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ABSTRACT. We study a bargaining game in which a seller can trade with one of two buyers, who
have values h and l (h > l). The outside option principle (OOP) predicts that the seller trades with
the high-value buyer with probability converging to 1 at a price converging to max(h/2, l) as players
become patient. While this prediction is supported by the Markov perfect equilibrium (MPE), a wide
range of trading outcomes may emerge in subgame perfect equilibria (SPEs): in the patient limit, the
seller can obtain any price in the interval [h/2, h] (and no other); moreover, allocative inefficiency
and costly delay are possible. We propose equilibrium refinements less restrictive than Markov
behavior that guarantee trading outcomes consistent with the OOP. One refinement requires that a
buyer’s relative probability of trade does not increase dramatically following a failed negotiation
with that buyer. Another refinement posits that the seller does not approach a buyer hoping that
negotiations fail. SPEs satisfying both refinements conform with the OOP (but need not be MPEs).
Our benchmark model features strategic matching by the seller. We provide a parallel analysis for
the random matching protocol. Under random matching, prices in SPEs may also rise above and fall
below l, but have a narrower range. A refinement particular to this protocol that restores the OOP
requires that a random mismatch should not impact the seller excessively.

1. INTRODUCTION

The outside option principle asserts that in Rubinstein (1982) style bilateral bargaining, an out-
side option leads to a departure from the usual division only when it is binding: if it improves a
player’s payoff, then the payoff must be equal to the value of the outside option. This principle
is intuitively appealing, widely applied, and regarded as an important insight of non-cooperative
bargaining theory. However, when the outside option is endogenous, subgame perfect equilibria
(SPEs) in standard bargaining models do not all conform with the principle. In this paper, we map
the range of SPE outcomes in two such models and explore equilibrium refinements that reduce
the range of multiplicity, with the goal of reinstating the outside option principle as the unique
asymptotic prediction of refined SPEs.

We investigate the simplest version of the outside option principle in which the value of the
outside option is endogenously determined via bilateral bargaining between a “seller” who has one
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indivisible good and two potential trading partners, “buyer h” and “buyer l,” who value the good at
h and l, respectively (h > l > 0).1 In every round (before trade has occurred), the seller chooses to
bargain with one of the two buyers, and nature randomly selects (with equal probability) the seller
or the chosen buyer to propose a price. If the opponent accepts the proposal, trade takes place at
the proposed price, and the game ends. If the proposal is rejected, the process is repeated in the
next round. The three players have the same discount factor δ.

We begin the analysis of the game by identifying its Markov perfect equilibria (MPEs)—SPEs
in which the seller’s and buyers’ actions in every round depend only on moves by nature and
player actions in that round. A simple result in Manea (2018) shows that all MPEs induce the
same distribution over trading outcomes, and in every MPE trade occurs without delay. In “the”
MPE,2 buyer l’s payoff converges to 0 for δ → 1, and hence the option of trading with buyer l
has an endogenous asymptotic value of l for the seller. If l ≤ h/2, then the outside option is not
sufficiently valuable to improve the seller’s bargaining position with buyer h, and the seller trades
exclusively with buyer h at expected price h/2 in the MPE. If l > h/2, then for high δ the outside
option is binding, and the seller exercises it with probability converging to 0 as δ goes to 1.

Thus, in the MPE, the seller trades with buyer h with probability 1, or probability converging
to 1, at a price converging to max(h/2, l) as δ → 1. We refer to this prediction as the outside
option principle (OOP). This intuitive prediction emerges robustly from this bargaining protocol
and a range of others (including the random matching protocol we discuss later), albeit restricting
attention to MPEs.

What can we say about the potentially wider set of non-Markov SPEs in our bargaining model?
We find that SPEs are very permissive.3 Should we then simply confine attention to MPEs? This
seems unappealing without further theoretical justification. Indeed, non-Markov strategies are
constantly invoked both in theory (e.g., folk theorems) and applications of dynamic games (e.g.,
industrial organization, international trade).

We show that the primary restriction of SPEs on trading outcomes is that the seller should
obtain an expected price of at least h/2. In particular, when l > h/2, there exist SPEs that yield
an expected price lower than the seller’s “outside option” l—as low as h/2—and allocate the good
to either buyer. This point was also made by Rubinstein and Wolinsky (1990) in a setting with

1In this market, even if trade with the high-value buyer h is presumptive, the seller has the option to trade with buyer
l, and the value of this option is determined in equilibrium. By contrast, in the early treatment of Binmore (1985),
Binmore, Rubinstein and Wolinsky (1986), Sutton (1986), and Binmore, Shaked and Sutton (1989), outside options
were assumed to have exogenous values. In a typical model, two players are bargaining, but one can end negotiations
and exercise an outside option, which results in an exogenous payoff. Shaked and Sutton (1984) and Rubinstein
and Wolinsky (1990) analyze models in which a seller’s outside option is endogenously derived in equilibrium from
bargaining with other buyers, but focus on the case with homogeneous buyers.
2Since MPEs are outcome equivalent, we sometimes drop the qualifier “outcomes” for brevity when referencing unique
MPE outcomes.
3Herrero (1985) establishes ample equilibrium multiplicity in a version of Rubinstein’s (1982) bargaining game in
which several symmetric players bargain over how to divide a “dollar.” In her model, players rotate in proposing
divisions, and a player’s proposal is implemented only if all others accept it. Herrero’s equilibrium construction does
not have a formal analog in our setting with asymmetric players and bilateral agreements.
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h = l.4 We provide a related construction here. In our semi-Markov equilibria, like in the MPE,
the seller randomizes between bargaining with the two buyers and there is immediate agreement
in every round. Unlike in the MPE, the seller’s randomization between the buyers in each round
depends on which buyer was approached in the previous round.

