signals that occur with positive

probability when player 2’s action is σa
2(r1, r2). This set is well-defined in the sense that it does not depend
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on player 1’s action. Inequality (C.2) and the definitions of V 1, V 1 suggest that

V 1 ≥ max
s1∈S1(σa

2 (r1,r2))

{
max

r′1∈R̂1(r1,s1)
V1(r

′
1)
}
> min

s1∈S1(σa
2 (r1,r2))

{
max

r′1∈R̂1(r1,s1)
V1(r

′
1)
}
≥ V 1

.

Suppose by way of contradiction that under the conditions of Theorem 3, there exists a purifiable equi-

librium (σ, µ) such that V 1 > V 1. Lemma 1 implies that any contradiction derived from this hypothesis

will imply Theorem 3. Let

η ≡ min
{V 1 − V 1

3
,
1− δ1
2δ1

c∗
}
, (C.3)

which is strictly positive since V 1 > V 1. The definitions of V 1 and V 1 imply that there exist r1, r1 ∈ R∗
1

with V1(r1) ∈ [V 1 − η, V 1] and V1(r1) ∈ [V 1, V 1 + η]. The definition of η implies that V1(r1) > V1(r1).

Recall from Section 3.1 that when player 1 can erase signals, his equilibrium continuation value is non-

decreasing over time, and that when player 1 can add signals, his equilibrium continuation value is non-

increasing over time. Lemma 2 is then implied by (C.1) and (C.2) as well as the monotonicity constraints.

Lemma 2. If population 1 can erase signals, then they have strict incentives to play D at any record

r1 ∈ R∗
1 that satisfies V1(r1) ∈ [V 1 − η, V 1]. If population 1 can add signals and f1 has non-shifting

support, then they have strict incentives to play D at any record r1 ∈ R∗
1 that satisfies V1(r1) ∈ [V 1, V 1+η].

Lemma 3 establishes an implication of the purifiability refinement.

Lemma 3. Suppose players in population 2 have first-order records.

1. If players in population 1 can erase signals and g ≤ l, then in every purifiable equilibrium, for every

r1 ∈ R∗
1 that satisfies V1(r1) ≥ V 1−η, every r1 ∈ R∗

1, and every r2 ∈ R∗
2, each player 2’s probability

of playing C at (r1, r2) is weakly less than his probability of playing C at (r1, r2).

2. If players in population 1 can add signals and g ≥ l, then in every purifiable equilibrium, for every

r1 ∈ R∗
1 that satisfies V1(r1) < V 1+η, every r1 ∈ R∗

1, and every r2 ∈ R∗
2, each player 2’s probability

of playing C at (r1, r2) is weakly more than his probability of playing C at (r1, r2).

Proof. I will only prove the first statement. The proof of the second statement is symmetric, which I omit

in order to avoid repetition. Lemma 2 implies that player 1 has a strict incentive to play D when his record

is r1. Since player 2’s records are first order, his payoff from playing a2 at (r1, r2) is (1 − δ2)u2(D, a2) +

δ2E[V2|a2, r2], where E[V2|a2, r2] stands for player 2’s continuation value in the next period given his
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current-period action and record. Fix any (r1, r2) ∈ R∗
1×R∗

2, if player 1’s (possibly mixed) action at (r1, r2)

is α1 ∈ ∆{C,D}, then player 2’s payoff from playing a2 at (r1, r2) is (1− δ2)u2(α1, a2) + δ2E[V2|a2, r2].

Since g ≤ l, maxa2∈A2

{
(1− δ2)u2(a1, a2)+ δ2E[V2|a2, r2]

}
is a single-crossing function of a1. Theorem

5 in Milgrom and Shannon (1994) implies that once we order players’ actions by C ≻ D, the set of

maximizers when a1 = α1, denoted by A∗∗
2 , dominates the set of maximizers when a1 = D, denoted

by A∗
2, in strong set order. Consider any ε-perturbed stage game where player 2’s stage-game payoff from

playing a2 is u2(a1, a2) + εz2(a2), where z2(a2) has bounded support and a non-atomic distribution. Since

z2(a2) has bounded support, player 2 will only take actions in A∗
2 with positive probability at (r1, r2) and

will only take actions in A∗∗
2 with positive probability at (r1, r2) when ε is small enough. When C /∈ A∗

2 or

when D /∈ A∗∗
2 , the conclusion of Lemma 3 is trivially true. When C ∈ A∗

2 and D ∈ A∗∗
2 , A∗∗

2 dominates

A∗
2 in strong set order implies that A∗

2 = A∗∗
2 = {C,D}, in which case both the probability that player 2

plays C at (r1, r2) and the probability that player 2 plays C at (r1, r2) are between the probability of the

event that z2(C) > z2(D) and the probability of the event that z2(C) ≥ z2(D). Events z2(C) > z2(D) and

z2(C) ≥ z2(D) occur with the same probability when the distribution of z2 is atomless. This implies the

conclusion of Lemma 3.

