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We revisit the recent revealed preference analysis of sophisticated quasi-hyperbolic
consumers by Blow, Browning, and Crawford (2021) (BBC). We show that BBC’s revealed

preference test is too lax. There are non-rationalizable data that would pass their test.
A basic problem with their test is that it requires finding a certain endogenous elasticity,

without regard to the rationalizing utility. Their approach motivates a more stringent test,

also based on first-order conditions, that would connect the endogenous elasticity and
utility: We show that this test is also too lax. Aside from testing, we also discuss the

possibility of recovering model parameters. We show that, even when discount factors are

exactly identified, the approach followed in BBC allows for incorrect parameter values to
lie in their identified set.

Introduction

Blow, Browning, and Crawford (2021) (hereafter, BBC) present a revealed-preference
characterization of quasi-hyperbolic discounting preferences in demand theory. A
consumer chooses over time, according to intertemporal utility tradeoffs that change
over time because of their quasi-hyperbolic preferences. Following Afriat (1967) (in
the general utility-maximization framework), and Browning (1989) (for dynamically
consistent exponential discounting), BBC use a first-order approach. That is, BBC
equate consistency of data and model with the existence of a solution to a system of
equations arising from first-order conditions for utility maximization. These first-order
conditions are Euler equations, as derived in Harris and Laibson (2001), for example.

*We are grateful to the editors, the referees, and to Laura Blow for comments on an earlier draft.
An earlier version of this paper, see arXiv:2305.14125, did not focus only on a critique of Blow et al.

(2021), but was mainly devoted to a test of sophisticated time-inconsistent models.
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2 REVIEW OF ECONOMIC STUDIES

We argue that BBC’s first-order approach is problematic and may lead to incorrect
inferences. In the cases of Afriat and Browning, one can show that the first-order
approach is correct. It leads to a test that is passed if and only if the model explains
the data (Section 1.1). For the general model of utility maximization (Afriat), or the
model of exponential discounting (Browning), data are consistent with the first-order
approach if and only if there is a utility that satisfies the conditions in the model, and
that rationalizes the data as optimal choices.

We show that there is a problem in using the first-order approach for a quasi-
hyperbolic agent. The first-order approach is too permissive. Say that a dataset is FOCs
rationalizable if the system of first-order conditions can be satisfied. A dataset is
equilibrium rationalizable if there is a utility such that the observed consumption
is an equilibrium outcome of the quasi-hyperbolic model. Our Theorem 1.1 shows that
there are datasets that are FOCs rationalizable, but not equilibrium rationalizable. Our
Theorems 1.1 and 1.4 show that the first-order approach leads to incorrect inference
about crucial model parameters.

Theorems 1.1 and 1.4 matter beyond their theoretical implications. BBC carry out
an empirical application in which they emphasize the explanatory power of the quasi-
hyperbolic model: “The quasi-hyperbolic model provides a significantly more successful
account of behaviour than the alternatives considered.” The gap between equilibrium
rationalizability and FOCs rationalizability may call into question the conclusions drawn
from their empirical results.

We should emphasize that the revealed-preference problem for quasi-hyperbolic
discounting is very difficult, and BBC make progress. There are problems with the
first-order approach, but it is at least tractable.

1. QUASI-HYPERBOLIC DISCOUNTING AND CONSUMPTION.

We first outline the model of quasi-hyperbolic discounting consumer choice. We shall
focus on a three-period model because it is the simplest case in which the assumption of
hyperbolic discounting has any bite.

A consumer chooses quantities of a single good in periods t=1,2,3. She has a wealth
m, and faces prices pt for consumption in period t. These prices may be interpreted as
encoding interest rates. Given prices and wealth, a consumption stream x=(x1,x2,x3) is
affordable if p·x :=

∑3
t=1ptxt≤m. The standard exponential-discounting model assumes

that preferences over a consumption stream x∈R3
+ are described by a pair (u,δ), with u :

R+→R, and δ>0. The consumer evaluates a consumption stream x by u(x1)+δu(x2)+
δ2u(x3).

Under quasi-hyperbolic discounting, the consumer’s preferences are described by a
tuple (u,β,δ), with u :R+→R, and β,δ>0. The consumer evaluates a consumption
path x by u(x1)+β[δu(x2)+δ2u(x3)]. A quasi-hyperbolic consumer chooses consumption
that results from an equilibrium between their period-1 preferences and their period-2
preferences. We phrase this as a game played between two agents. Agent 1 chooses
consumption in period 1, x1. Agent 2 chooses consumption in period 2, and consequently
in period 3 because consumption in period 3 is determined by the consumer’s overall
budget. So Agent 2 chooses (x2,x3).