The MPE belongs to the class of semi-Markov equilibria, but there are equilibria in this class
that are more favorable to buyers and less favorable to the seller than the MPE. Any price in the
interval [h/2, l] is asymptotically attainable in semi-Markov equilibria as δ → 1. Prices below the
OOP prediction arise due to extreme interdependence in the seller’s sequential choice of bargaining
partner: for high δ, if the seller approaches a buyer in a round and negotiations fail, she approaches
the same buyer in the next round with probability close to 1. These equilibrium expectations reduce
competition between buyers and hurt the seller. An interesting feature of these equilibria is that in
every round except the first, there is a buyer whom the seller approaches with probability close to
0, but if that buyer has a disagreement with the seller, he is almost sure to trade in the next round.

Furthermore, we construct SPEs with threat of delay in which the price is above l, and may be
arbitrarily close to h. In this class of equilibria, buyer h accepts an unattractive offer from the seller
because rejecting it results in delay, during which the seller unsuccessfully bargains with buyer l
before returning to buyer h. In the delay phase, the seller’s payoffs increase after successive rounds
of failed negotiations with buyer l. The threat of delaying trade with buyer h is credible because
if the seller attempts to approach buyer h earlier, then play reverts to a less profitable equilibrium
(e.g., the MPE).

As noted, the OOP is compelling and has been used in both theoretical and applied work. Is
there a “minimal” set of equilibrium behaviors that characterize every possible divergence from
the asymptotic predictions of the OOP? Remarkably, the two types of non-stationary behavior at
the core of our non-Markov equilibrium constructions are in a sense comprehensive—ruling them
out leads to sharp predictions consistent with the OOP.

Informed by our non-MPE equilibrium constructions, we are led to investigate two refinements.
The first refinement requires that in every subgame starting at the beginning of a round t, buyer
h’s relative probability of trade (computed as the ratio of probabilities of trade for buyer h and
buyer l in the subgame, where probabilities of future trade are discounted by the factor δ for every
round of delay) does not increase dramatically—by a factor greater than some arbitrary M ≥ 1—
in round t+ 1 in the event buyer h has a disagreement with the seller in round t.5 For large M , this
refinement rules out only extreme instances of non-stationarity in trading probabilities. The second
refinement postulates that the seller should not approach a buyer hoping that negotiations fail: any
potential increase in the seller’s payoff following a disagreement should not be large enough to
compensate her for the incurred delay.

4Some of our results do not cover the case h = l, which is well understood from that paper.
5An analogous condition is imposed for relative probabilities of trade with buyer l, but only for consistency, as it is
not used in the proofs of our main results.
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We find these refinements intuitively plausible, but see no need to be dogmatic on this score. In
applications, one or both refinements might be plausible, and researchers can decide which ones
seem reasonable: How often does the seller return to a disagreeing buyer? Is a disagreement good
or bad news for the seller? From a more neutral perspective, one can simply view the refinements
as fundamental structural properties of equilibria that deviate from the OOP predictions.

Our main result establishes that SPEs for discount factors δ converging to 1 that satisfy both
refinements conform with the OOP: as δ → 1, the seller trades with buyer h with limit discounted
probability 1 at a limit price of p∗ := max(h/2, l). Semi-Markov equilibria with asymptotic pay-
offs below l satisfy the second refinement, and SPEs with threat of delay satisfy the first, proving
that both refinements are needed for the conclusion. We show that the first refinement implies that
the seller’s asymptotic profit is at least p∗, but the second refinement does not by itself imply that
the seller’s profit is at most p∗.

Clearly, MPEs satisfy both refinements. Although the two refinements imply asymptotic MPE
outcomes, there exist SPEs in the semi-Markov class that satisfy the refinements and are not MPEs.
We also present an SPE that satisfies both refinements in which arbitrarily long delay is possible,
but consistent with our result, delay occurs with low probability.

In our benchmark bargaining model, there is strategic matching: in every round the seller
chooses which buyer she negotiates with. We conduct a parallel analysis of another common
matching protocol—random matching—under which in every round the seller is randomly matched
to negotiate with one of the two buyers, and negotiations within a match proceed according to the
random-proposer protocol. Like in the benchmark model, all MPEs in the model with random
matching are outcome equivalent, and limit outcomes as δ → 1 conform to the OOP predictions.

Rubinstein and Wolinsky (1990) contrast SPE outcomes under the two matching protocols in the
case h = l. They show that under strategic matching, asymptotic SPE seller payoffs cover the wide
range [l/2, l]. Surprisingly, they find that under random matching, all SPEs are outcome equivalent
to the MPE, generating an asymptotic payoff of l for the seller and 0 for either buyer. Our analysis
demonstrates that the sharp variation in the predictive power of SPEs in the two matching models
is special to the edge case h = l.

Considering the case h > l reveals more subtle differences between the two matching protocols.
When the outside option is binding (l ≥ h/2), both protocols generate the same high asymptotic
SPE payoff h for the seller, but produce starkly different predictions at the lower end. We prove
that under random matching, h/4 + l/2 is an asymptotic lower bound on the seller’s payoff in all
SPEs, so for l > h/2, the seller’s asymptotic payoff cannot get as low as it does under strategic
matching (h/4 + l/2 > h/2). When l < h/2, asymptotic seller profits are h/2 in all SPEs under
random matching whereas they cover the interval [h/2, h] in SPEs under strategic matching.