I use Lemmas 1, 2, and 3 to show Theorem 3. I consider two cases separately, depending on whether

player 1 can erase or can add signals. This part of my proof uses the assumption that matching is uniform,

and in particular, a player’s record does not affect the distribution of opponents that he will be matched with.

Case 1: Suppose player 1 can erase signals. By Lemma 2, he will play D for sure at any record r1 that

satisfies V1(r1) ≥ V 1 − η. Therefore, his equilibrium continuation value at r1 equals

∑
r2∈R∗

2

µ2(r2)
{
(1− δ1)u1(D,σa

2(r1, r2)) + δ1E[V1|D, r1]
}
. (C.4)

For every r1 ∈ R∗
1 with V1(r1) < V1(r1), if player 1’s current-period record is r1 and he deviates by playing

D and erasing every signal he generates, then his record remains r1, his payoff at r1 under this deviation is

∑
r2∈R∗

2

µ2(r2)
{
(1− δ1)u1(D,σa

2(r1, r2)) + δ1V1(r1)
}
, (C.5)

which must be weakly lower than his equilibrium continuation value V1(r1). According to Lemma 3,

σa
2(r1, r2) assigns weakly higher probability to C than σa

2(r1, r2), which implies that u1(a1, σa
2(r1, r2)) ≤

u1(a1, σ
a
2(r1, r2)) for every a1 ∈ {C,D}. Since the difference between (C.4) and (C.5) is at least V1(r1)−
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V1(r1), one can obtain the following inequality by subtracting (C.5) from (C.4):

E[V1|D, r1]− V1(r1) ≥
(
V1(r1)− V1(r1)

)
δ−1
1 . (C.6)

Let R1(r1) denote the set of player 1’s records that occur with positive probability in the next period when

his current-period record is r1 and he plays his equilibrium strategy. Inequality (C.6) implies that

max
r′1∈R1(r1)

V1(r
′
1)− V (r1) ≥ E[V1|D, r1]− V1(r1) ≥

(
V1(r1)− V1(r1)

)
δ−1
1 . (C.7)

Inequality (C.7) suggests that for any r1 ∈ R∗
1 that satisfies V1(r1) ∈ [V 1−η, V 1], there exists r′1 ∈ R1(r1)

such that V1(r
′
1)− V1(r1) ≥ δ−1

1 (V1(r1)− V1(r1)). This leads to a contradiction since there exists r1 ∈ R∗
1

that satisfies both V 1 > V1(r1) and δ−1
1 (V1(r1)−V1(r1)) > V 1−V1(r1) for any r1 with V1(r1) < V1(r1),

and any r′1 ∈ R1(r1) that satisfies V1(r
′
1)−V1(r1) ≥ δ−1

1 (V1(r1)−V1(r1)) will have V1(r
′
1) > V 1. Hence,

Π
(σ,µ)
1 (C) = 0. The conclusion that Π(σ,µ)

1 (C) = 0 then implies that Π(σ,µ)
2 (C) = 0.

Case 2: Suppose player 1 can add signals and the distribution of f1 has non-shifting support. For every

record r1 ∈ R∗
1 that satisfies V1(r1) ≤ V 1 + η, Lemma 2 implies that player 1 will play D for sure

at r1, and Lemma 3 implies that for every r2 ∈ R∗
2, the probability that player 2 plays C at (r1, r2) is

weakly greater than the probability that he plays C at any (r1, r2). Since player 1’s continuation value is

non-increasing over time, starting from any such r1, any record of this player 1 that occurs with positive

probability in the future, denote it by r′1, satisfies V1(r
′
1) ≤ V 1 + η. Since once player 1’s continuation

value satisfies V1(r1) ≤ V 1 + η, his continuation value will also satisfy that in the future, we know that

player 1’s continuation value at r1 is weakly greater than his continuation value at every record in R∗
1. This

contradicts the hypothesis that V 1 > V 1, and Lemma 1 then implies that Π(σ,µ)
1 (C) = 0. The conclusion

that Π(σ,µ)
1 (C) = 0 then implies that Π(σ,µ)

2 (C) = 0.