The relevant equilibrium notion embodies a form of sequential rationality: it is a
subgame-perfect Nash equilibrium. A subgame-perfect equilibrium can be described by
backward induction: In period 2, given x1, Agent 2 maximizes u(x2)+βδu(x3) subject
to x2,x3≥0 and p2x2+p3x3≤m−p1x1. Let s(x1)=(s2(x1),s3(x1)) denote a solution to
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Agent 2’s problem, as a consumption vector in periods 2 and 3, and as a function of the
period-1 choice x1.

Agent 1 then solves the problem of choosing period-1 consumption x1 to maximize

u(x1)+βδu(s2(x1))+βδ2u(s3(x1)),

subject to x1≥0 and p1x1≤m. If x∗1 is an optimal choice for Agent 1, we say that the
pair (x∗1,s) is a subgame-perfect Nash equilibrium of the game induced by (u,β,δ). In
the sequel, we simply write equilibrium to refer to a subgame-perfect Nash equilibrium.
An equilibrium outcome of the game defined by (u,β,δ), for fixed prices p and budget
m, is then a consumption stream x=(x1,x2,x3) for which there exists an equilibrium
(x∗1,s) with x∗1=x1 and (x2,x3)=s(x∗1).

A dataset consists of a pair (x,p), where x∈R3
++ and p∈R3

++. The interpretation
is that we observe a consumption stream x, chosen when the prices are p, and income (or
budget) is m :=p·x. Importantly, x is the observed, or realized, consumption choice. Let
U+ be the set of all monotone increasing, C2, and strictly concave functions u :R+→R.
We follow BBC in imposing strict concavity of utility, δ≤1 and β<1.1

We introduce the relevant notions of rationalizability: what it means for a dataset to
be consistent with this particular theory of consumer choice.

Definition 1.1. A dataset (x,p) is equilibrium rationalizable by the sophis-
ticated quasi-hyperbolic model if there exists (u,β,δ), with u∈U+, β∈(0,1), and
δ∈(0,1], for which x is an equilibrium outcome of the game defined by (u,β,δ) for prices
p and budget m=p·x. We say that (u,δ,β) is an equilibrium rationalization of (x,p).
EQ denotes the set of equilibrium rationalizable datasets.

Equilibrium rationalizability requires checking complicated optimization and equilib-
rium properties. The literature on revealed preference theory, following the seminal work
of Afriat (1967), often focuses on the data satisfying the first-order conditions of a model.
We call this the first-order approach. BBC, while ostensibly about equilibria in the
quasi-hyperbolic discounting model, actually formally uses the first-order approach. Our
next definition is Definition 1 in BBC.

Definition 1.2. A dataset (x,p) is FOCs rationalizable by the sophisticated quasi-
hyperbolic model if there exists (u,β,δ,(µt)

3
t=1) such that u∈U+, λ>0, β∈(0,1), δ∈(0,1],

µt∈(0,1) for t=1,2, and µ3=1 such that

u′(xt)=λ
pt
δt

t∏
i=1

1

1−(1−β)µi
. (1.1)

We say that the tuple (u,β,δ,(µt)
3
t=1) is a FOCs rationalization of (x,p). We also

say (u,β,δ) is a FOCs rationalization of (x,p) if a desirable (µt)
3
t=1 exists. Let FOC be

the set of all datasets that are FOCs rationalizable.

1. BBC explicitly assume concavity, but implicitly strict concavity. They assume that the
consumption function is differentiable, which rules out a zero of the second derivative of the instantaneous

utility function (see Theorem C.3.2 in Mas-Colell (1985)). BBC also refer to Harris and Laibson (2001),
who do assume strict concavity of utility.
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4 REVIEW OF ECONOMIC STUDIES

FOCs rationalizability has a straightforward conceptual flaw: the elasticities µt are
not required to arise from the rationalizing utility u. BBC do not prove that FOC=EQ.
In fact, as we show below, there is a data set (x,p) that is FOCs rationalizable but not
equilibrium rationalizable.

For the first-order approach to be valid, two conditions are needed. First, any dataset
that is FOCs rationalizable needs to be equilibrium rationalizable. Second, any FOCs
rationalization of a dataset should also be an equilibrium rationalization. So model
parameters that are recovered from the dataset are, in fact, consistent with the model.
For general, and exponential, utility, the two conditions are satisfied (Section 1.1). For
quasi-hyperbolic discounting, both conditions are violated.