A reasonable conjecture is that the seller’s lowest SPE payoff cannot decline as we increase
h. Combined with Rubinstein and Wolinsky’s uniqueness result for h = l, this conjecture would
imply that the seller’s asymptotic payoff cannot fall below l in the random matching model. Sur-
prisingly, this conclusion turns out to be false: for any h ∈ (l, 2l), we construct SPEs where the
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FIGURE 1. Extremal asymptotic equilibrium profits under the two matching proto-
cols for l = 1 and h ∈ [1, 2.5]

seller gets an asymptotic payoff of (4h + l −
√

12h2 − 12hl + l2)/4, which is smaller than l (but
greater than h/4+l/2). As in the case of the strategic matching protocol, we formulate equilibrium
refinements informed by our constructions of extremal SPEs under random matching that narrow
down the set of SPE predictions in the direction of the OOP.

Figure 1 illustrates the seller’s extremal (asymptotic) SPE profits under the two matching proto-
cols relative to the OOP prediction when we normalize l = 1 and vary h in [1, 2.5]. For h ∈ [1, 2],
the upper envelope of seller profits attainable in SPEs is h in both models. However, for h > 2,
profits under strategic matching sweep the interval [h/2, h], whereas under random matching they
are uniquely given by h/2. Distinctly from strategic matching, the upper envelope for random
matching is neither increasing everywhere, nor continuous in h. For h ∈ [1, 2], the lower envelope
under strategic matching is h/2, while under random matching it lies between the line h/4 + 1/2

and the curve (4h + 1 −
√

12h2 − 12h+ 1)/4. Despite this significant difference in lower en-
velopes, for h ∈ (1, 2), there exist SPEs in either model in which seller profits are above and below
the OOP prediction max(h/2, l) = 1. As emphasized above, in the model with random matching,
the lower envelope is not increasing in buyer h’s value: the seller’s lowest asymptotic SPE profit is
l = 1 for both h = 1 and h = 2 (see the two enlarged points in the figure), and is strictly lower than
1 between these endpoints. The shaded areas in the figure represent seller profits that are attainable
in SPEs under strategic matching, but are proven to not be attainable under random matching.

The rest of the paper is organized as follows. Section 2 describes the model with strategic
matching and presents some preliminary results. In Sections 3 and 5, we construct the semi-
Markov equilibria and the equilibria with threat of delay, respectively. Sections 4 and 6 introduce
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the first and the second refinement, respectively. Sections 7 through 9 analyze the model with
random matching, and Section 10 provides concluding remarks.

2. THE MODEL WITH STRATEGIC MATCHING AND PRELIMINARY RESULTS

A seller has an indivisible good that two buyers are interested in acquiring (or more generally,
the seller needs to contract with one of two buyers for a service). The seller has 0 value for the
good, and buyers have positive values h > l. We refer to the two buyers as buyer h and buyer l,
respectively. There is complete information about each player’s valuation for the good.

The seller bargains with buyers individually according to the following protocol. In every round
t = 1, 2, . . ., the seller strategically chooses (or “approaches”) one buyer k ∈ {h, l} to bargain
with. Then, either the seller or buyer k is selected randomly (with probability 1/2) to propose a
price.6 The player receiving the offer may (1) accept the offer, in which case the seller and buyer
k trade the good at the proposed price, and the game ends; or (2) reject the offer, in which case the
game proceeds to round t + 1, when the seller gets a new opportunity to approach one of the two
buyers. Players have a common discount factor δ ∈ (0, 1) per round: if the seller trades with buyer
k in round t at price p, then the seller’s payoff is δt−1p, and buyer k’s payoff is δt−1(k − p) (the
other buyer gets payoff 0). There is perfect information about all past bargaining rounds.

This is our benchmark model, and it entails strategic matching by the seller (in contrast to
random matching, which we analyze in the second part of the paper). We study the subgame
perfect equilibria (SPEs) of this model with a focus on equilibrium outcomes as players become
patient or the time between bargaining rounds becomes short, which is captured by the limit δ → 1.
To avoid measure theoretic distractions, we confine attention throughout to behavior strategies that
have finite support after every history.

This non-cooperative game provides a natural framework for understanding how the value of
outside options and the allocation of the good emerge endogenously in equilibrium via bilateral
bargaining. We next review a result showing that when attention is restricted to Markov perfect
equilibria, this framework produces the intuitive predictions of the OOP.

The Markov Perfect Equilibrium. In a Markov perfect equilibrium (MPE), each of the three
players behaves the same way in every bargaining round following any history of disagreements.
That is, the seller’s and buyers’ actions in a given round depend only on moves by nature and
player actions in that round, and are independent of calendar time and the history of disagreements
in previous rounds. Proposition 1 in Manea (2018) implies that an MPE always exists and that
all MPEs are outcome equivalent.7 Let π∗h and π∗l denote the probabilities with which the seller
approaches buyers h and l, respectively, in every round, and v∗s , v

∗
h and v∗l denote the expected

6This bargaining protocol has been considered previously by Rubinstein and Wolinsky (1990), Abreu and Manea
(2012a, 2024) and Manea (2018).
7The MPE is essentially unique: behavior is pinned down in all subgames except those in which the seller has just
approached a buyer whom she is not supposed to approach under the MPE strategies.
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payoffs of the seller, buyer h and buyer l, respectively, at the beginning of every round prior to
which trade has not occurred in the MPE.