D Proof of Theorem 4: Statement 1

Fix an equilibrium (σ, µ). Recall from the proof of Theorem 1 that R∗
i denotes the set of player i’s records

that occur with positive probability, V (ri) denotes player i’s expected continuation value when his record

is ri, Ri(ri, si) ⊂ R∗
i denotes the set of subsequences of (ri, si), and R̂i(ri, si) ⊂ R∗

i denotes the set of

r′i such that (ri, si) is a subsequence of r′i. Let ui and ui denote player i’s highest stage-game payoff and

lowest stage-game payoff (as opposed to his minmax value), respectively. When mi,k = both, player i can
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choose any record from Ri before being matched with his partner in period k, so his continuation value in

period k equals maxr′i∈Ri
V (r′i) regardless of whether he was born in period k as well as his record ri and

signal si in period k−1 (in the case where he was born before period k). The definition of c∗ in (3.1) implies

that for each player i, he has an incentive to play a′i ̸= a∗i at (ri, r−i) only if

pe

{ ∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i)) max

r′i∈Ri(ri,si)
V (r′i)−

∑
si∈Si

fi(si|a∗i , σa
−i(ri, r−i)) max

r′i∈Ri(ri,si)
V (r′i)

}
+

pa

{ ∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i)) max

r′i∈R̂i(ri,si)
V (r′i)−

∑
si∈Si

fi(si|a∗i , σa
−i(ri, r−i)) max

r′i∈R̂i(ri,si)
V (r′i)

}
+

pn

{ ∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i))V (ri, si)−

∑
si∈Si

fi(si|a∗i , σa
−i(ri, r−i))V (ri, si)

}
≥ 1− δi

δi
c∗. (D.1)

For every ri and si, player i’s continuation value at any record r′i ∈ R̂i(ri, si) is at least his payoff from

the following strategy (i) not manipulating his record by the end of period k if mi,k ∈ {none, add}, (ii)

setting his record to ri by erasing signals by the end of period k if mi,k ∈ {erase, both}, and (iii) choosing

ai according to his equilibrium strategy at every record profile. This implies that

V (r′i) ≥ V (ri)−
1− δi

1− δi(1− pi)

(
V (ri)− ui

)
for every r′i ∈ R̂i(ri, si), (D.2)

where the RHS is a lower bound on player i’s payoff if he uses the strategy I described. When player i plays

a′i ∈ Ai at (ri, r−i), the difference between his expected continuation value in the next period and V (ri) is

pe
∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i)) max

r′i∈Ri(ri,si)
V (r′i) + pn

∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i))V (ri, si)

+pb max
r′i∈Ri

V (r′i) + pa
∑
si∈Si

fi(si|a′i, σa
−i(ri, r−i)) max

r′i∈R̂i(ri,si)
V (r′i)− V (ri). (D.3)

If any in equilibrium, for any (ri, r−i) at which player i plays any a′i ̸= a∗i with positive probability in

equilibrium, then by (D.1) and (D.2), the value of expression (D.3) is at least

1− δi
δi

c∗ − (pa + pn)
1− δi

1− δi(pa + pn)
(ui − ui). (D.4)

At any other (ri, r−i), inequality (D.2) implies that the value of expression (D.3) is at least

−(pa + pn)
1− δi

1− δi(pa + pn)
(ui − ui). (D.5)
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Recall the definitions of Vk and πk in the proof of Theorem 1. From (D.4) and (D.5), we know that

Vk+1 − Vk ≥ πk
1− δi
δi

c∗ − (pa + pn)(ui − ui)
1− δi

1− δi(pa + pn)
. (D.6)

For every T ∈ N, summing up inequality (D.6) from k = 1 to k = T , we can obtain that

T∑
k=1

πk ≤
T∑

k=1

{
(pa + pn)

1− δi
1− δi(pa + pn)

· ui − ui
c∗

+
Vk+1 − Vk

c∗

} δi
1− δi

≤ TG1 +G0, (D.7)

where G1 ≡ (pa+pn)(ui−ui)
c∗ · δi

1−δi(pa+pn)
and G0 ≡ ui−ui

c∗ · δi
1−δi

. Since πk ∈ [0, 1] for every k ∈ N, (D.7)

implies that
+∞∑
k=1

(1− δi)δ
k−1
i πk ≤ (1− δi)

G0
1−G1 + δ

G0
1−G1
i G1 ≤ (1− δi)

G0
1−G1 +G1. (D.8)

By the law of total probabilities, the LHS is the average probability with which player i takes actions other

than a∗i . Fix any δ̂i ∈ (0, 1) and let δi → 1, the RHS of (D.8) equals G1, and G1 vanishes as pa + pn → 0.
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