Theorem 1.1. EQ⊊FOC. Moreover, there is a data set (x,p)∈EQ with a FOCs
rationalization (u,β,δ) that is not an equilibrium rationalization of (x,p).

The intuition behind Theorem 1.1, and our subsequent results, depends on the

notion of absolute risk aversion. Let AR(z)=−u′′(z)
u′(z)

be the coefficient of absolute risk

aversion at z∈R. Let R(p)=
p22−p1p3
p3(p1−p2)

. And let PS be the set of data (x,p) with

max(x1,x3)≤x2, p1>p2>p3, and R(p)>1. In our proof, we show that any data in
PS is FOCs rationalizable, but some of them are not equilibrium rationalizable. By
leveraging the connection between µt and u, we show that in order for (x,p)∈PS to be
equilibrium rationalizable, AR(x2) has to be at least R(p) times larger than AR(x3).

That is,
AR(x2)
AR(x3)

≥R(p)>1.

We can make three observations from the inequality
AR(x2)
AR(x3)

≥R(p)>1. First, any

(x,p)∈PS with x2=x3 is not equilibrium rationalizable because AR(x2)=AR(x3),
which proves the first part of Theorem 1.1. Second, if (x,p)∈PS is equilibrium
rationalizable, then a rationalizing utility function violates decreasing absolute risk
aversion, which is assumed in most economic environments, and is overwhelmingly
supported by empirical evidence. Third, R(p) can be arbitrarily large. For example,
R(p)>k+(k+1)2ϵ when p=(1+(k+2)ϵ,1+(k+1)ϵ,1). Hence, for any rationalizing
utility function u of (x,p), even allowing for increasing absolute risk aversion, the
coefficient of absolute risk aversion needs to make arbitrarily large jumps (even when
x2 and x3 are arbitrarily close). This excludes the class of utility functions assumed
in Harris and Laibson (2001), where the coefficient of relative risk aversion is bounded
(Theorem 2.1). This also rules out utility functions that are uniformly log-Lipschitz
continuous (Theorem 2.1). Essentially because of the problematic properties of a FOCs
rationalizing utility function, a data set (x,p)∈PS with max(x1,x3)<x2 can be a local
minimizer of Agent 1’s objective function while it satisfies FOCs; which proves the second
part of Theorem 1.1.

1.1. Exponential discounting model and the First-Order Approach

We argued that two conditions are needed for the first-order approach to be valid. To
contrast with quasi-hyperbolic discounting, we consider exponentially discounted utility
(EDU). A dataset (x,p) is EDU-rationalizable if it is equilibrium rationalizable by
the quasi-hyperbolic model with some (u,β,δ) where β=1. When this occurs, we say
that (u,δ) is a EDU-rationalization of (x,p). Similarly, we say a dataset (x,p) is
EDU-FOCs rationalizable if it is FOC rationalizable by the quasi-hyperbolic model
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with some (u,β,δ) where β=1. EDU-FOCs is the test used by Browning (1989). The
pair (u,δ) is an EDU-FOCs rationalization of (x,p).

Afriat (1967) shows that the first-order approach is valid for the general model of
utility maximization. The same is true for exponential discounting:

Proposition 1.2. A dataset is EDU-FOCs rationalizable if and only if it is EDU-
rationalizable. Moreover, any EDU-FOCs rationalization (u,δ) of (x,p) is also an EDU-
rationalization of (x,p).

Proposition 1.2 is presented, without proof, to contrast with Theorem 1.1.

1.2. Quasi-hyperbolic model and Strong FOC

The disconnect between u and µt in the definition of FOCs rationalization motivates our
next definition. It suggests that u and µt may be connected through Equation (1.2) (see
Lemma 1 of BBC).

Definition 1.3. A dataset (x,p) is strongly FOCs rationalizable by the sophisti-
cated quasi-hyperbolic model if there exists a FOCs rationalization (u,β,δ,(µt)

3
t=1) that

satisfies

µ2=
p2

p2+p3
AR(x2)
AR(x3)

. (1.2)

Let Strong FOC denote the set of all datasets that are strongly FOCs rationalizable.

We will derive Equation 1.2 from the utility maximization problems of Agent 1 and
Agent 2 in Section 3. Under standard regularity conditions, the equation is necessary for
equilibrium rationalization, i.e., EQ⊆Strong FOC.