If π∗h = 1, then standard computations imply that v∗s = v∗h = h/2 and v∗l = 0. The seller should
not find it profitable to deviate to bargaining with buyer l and offer him a price slightly below l

(which buyer l would accept in equilibrium given that v∗l = 0), while rejecting any offer from l.
This requires that 1/2 × l + 1/2 × δh/2 ≤ h/2, or equivalently l ≤ h(1 − δ/2). Conversely, if
l ≤ h(1 − δ/2), then there exists an MPE in which the seller trades exclusively with buyer h. In
the Online Appendix, we explain why this condition precludes an MPE with π∗h < 1. In this case,
the outside option of trading with buyer l is not binding in the MPE: v∗s = h/2.

In the remaining case l > h(1 − δ/2), we have that π∗h < 1. As both π∗h and π∗l are positive
(the case π∗h = 0 is easily ruled out), the seller’s expected payoff conditional on approaching either
buyer is v∗s . When player k is selected to propose to player k′, player k offers a utility8 of δv∗k′ to
player k′, and k′ accepts the offer. Thus, payoffs and bargaining probabilities solve the following
system of equations:

v∗s =
1

2
(k − δv∗k) +

1

2
δv∗s ,∀k ∈ {h, l}

v∗k = π∗k

[1

2
δv∗k +

1

2
(k − δv∗s)

]
,∀k ∈ {h, l}

π∗h + π∗l = 1.

We provide analytical formulae for the solution in the Online Appendix. In this case, the outside
option of trading with buyer l is binding in the MPE: v∗s > h/2.

Note that if l ≤ h/2, then l ≤ h(1− δ/2) for all δ ∈ (0, 1), so the outside option is not binding
in the MPE for any δ. However, if l > h/2, then l > h(1 − δ/2) for δ in the non-empty interval
(2(1− l/h), 1), which means that the outside option is binding in the MPE for sufficiently high δ.

The asymptotic properties of the MPE for δ → 1 in the case l > h/2 can be derived without
solving the system of equations above explicitly. Since the seller has the option to approach buyer
h and make an acceptable offer arbitrarily close to δv∗h, and reject buyer h’s offer, securing a
continuation payoff of v∗s in the MPE, we have that

v∗s ≥
1

2
(h− δv∗h) +

1

2
δv∗s .

It follows that (2− δ)v∗s + δv∗h ≥ h, and hence lim infδ→1(v∗s + v∗h) ≥ h. However, the total sum of
payoffs cannot exceed h, so v∗s+v∗h ≤ h for every δ. Then, v∗s+v∗h converges to h as δ goes to 1. As
l < h, this is possible only if π∗l and v∗l converge to 0 as δ goes to 1. Thus, trade is asymptotically
efficient in the MPE. If for some δ ∈ (0, 1), we have that v∗s > l, then the seller does not trade with
buyer l in the MPE, which implies that π∗h = 1 and v∗s = h/2 < l, a contradiction. Consequently,
v∗s ≤ l for all δ. The equilibrium constraint related to the seller approaching buyer l analogous to

8As in many bargaining models, it is often convenient to describe an offer in terms of the utility of the player receiving
it rather than the price; every offer in the price space has an implicit utility for the receiver and vice versa.
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the one for buyer h displayed above implies that

v∗s ≥
1

2
(l − δv∗l ) +

1

2
δv∗s ,

and a similar argument leads to lim infδ→1(v∗s + v∗l ) ≥ l. As limδ→1 v
∗
l = 0 and v∗s ≤ l for all

δ, it follows that limδ→1 v
∗
s = l. We conclude that when l > h/2, the seller trades with buyer h

with limit probability 1 at limit price l in the MPE as δ goes to 1. Exercising the option of trading
with buyer l with small probability is sufficient for the seller to drive up the price buyer h pays for
the good from the equal split h/2 to the endogenous limit value l of the outside option of trading
with buyer l as δ → 1. Therefore, MPEs of the bargaining game conform with the asymptotic
predictions of the outside option principle.9 Similar arguments deliver the same conclusion for
MPEs under other bargaining protocols.10

The arguments above rely heavily on the premise of Markov behavior, which generates a sta-
tionary strategic environment. We will construct several SPEs involving non-Markov strategies
where asymptotic outcomes diverge significantly from the OOP. We first establish that h/2 is a
lower bound on the expected price in every SPE.

A Coarse Lower Bound on Profits. Our first result shows that in every SPE, the seller’s expected
payoff is at least h/2. Since h/2 is the seller’s expected payoff in a setting in which she can
bargain only with buyer h (with a proposer selected randomly in every round), the interpretation
of this result is that giving the seller the opportunity to trade with buyer l as an alternative to
trading with buyer h cannot hurt her. The proof of this and subsequent results can be found in the
Appendix.

Proposition 1. In every SPE for any discount factor δ ∈ (0, 1), the seller’s expected payoff is at
least h/2.

The lower bound from Proposition 1 is tight. The discussion from the previous subsection shows
that the MPE achieves the lower bound if l ≤ h(1− δ/2). In the next section, we construct a class
of SPEs for the case l > h(1− δ/2) that yield seller payoffs in the interval [h/2, l/(2− δ)].