Let D be the set of datasets (x,p) that satisfy xt ̸=xs for all t ̸=s, and I be the set of
datasets with p1>p2>p3 and p1/p2>p2/p3.

Theorem 1.3.

1. EQ⊆Strong FOC⊊FOC,
2. D∩FOC=D∩Strong FOC⊊Strong FOC,
3. and I⊆FOC.

To unpack the theorem, we discuss the different claims it contains. Statement (1) gives
the obvious logical relations: EQ⊆Strong FOC⊆FOC; but in contrast with the message
of Proposition 1.2 for exponential discounting, there is a gap between the notion of
equilibrium and FOCs rationalization; the gap already appears in comparing FOCs and
strong FOCs rationalizations. Strong FOC is a strict subset of FOC.

Statement (2) addresses the disconnect between u and µts in BBC. Theorem 1.3 says
that, as long as consumption in different time periods is distinct, it is always possible
to line up the µt numbers with the intended rationalization. So strong FOCs seem to
be too permissive as well. Further evidence on the permissiveness of strong FOCs is in
Theorems 1.4 and 2.1.

Statement (3) provides additional evidence about the weakness of FOCs rationaliza-
tion. No matter what the values of consumption are, as long as a dataset satisfies the
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6 REVIEW OF ECONOMIC STUDIES

assumption on prices in I, then it is FOCs rationalizable. It is worth mentioning that
such prices are compatible with data that refute the exponential discounting model.2

Our next result speaks to the use of FOCs rationalizability to recover the discount
factors in a quasi-hyperbolic utility function. Discount factors matter critically for welfare
comparisons and policy decisions, and estimating β and δ is part of the empirical exercise
in BBC. But the proof of Proposition 1 in BBC shows that, whenever a dataset is FOCs
rationalizable, it is without loss of generality to assume δ=1. Our next result shows that
this is problematic: there are datasets for which (β,δ) are point identified and δ<1, but
δ=1 is also in BBC’s identified set.

Theorem 1.4.

1. Let δ∗∈(0,1) and β∗∈(0,1). There is (x,p)∈EQ such that: a) δ=δ∗ and β=β∗

for any equilibrium rationalization (u,β,δ) of (x,p), and b) there is also a FOCs
rationalization (u,β′,δ′) of (x,p) with δ′=1.
2. There are (x,p)∈D and (u,β,δ) such that (u,β,δ) is a Strong FOCs rationalization
of (x,p), but not an equilibrium rationalization of (x,p).

Statement (1) of Theorem 1.4 means that δ<1 has additional empirical content when
we focus on equilibrium rationalizability rather than FOCs. Statement (2) speaks to
the possibility of using a FOCs, or Strong FOCs, rationalization in order to recover
utility parameters. The theorem says that a rationalization may not have an equilibrium
outcome that coincides with the data, which would mean that the rationalizing
parameters could not generate the observed data. Theorem 1.4 challenges the analysis
in Section 3.4 of BBC, in which they recover consumers’ preferences based on a FOCs
rationalization. The recovered preferences may not explain the data according to the
quasi-hyperbolic model.

2. ROBUSTNESS

Some of our results take essentially the form of counterexamples, or of families of
counterexamples. Here we offer evidence that these are not, in some sense, “knifedge.”
We present first two classes of utility functions.

Given α≥0, a function f :A⊆R→R++ is α-logarithmically Lipschitz if, for all z∈
A and t>0 so that z+t∈A, f(z+t)/f(z)≤(1+t)α. Observe that any non-increasing
function is trivially α-logarithmically Lipschitz. Let Uα be the set of all smooth, strictly
monotone increasing, and strictly concave utility functions for which the coefficient of
absolute risk aversion is α-logarithmically Lipschitz. Note that Uα⊆Uβ for any β≥α≥
0. The class U0 contains all functions satisfying non-increasing absolute risk aversion.
There is, of course, overwhelming empirical support for the assumption of non-increasing
absolute risk aversion.3 Let FOCα and Strong FOCα be the sets of data sets that are
FOC rationalizable and strong FOC rationalizable by a utility function u∈Uα.

We also consider the class of utility functions UHL⊆U that are assumed by Harris
and Laibson (2001). For reasons of space, we do not include the complete definition of

2. For example, by Theorem 1 of Echenique et al. (2020), the data set (x,p)∈I with x=(3,2,4)

and p=(8,2,1) is not EDU-rationalizable.
3. See, for example, Cohn et al. (1975), Levy (1994), Guiso and Paiella (2008), Chiappori and

Paiella (2011), and Paravisini et al. (2017).
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UHL: see assumptions U1-U4 on page 940 of their paper. The critical assumption for us
is U4 which assumes that the coefficient of relative risk aversion is bounded away from 0
and +∞. The results of BBC rely on Harris and Laibson’s results (for example, Lemma 1
in BBC is one of Harris and Laibson’s results).