9In particular, we do not have an equal split of surplus over and above the seller’s outside option, which would
amount to a price of (h+ l)/2, as one might expect from the (cooperative) perspective of the Nash (1950) bargaining
solution, where outside options define “disagreement payoffs.” That conclusion holds for a different model, in which
the seller does not deliberately exercise her outside option, but rather the outside option is triggered randomly, with
an exogenous small probability, after every rejection (Binmore, Shaked and Sutton 1989).
10These include the random matching protocol of Rubinstein and Wolinsky (1990) that we analyze later in the paper,
and the protocol of Elliott and Nava (2019) and Talamas (2019, 2020), under which in every round a player is randomly
recognized as the proposer and strategically chooses a bargaining partner. The asymptotic conclusions do not apply,
however, to the protocol studied by Chatterjee, Dutta, Ray and Sengupta (1993). Under their protocol, when a buyer
rejects an offer from the seller, the buyer becomes the proposer in the next round; in particular, this buyer can hold up
trade between the seller and the other buyer. Given this inherent constraint on the seller’s ability to induce competition
without delay, conditional on approaching buyer h, the seller cannot hope to get a payoff above h/2.
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3. SEMI-MARKOV SPES WITH ASYMPTOTIC PRICES IN [h/2, l]

Suppose that the outside option is binding for high δ, i.e., l > h/2. We construct a class of
SPEs that minimally extends the MPE from a one-state to a two-state system. The construction
places no constraint on the seller’s selection of bargaining partner in the first round. Behavior
after the first round belongs to either “state h” or “state l,” and is characterized by corresponding
probabilities (πh, πl). In state k ∈ {h, l}, the seller approaches buyer k with probability πk, and the
other buyer with complementary probability 1−πk. In every state, the seller is indifferent between
the two buyers, and trades with probability 1 conditional on approaching either buyer. Following
any disagreement with buyer k in the first round or in either state, play transitions to state k.

The construction will ensure that the seller has the same expected payoff vs in both states. Let
vk denote buyer k’s expected payoff in state k. In each state as well as in the first round, strategies
prescribe that every player k offers δvk′ to player k′, and player k′ accepts offers greater than or
equal to δvk′ , while rejecting smaller offers. Thus, the following payoff equations must hold for
k ∈ {h, l}:

vs =
1

2
(k − δvk) +

1

2
δvs

vk = πk

[1

2
δvk +

1

2
(k − δvs)

]
,

where the equation for vk reflects the assumption that in state k the seller approaches the other
buyer and trades with him with probability 1− πk. The equations for vs with k ∈ {h, l} implicitly
capture the indifference condition h−δvh = l−δvl required for the seller’s randomization between
the two buyers in each state. Fixing the value of vs, we can solve for vk and πk for k ∈ {h, l}:

vk =
k − (2− δ)vs

δ

πk =
k − (2− δ)vs
δ(k − vs)

.

We need to check that πk ∈ [0, 1] for k ∈ {h, l}. Noting that for a fixed parameter vs, the
expression for πk is strictly increasing in k, the binding conditions are πl ≥ 0 and πh ≤ 1, which
are equivalent to

l − (2− δ)vs ≥ 0

h− (2− δ)vs ≤ δ(h− vs),

respectively. These conditions boil down to

(1) vs ∈
[
h

2
,

l

2− δ

]
.

The range of possible vs is non-empty if and only if δ ≥ 2(1 − l/h). Given the assumption that
h/2 < l, we have that 2(1− l/h) < 1. Thus, an SPE with the structure described here exists for a
non-empty interval of discount factors δ ∈ [2(1− l/h), 1).



10

For the range of vs from (1), we have that vh, vl ≥ 0, and the constructed strategies deliver the
desired payoffs. It can be easily checked that no player has a profitable one-shot deviation because
the equation for vk implies that δvs + δvk ≤ k for k ∈ {h, l}. The one-shot deviation principle
implies that the constructed strategies constitute an SPE.

For δ ≥ 2(1− l/h), the MPE is a special case of this construction corresponding to πh +πl = 1,
which means that the seller approaches each buyer k with constant probability πk in both states.
An MPE is memoryless and, in effect, defined by a single probability π∗h (π∗l = 1 − π∗h). In the
more general class of constructed equilibria, trading outcomes in subgames depend on the buyer
who was most recently approached by the seller, but on no further detail of the history. For this
reason, we call them semi-Markov equilibria.

For fixed δ > 2(1 − l/h), πh and πl decrease strictly (and continuously) as we increase the
parameter vs in the feasible interval given by (1). They start above their corresponding MPE
values at the left endpoint vs = h/2 (in this case, πh = 1 and πl > 0) and end below at the right
endpoint vs = l/(2− δ) (in this case, πh < π∗h and πl = 0). It follows that the MPE payoff v∗s lies
strictly within the feasible range.

When πh + πl > 1, semi-Markov equilibria favor buyers in the sense that vh and vl are greater
and vs is smaller than the corresponding payoffs in the MPE. When πh + πl < 1, the opposite is
true. Of course, each individual buyer is comparatively favored or disfavored in a semi-Markov
equilibrium relative to the MPE conditional upon being approached in the first round, but this is
also true in an unconditional sense if in the first round the seller approaches the two buyers with
the MPE probabilities.11

In the extreme case vs = h/2, we have vh = h/2 and πh = 1. By Proposition 1, this family of
semi-Markov SPEs yield the minimum seller payoff over all SPEs. If the seller chooses to bargain
with buyer h in the first round with probability 1, then she continues to bargain with him regardless
of the history of past disagreements with him. In equilibrium, the seller trades with buyer h in the
first round at terms identical to those obtained in the unique SPE of a two-player bargaining game
between the seller and buyer h. This equilibrium yields the maximum equilibrium payoff h/2 for
buyer h. If instead the seller approaches buyer l in the first round with probability 1, we obtain
an SPE that delivers expected payoff l − h/2 to buyer l, which is also the maximum asymptotic
payoff buyer l can achieve in equilibrium.