Theorem 2.1. Let α≥0. There is an open subset Do of D with the property that, for
any (x,p)∈Do:

1. (x,p) is in FOCα but not equilibrium rationalizable with any utility u∈Uα∪UHL;
2. (x,p) is not in Strong FOCα.

Remark 2.2. There is, as said, overwhelming empirical support for U0. Theorem 2.1
only requires Uα, for some α≥0. It is easy to prove even stronger versions of
Theorem 2.1: We may require that there is a bounded function h : [0,1]→R+ such that,
for all u, there is ε∈(0,1) with AR(z+t)/AR(z)≤h(t) for all t∈(0,ε). The conclusion
of the theorem holds in this case.

Remark 2.3. The proof of Theorem 2.1 shows a stronger result: for any α≥0, there
is an open subset Do of D with the property that Do⊆FOC0 and Do∩Strong FOCα=∅.
Since FOC0⊆FOCα for any α≥0, we obtain Do⊆FOCα. In fact, as we show in the
proof, every (x,p)∈Do will be FOC rationalizable with a CRRA utility function.

Remark 2.4. For additional robustness, we present a result like Theorem 2.1 for
arbitrary compact sets of utilities in Online Appendix A.1.

Remark 2.5. The focus so far has been on a three-period model, which raises the
possibility that the equivalence between EC and FOCS is valid for longer time horizons.
It is, of course, easy to recreate the counterexamples in our proofs so that they
occur in the last three periods of a problem with an arbitrary finite horizon. But we
present a counterexample in Online Appendix A.2 in which the incompatibility arises at
intermediate periods: not at the beginning nor at the end of the time horizon.

3. PROOFS

As background for the proofs of Theorems 1.1-2.1, we derive convenient expressions for
the model’s first conditions. We derive the first-order conditions (FOCs) by backward
induction. Agent 2 maximizes u(x2)+βδu(x3) subject to the budget constraint. The
FOC is

u′(x2)
u′(x3)

=βδ
p2
p3

. (3.3)

Hence, x3=g(x2) where g :=u′−1
(
Au′

)
and A= p3

βδp2
. Note that g is continuous and

strictly increasing. Agent 1 maximizes u(x1)+βδu(x2)+βδ2u(x3) subject to the budget
constraint. Let

x1=f(x2)=
m−p2x2−p3g(x2)

p1
.



i
i

“MS33869manuscript” — 2025/6/1 — 9:15 — page 8 — #8 i
i

i
i

i
i
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Note that f is continuous and strictly decreasing. Agent 1 maximizes u
(
f(x2)

)
+

βδu(x2)+βδ2u
(
g(x2)

)
. The FOC gives

−u′
(
x2

)
f ′(x2)=u′

(
x2

)
(
p2+p3g

′(x2)
p1

)=βδu′(x2)+βδ2u′
(
x3

)
g′(x2),

since f ′(x2)=−p2+p3g′(x2)
p1

. Then u′(x3)=
p3

βδp2
u′(x2), implies that

u′(x1)
u′(x2)

=δ
p1
p2

(βp2+p3g
′(x2)

p2+p3g′(x2)

)
. (3.4)

Note that strong FOCs rationalizability is equivalent to (u,β,δ) satisfying Equations (3.3)
and (3.4).

Let us see how Equation (1.1) is related to Equations (3.3) and (3.4). Define λ=
δu′(x1)(1−(1−β)µ1)

p1
. We then obtain Equation (1.1) for t=1 for any (u,β,δ) and µ1∈(0,1).

Since µ3=1, the FOC rationalizability is equivalent to

u′(x1)
u′(x2)

=δ
p1
p2

(1−(1−β)µ2) and
u′(x2)
u′(x3)

=βδ
p2
p3

. (3.5)

Since u′(x2)=
p2
p3

βδu′(g(x2)) and u′′<0, the Implicit Function Theorem implies that

g′(x2)=
p3u′′(x2)

p2βδu′′(x3)
. Hence,

g′(x2)=
u′′(x2)
u′′(x3)

u′(x3)
u′(x2)

=
AR(x2)

AR(x3)
. (3.6)

Hence, Equations (3.4) and (3.5) are satisfied iff µ2=
p2

p2+p3g′(x2)
iff Equation 1.2 is

satisfied.