At the other extreme, we have vs = l/(2− δ) and πl = 0. For δ > 2(1− l/h), the correspond-
ing semi-Markov SPEs generate a greater payoff for the seller than the MPE, but the difference
vanishes in the limit as δ goes to 1, where both payoffs converge to l.

11Buyers’ payoffs in the construction depend on the (unconstrained) probabilities with which the seller randomizes
between them in the first round. If the seller approaches buyer k with probability q in the first round, then buyer k’s
equilibrium payoff is

q
[1

2
δvk +

1

2
(k − δvs)

]
.

Except for the special case of the MPE, πh + πl 6= 1, so vk can match buyer k’s actual equilibrium payoff for at most
one k.
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Fix any vs ∈ [h/2, l) and let δ → 1. Since the seller’s asymptotic payoff under the MPE is l > vs,
for high enough δ, the corresponding semi-Markov equilibria favor buyers relative to the MPE. For
any k ∈ {h, l}, πk converges to 1, and vk converges to k − vs as δ → 1. If the seller approaches
buyer l in the first round, then following a disagreement with buyer l, the seller does not threaten
to switch to buyer h with significant probability, but instead continues to bargain with buyer l with
probability close to 1. By contrast, in the MPE, buyer l trades with asymptotic probability 0 and
obtains an asymptotic payoff of 0.12 For buyer h, this effect is less stark: the seller returns to
h following rejection with probability above the corresponding MPE probability (πh > π∗h), but
both πh and π∗h converge to 1 as δ goes to 1. Nevertheless, the difference is consequential as vh
converges to h− vs, while v∗h converges to the smaller value h− l.

In the family of semi-Markov SPEs for a fixed vs ∈ [h/2, l), as δ → 1 the seller is unable to
exploit effectively the competition between buyers because she is loyal to a fault to any buyer she
engages with. Conditional on being approached by the seller, each buyer is almost certain to trade,
and these expectations reduce competition and hurt the seller. We refer to any family of SPEs
associated with some vs ∈ [h/2, l) and δ in a neighborhood of 1 as buyer-favoring semi-Markov
SPEs.

Rubinstein and Wolinsky (1990) briefly consider the strategic matching protocol in their Propo-
sition 4.ii (they call it “voluntary” matching) and construct a related family of equilibria for a
setting with multiple buyers who have identical valuations.13 In the Online Appendix, we extend
their construction to our setting with two buyers who have different valuations.

Semi-Markov equilibria highlight a connection between each buyer’s probability of trade and
the buyer’s bargaining power in subgames, which we explore further in the next section.

4. REFINEMENT FOR ASYMPTOTIC PRICES AT LEAST l

In buyer-favoring semi-Markov equilibria, the seller oscillates between extreme loyalty (despite
failure to trade) to each of the two buyers. For instance, if the seller approaches buyer l in round
t−1 and trade does not occur, the seller approaches buyer h with low probability 1−πl (close to 0
for high δ) in round t. However, conditional on buyer h being approached and trade not occurring
in round t, the seller approaches buyer h again—and trades with him—with high probability πh
(close to 1 for high δ) in round t + 1. The refinement below seeks to rule out this highly non-
stationary equilibrium structure.

The refinement is parameterized by a constantM ≥ 1, and is weaker for largerM . Proposition 2
and subsequent results are valid for any M ≥ 1, but our interpretation of the refinement implicitly

12As we will see in the proof of forthcoming Proposition 2, if a buyer’s maximal asymptotic payoff is strictly positive,
then the probability of trade along any corresponding sequence of equilibria (that attain the maximal asymptotic
payoff) must converge to 1. In this sense, trading with asymptotic probability 1 is a necessary condition for a buyer to
achieve a positive asymptotic payoff.
13Rubinstein and Wolinsky discuss results for this setting due to Binmore (1985) and Shaked (working paper from
1987 published in 1994), which show that equilibrium multiplicity and deviations from the OOP prediction depend on
whether the buyers or the seller can reject an offer and respond with a counteroffer before a match dissolves.
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presumes large M . For large M , the refinement requires that failure to reach an agreement with
buyer k does not dramatically increase the relative probability of eventual trade with buyer k.
We state this requirement in terms of discounted probabilities of trade. A buyer’s discounted
probability of trade in a subgame starting at date t is given by

∑
t′≥t δ

t′−tqt′ , where qt′ denotes the
probability that the seller trades with the buyer at date t′ in the subgame.

R1(M ) (A buyer’s relative probability of trade does not explode after a disagreement). Let
xk denote the discounted probability of trade with buyer k ∈ {h, l} in any subgame at the start
of round t, and x′k denote the discounted probability of trade with buyer k ∈ {h, l} at the start
of round t + 1 after any disagreement with buyer h (on or off the equilibrium path) in round t. If
xl > 0, then14

(2) M
xh
xl
≥ x′h
x′l
.

An analogous condition holds for disagreements with buyer l (with the corresponding ratios in-
verted).