3.1. Proof of Theorem 1.1

Recall the following notation: i) AR(z)=−u′′(z)
u′(z)

is the coefficient of absolute risk aversion

at x; ii) R(p)=
p22−p1p3
p3(p1−p2)

; and iii) PS is the set of data sets (x,p) with x1≤x2≥x3,

p1>p2>p3, and R(p)>1. Let GPS be the set of data sets (x,p) with x1≤x2≥x3,
p2
p3

> p1
p2

>1. Note that PS⊊GPS.

Lemma 3.1. For any (x,p)∈Strong FOC, g′(x2)≥R(p).

Proof. By Equation (3.3), we obtain p3
δp2

u′(x2)
u′(x3)

=β. By Equation (3.4), the fact g′(x2)=

AR(x2)/AR(x3)>0, and the assumption x1≤x2 (and hence 1≤ u′(x1)
u′(x2)

),

p2
δp1

(
p2+p3g

′(x2)
)
≤βp2+p3g

′(x2)=
p3
δ

u′(x2)
u′(x3)

+p3g
′(x2).

This implies that
p22
p1

−p3
u′(x2)
u′(x3)

≤
(
δp3−

p2p3
p1

)g′(x2).
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Since u′(x2)≤u′(x3),

p22
p1

−p3≤
p22
p1

−p3
u′(x2)
u′(x3)

≤
(
δp3−

p2p3
p1

)g′(x2)≤
(
p3−

p2p3
p1

)g′(x2).

Hence, we obtain the desired inequality. ∥

Lemma 3.2. GPS⊆FOC.

Proof. Let (x,p)∈GPS. Let δ1,δ2∈ [0, p1p2 −1) be such that i) δ1=0 if x1=x2 ; ii) δ2=0

if x2=x3; and iii) x1≥x3 iff δ1≤δ2. Choose any u∈U+ with u′(x1)=u′(x2)(1+δ1) and
u′(x3)=u′(x2)(1+δ2).

Let δ=1. To obtain Equation (3.5) for FOCs, we shall find β,µ2∈(0,1) such that

1

1+δ1
=

u′(x2)
u′(x1)

=
p2
p1

(1−(1−β)µ2)
−1 and 1+δ2=

u′(x3)
u′(x2)

=
p3
βp2

.

From the second equality, we find β= p3
p2(1+δ2)

<1. Then from the first equality, we find

µ2=
1− p2

p1
(1+δ1)

1−β
=

1− p2
p1
(1+δ1)

1− p3
p2(1+δ2)

.

Note that µ2>0 because δ1<
p1
p2

−1. Moreover, µ2<1 since p3
p2(1+δ2)

≤ p3
p2

< p2
p1

≤ p2
p1
(1+

δ1). Hence, we obtain desired β and µ2. Thus, (x,p)∈FOC. ∥

We can now wrap up the proof of Theorem 1.1. Let (x,p)∈PS with x2=x3. Since
PS⊆GPS, Lemma 3.2 implies that (x,p)∈FOC. However, if (x,p)∈EQ⊆Strong FOC,
then by Lemma 3.1 we should have g′(x2)≥R(p)>1. However, by Equation (3.6), x2=x3
implies that g′(x2)=1. Therefore, (x,p) ̸∈EQ.

The second statement of Theorem 1.1 follows from the first part of Theorem 1.4, which
proves that there are (x,p)∈EQ and (u,β,δ) such that (u,β,δ) is a FOCs rationalization
of (x,p) but not an EQ rationalization of (x,p).

3.2. Proof of Theorem 1.3

It is obvious that EQ⊆Strong FOC⊆FOC. We proceed to show the other statements in
the theorem.

Part 1: There exists a dataset in FOC that is not in Strong FOC. By Lemma 3.2,
PS⊊FOC. By Lemma 3.1, if (x,p)∈Strong FOC, then g′(x2)≥R(p)>1. However, by
Equation (3.6), if x2=x3, then we obtain g′(x2)=1, a contradiction. Hence, for any
(x,p)∈PS with x2=x3, (x,p)∈FOC but (x,p) ̸∈Strong FOC.