The MPE satisfies R1(M ) for every M ≥ 1, since under the MPE, the (discounted) probabil-
ity of trade with a given buyer is history-independent and constant. By contrast, any family of
buyer-favoring semi-Markov equilibria delivering a fixed payoff smaller than l to the seller vio-
lates R1(M ) for sufficiently high δ. To see this, consider a subgame where play starts in state l, so
the seller approaches buyer l with probability πl in the first round. The relative probability of trade
with buyer h in this subgame is (1− πl)/πl. However, if the seller approaches buyer h in the first
round of the subgame, and the meeting results in disagreement, then play transitions to state h, in
which the relative probability of trade with buyer h is πh/(1−πh). Since (1−πl)/πl goes to 0 and
πh/(1− πh) goes to∞ as δ → 1, R1(M ) is violated for any fixed M ≥ 1 when δ is close to 1.

It turns out that R1(M ) implies an asymptotic lower bound of l for seller payoffs. The proof
reveals that requiring R1(M ) only for disagreements with buyer h is sufficient for this result, but
we impose the refinement for both buyers for consistency.

Proposition 2. Fix M ≥ 1. In any family of SPEs for discount factors δ ∈ (0, 1) that satisfy
R1(M ), buyer l’s payoff converges to 0 as δ → 1, and lim infδ→1 of the seller’s payoff is at least l.

To sketch the proof, fix M ≥ 1 and let v̄l(δ) and vs(δ) denote the supremum of buyer l’s payoff
and the infimum of the seller’s payoff, respectively, in the game with discount factor δ under SPEs
satisfying R1(M ); define v̄l = lim supδ→1 v̄l(δ) and vs = lim infδ→1 vs(δ). Note that v̄l = 0

implies that vs ≥ l since one available strategy to the seller is to repeatedly approach buyer l
and reject all offers from l until she is selected to make an offer, at which point she can offer an

14Inequality (2) is logically violated when xl > 0, x′l = 0 and x′h > 0 (in this case, the left-hand side takes a finite
value, while the right-hand side is interpreted to be infinity). Instances with x′l = x′h = 0 are assumed to satisfy
(2). (However, there can be no such instance in any SPE: in the corresponding subgame, trade would happen with
probability zero and the seller would get payoff zero, contradicting Proposition 1.)
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acceptable price arbitrarily close to l as δ goes to 1. Hence, it is sufficient to argue that v̄l = 0.
To this end, we prove that v̄l > 0 leads to a contradiction. Suppose that v̄l > 0, and consider
a sequence of SPEs satisfying R1(M ) for discount factors going to 1 in which buyer l’s payoff
converges to v̄l. The claims below apply to this sequence of SPEs. A key step in the argument
shows that the discounted probability of trade with buyer l must converge to 1. This allows us
to conclude that the seller’s asymptotic payoff in the sequence of SPEs must be vs = l − v̄l. As
the discounted probability of trade with buyer h converges to 0, we leverage R1(M ) to argue that
buyer h’s probability of trade and payoff converge to 0 following his rejection of any seller offer.
It follows that the seller can obtain a payoff arbitrarily close to h far enough along the sequence
of SPEs if she approaches buyer h and is selected to make the offer. For this not to generate a
profitable deviation for the seller, it must be that the seller’s asymptotic payoff in the sequence of
SPEs under consideration is h, contradicting the conclusion that it should be vs = l − v̄l < l.

Propositions 1 and 2 have the following immediate implication.

Corollary 1. In any family of SPEs for discount factors δ ∈ (0, 1) that satisfy R1(M ) for a fixed
M ≥ 1, lim infδ→1 of the seller’s payoff is bounded below by max(h/2, l).

Recall that max(h/2, l) is the price predicted by the OOP. While R1(M ) shields the seller from
asymptotic profits below max(h/2, l), it does not preclude higher asymptotic profits, as the next
example demonstrates.

5. SPES WITH (THREAT OF) DELAY

We showcase a class of SPEs satisfying R1(M ) in which the seller obtains asymptotic payoffs
above l, and arbitrarily close to h. In this class of equilibria, the seller is supposed to trade with
buyer h in the first round, but if buyer h rejects the seller’s equilibrium offer, then trade with buyer
h is delayed for T ≥ 1 rounds (we will discuss the flexibility in specifying T later), during which
the seller bargains unsuccessfully with buyer l. By contrast, when the seller rejects buyer h’s offer,
trade with buyer h is expected to take place on the same terms in the next round.

Let vs and vh denote the expected payoffs of the seller and buyer h, respectively, in this construc-
tion. In the first round, the seller approaches buyer h with probability 1. If selected to propose,
the seller offers a payoff δT+1vh to buyer h, and buyer h accepts only offers greater than or equal
to δT+1vh. Buyer h offers δvs to the seller, and the seller accepts only offers greater than or equal
to δvs. If the seller deviates and chooses to bargain with buyer l in the first round, play enters the
delay phase described below.

First-round rejections by the seller and buyer h are handled asymmetrically. If the seller rejects
an offer, second-round play follows the strategies prescribed for the first round. However, if buyer
h rejects an offer, the seller is supposed to bargain unsuccessfully with buyer l for T rounds before
returning to buyer h. During this delay phase, as long as the seller has bargained only with buyer
l, she continues approaching buyer l in each of the T rounds. In every match with buyer l in the
delay phase, the proposer selected by nature offers price l, and the responder rejects the equilibrium
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offer; in the t-th encounter with buyer l, the seller accepts only offers higher than δT−t+1vs, while
buyer l accepts only price offers lower than l. If the seller chooses to bargain with buyer h in one
of the T rounds, then on the first occasion this happens play switches to MPE strategies. When the
delay phase is completed (after T rounds of disagreement with buyer l), play continues according
to first-round strategies.