Part 2. Any dataset in FOC that has xt ̸=xs for all t ̸=s is strong FOCs rationalizable.
We claim that, if (û,β,δ,(µt)

3
t=1) is a FOCs rationalization, then we may find a strong

FOCs rationalization (u,β,δ,(µt)
3
t=1) for which u′(xt)= û′(xt) for all t. To this end, let

at= û′(xt)>0, and choose bt<0 so that µ2=
p2

p2+p3G
holds where G= a3b2

a2b3
. Note that

(u,β,δ,(µt)
3
t=1) will be a FOCs rationalization if u′(xt)=at. Moreover, Equation (1.2)

will be satisfied if u′′(xt)=bt.
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Consider the function ht(z)=at+bt(x−xt). Note that ht is monotone decreasing and
that at=ht(xt)<hs(xs)=as when xs<xt, as û is strictly concave. Given that xs ̸=xt
for t ̸=s we may find disjoint neighborhoods Nt of each xt so that ht is smaller on Nt than
hs on Ns when xs<xt, and greater on Nt than hs on Ns when xs>xt. Define a function
h :R+→R by letting h equal ht on Nt, h(0)>sup{ht(z) :x∈Nt,1≤ t≤3}, and by linear
interpolation on R+\({0}∪(∪tNt)). Then h is monotone decreasing, h(xt)= û′(xt), and
h′t=bt for all t.

Letting u(z)=
∫ z
0 h(θ)dθ, we have u′(xt)=h(xt)=at and u′′(xt)=h′(xt)=bt. Finally, by

choosing data in Strong FOC that is not in D we obtain the strict inclusion in the
statement of the theorem.

Part 3. I⊆FOC follows from Proposition 1 of BBC.

3.3. Proof of Theorem 1.4

Part 1: To prove the first statement in the Theorem, fix δ∗,β∗∈(0,1), and consider data
(x,p) with x1=x2=x3 and p3=1 and

p2=
1

β∗δ∗
and p1=

1+β∗δ∗

(β∗δ∗)2(1+δ∗)
.

Let (u,β,δ) be an arbitrary equilibrium rationalization of the data. We claim that δ=δ∗

and β=β∗.
Since x2=x3, by Equation (3.3), we have 1=βδp2; i.e., βδ=β∗δ∗. Moreover, we also
obtain A=p3/βδp2=1, which means that g′(x2)=1. Since x1=x2, by Equation (3.4),
we have

1=δ
p1
p2

g′(x2)+βp2
g′(x2)+p2

=δ
1+β∗δ∗

β∗δ∗(1+δ∗)

1+ β
β∗δ∗

1+ 1
β∗δ∗

=
δ+1

1+δ∗
.

Hence, δ=δ∗ and β=β∗.
Note that p2

p3
> p1

p2
>1. Hence, (x,p)∈GPS. By Lemma 3.2, (x,p)∈FOC.

On the other hand, the proof of Proposition 1 in BBC shows that, whenever a dataset
is FOCs rationalizable, then it is without loss of generality to set δ=1. It is in fact easy
to show that the data is FOCs rationalizable with (u,β′,δ′) with δ′=1 and β′=β∗δ∗ by

setting µ2=
1−β∗(δ∗)2

1−(β∗)2(δ∗)2
.

Part 2: Finally, we prove the second statement in Theorem 1.4. Consider a dataset
with x1=0.04,x2=0.05, x3=0.4698, and prices p1=3.0969, p2=2, p3=1 (consequently,

m=0.694). We claim that (u,β,δ), with β=δ=0.8, and u(z)=z− z3

3 when z∈(0,1), is a

strong FOCs rationalization. Indeed, note that g(z)=
√
1−A(1−z2) where A=0.78125.

By direct calculation, we obtain

g′(x2)=
Ax2√

1−A(1−x22)
=0.083147 and g′′(x2)=

A(1−A)

(1−A(1−x22))
3
2

=1.648.

To verify strong FOCs rationalizability, note that Equation (3.3) is satisfied since

u′(x2)
u′(x3)

=
1−x22
1−x32

=
1−0.052

1−0.46982
=

1

0.78125
=βδp2.



i
i

“MS33869manuscript” — 2025/6/1 — 9:15 — page 11 — #11 i
i

i
i

i
i

ECHENIQUE AND TSERENJIGMID TIME-INCONSISTENT PREFERENCES11

Moreover, Equation (3.4) is satisfied since

u′(x1)
u′(x2)

=
1−0.042

1−0.052
=

0.8×3.1

2

(
0.083147+1.6

0.083147+2

)
=

δp1
p2

(
g′(x2)+βp2
g′(x2)+p2

)
.

To check the equilibrium rationalizability, we consider the second-order condition for
Agent 1. Recall from the discussion at the start of Section 3 that Agent 1’s objective
function is

u
(
f(x2)

)
+βδu(x2)+βδ2u

(
g(x2)

)
.

Hence, the second-order condition is

u′′(x1)(f
′(x2))

2+βδu′′(x2)+βδ2u′′(x3)(g
′(x2))

2+g′′(x2)
(
βδ2u′(x3)−

u′(x1)
p1

)
≤0.

Using Equations (3.3) and (3.4), we can further simplify and obtain

u′′(x1)(f
′(x2))

2+βδu′′(x2)+βδ2u′′(x3)(g
′(x2))

2+g′′(x2)u
′(x2)

δ(1−β)

g′(x2)+p2
≤0. (3.7)

However, we have

g′′(x2)u
′(x2)

δ(1−β)

g′(x2)+p2
=0.1263>0.1035

= |u′′(x1)(f ′(x2))2+βδu′′(x2)+βδ2u′′(x3)(g
′(x2))

2|,

so (3.7) is violated. Hence, the bundle x is a local minimizer for Agent 1’s problem.

3.4. Proof of Theorem 2.1

Note that there is 0<σ<σ̄ such that any u in UHL satisfies that zu′′(z)/u′(z)∈ [−σ̄,−σ]
(this is property U4 in Harris and Laibson (2001)). Take any k>max(2α−1,σ̄/σ) and

let pk=(2+ 1
k+1 ,2,1). The function R(p)=

p22−p1p3
p3(p1−p2)

evaluates to 2k+1 at p=pk and

is continuous in a neighborhood of pk. Let P ⊊R3
++ be a neighborhood of pk with the

property that R(p)>2k for any p∈P . Let Do be the set of all data sets (x,p) with
p∈P , x1∈(0,0.5),x3∈(0.5,1) and x2∈(1,1.5). Note that Do⊆GPS and Do⊆D.

Suppose (u,β,δ) is an equilibrium rationalization of (x,p)∈Do with u∈Uα∪UHL. Then

by Lemma 3.1, g′(x2)=
AR(x2)
AR(x3)

≥R(p)>2k. However, if u∈Uα, then
AR(x2)
AR(x3)

≤(1+x2−
x3)

α≤2α<2k, a contradiction. Suppose now u∈UHL. Denote by RR(z)=−zu′′(z)/u′(z)
the coefficient of relative risk aversion of u. Then we obtain

σ̄

σ
>

σ̄

σ
·
[
x3
x2

]
≥ RR(x2)

RR(x3)
·
[
x3
x2

]
=

AR(x2)

AR(x3)
≥R(p)>2k,

a contradiction. Hence, we conclude that (u,β,δ) is not an equilibrium rationalization of
(x,p). The above also show that (x,p) is not in Strong FOCα.
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We shall prove that Do⊆FOCα. Since FOC0⊆FOCα, it is enough to prove that Do⊆
FOC0. Consider (u,β,δ,(µt)

3
t=1) such that u(z)=zγ , δ=1, β= p3

p2
(x3
x2

)1−γ , and

µ2=
1− p2

p1
(x2
x1

)1−γ

1−β
.

Note that u∈U0 when γ∈(0,1). We shall show that every (x,p)∈Do is FOCs
rationalizable with (u,β,δ,(µt)

3
t=1) for some γ∈(0,1). Note that with the above

specifications, we obtain the FOCs:

u′(x2)
u′(x3)

=(
x3
x2

)1−γ=βδ
p2
p3

, by definition of β,

and
u′(x1)
u′(x2)

=(
x2
x1

)1−γ=δ
p1
p2

(1−(1−β)µ2), by definition of µ2.

Hence, it is sufficient to prove that there is γ∈(0,1) such that β∈(0,1) and µ2∈(0,1).
Recall that since Do⊆GPS, we have x2>max(x1,x3) and

p2
p3

> p1
p2

>1.

Since x3
x2

<1 and p3
p2

<1, we have β<1 for any γ∈(0,1). In order to have µ2<1, we need

p2
p1
(x2
x1

)1−γ>β= p3
p2
(x3
x2

)1−γ ; equivalently,
p22

p1p3
>(x1x3

x2
2

)1−γ . The last inequality holds for

any γ∈(0,1) since
p22

p1p3
>1 and 1> x1x3

x2
2

. Lastly, to have µ2>0, we need p2
p1
(x2
x1

)1−γ<1,

which holds when γ is close to 1.
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