For the proposal and acceptance rules under the prescribed strategies to be optimal, we are led
to define (vs, vh) as the solution to the following system of equations:

vs =
1

2
(h− δT+1vh) +

1

2
δvs

vh =
1

2
(h− δvs) +

1

2
δT+1vh.

The system has a unique solution, with vs given by

vs =
1− δT+1

2− δ − δT+1
h

and vh = h− vs.
For the constructed strategies to form an SPE, the seller and buyer l should not have incentives

to make acceptable offers to each other during the T rounds of delay following a rejection by buyer
h. Since the seller expects a discounted payoff of δTvs in the first stage of the delay phase (and
greater payoffs in later stages), and buyer l expects 0 payoff at all stages of this phase, a sufficient
condition for these incentives is that δTvs ≥ l. The seller should also not have an incentive to
deviate to bargaining with buyer h at any stage of the delay phase. Such deviations trigger MPE
play, which is not profitable for the seller if δTvs ≥ v∗s . The seller does not have an incentive to
trade with buyer l if she approaches him in the first round if δTvs ≥ l. Remaining incentives for
one-shot deviations are immediately verified. Thus, the constructed strategies constitute an SPE if
δTvs ≥ max(v∗s , l).15

Let p∗ = max(h/2, l) denote the limit of v∗s when δ goes to 1. For a fixed T ≥ 1, L’Hospital’s
rule implies that vs converges to (T + 1)/(T + 2)h as δ → 1; the same is true about δTvs. Thus,
the constructed strategies constitute an SPE for high δ if (T + 1)/(T + 2)h > max(p∗, l) =

max(h/2, l). As (T +1)/(T +2)h > h/2, the sufficient condition becomes (T +1)/(T +2)h > l.
Since l < h, this condition is satisfied for T above a threshold. In the Appendix, we check that this
SPE satisfies R1(M ) for any M ≥ 1.

The equilibrium construction above generates asymptotic seller payoffs (T + 1)/(T + 2)h for
integers T such that (T + 1)/(T + 2)h > l. In the Appendix, we adjust the construction to obtain
SPEs for high δ in which the seller’s payoff is any ṽs ∈ [p∗, h) (this implies the existence of a
sequence of SPEs that also attains the asymptotic upper bound h for seller payoffs).

SPEs with asymptotic delay. Consider the SPE induced by the equilibrium constructed above in
the subgame following a rejection by buyer h in the first round. In this SPE, trade with buyer h takes

15Note that this construction does not require l > h/2, so it is not necessarily the case that v∗s ≤ l.
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place after T rounds of delay. For fixed T , this delay is not asymptotically costly (limδ→1 δ
T = 1).

However, by making T a function of δ, we can obtain SPEs with arbitrarily long and asymptotically
costly delay.16 To achieve this, it is sufficient to specify a length of delay T (δ) for every discount
factor δ such that limδ→1 δ

T (δ) < 1 and limδ→1 δ
T (δ)vs > p∗. Fix ε ∈ (0, 1 − p∗/h), and let T (δ)

be the largest integer T such that δT > 1− ε. Then, limδ→1 T (δ) = ∞ and limδ→1 δ
T (δ) = 1− ε.

Moreover, limδ→1 vs = h and limδ→1 δ
T (δ)vs = (1 − ε)h. Since ε < 1 − p∗/h, we have that

limδ→1 δ
T (δ)vs > p∗, as desired. In the resulting SPEs, delay in trading with buyer h costs an

asymptotic share ε of the available surplus. By varying ε in the interval (0, 1− p∗/h), we generate
SPEs in this family in which the seller’s asymptotic payoff takes any value in the interval (p∗, h),
while both buyers’ asymptotic payoffs are 0.

SPEs with asymptotic allocative inefficiency and trade in every round. Consider again the
SPE induced by the construction above in which the seller trades with buyer h after T rounds of
delay for a fixed T . We can modify this SPE so that the seller trades with buyer l with some
positive probability x independent of δ. In the new equilibrium, in the first round, the seller first
approaches buyer l and offers him price l, which buyer l accepts with probability 2x. If buyer l
is the proposer, buyer l offers price 0, and the seller accepts only offers of δTvs or better. If the
seller offers price l or buyer l is the proposer in the first round, and agreement is not reached, play
conforms to the SPE under consideration. If the seller offers a price different from l to buyer l
or approaches buyer h in the first round, strategies follow MPE behavior. For the seller not to
have an incentive to trigger MPE play in the first round for high δ, we choose x such that her
asymptotic payoff under the constructed strategies is greater than her asymptotic MPE payoff, i.e.,
xl + (1− x)(T + 1)/(T + 2)h > p∗, which holds for small x and large T .

6. ADDITIONAL REFINEMENT IMPLYING THE OUTSIDE OPTION PRINCIPLE

In the equilibria from the previous section, the seller threatens to delay trade with buyer h. The
threat is credible because during the delay phase, the seller’s expected payoff constantly improves
following disagreements with buyer l, while trying to cut the delay short by approaching buyer h
is interpreted as a plan to switch to the MPE, which is less profitable for the seller. This motivates
the following refinement, which requires that in equilibrium the seller’s payoff does not increase
significantly in any subgame following a failure to trade; specifically, the seller’s profit may im-
prove after a disagreement, but not enough to compensate her for the trading delay. When this
condition is violated, the seller approaches a buyer in equilibrium hoping that negotiations fail (or
being indifferent about their success).

16Haller and Holden (1990) and Fernandez and Glazer (1991) observed that significant delay is also possible under
complete information in a two-player bargaining game if one player has the option to “strike” in each round. In
markets that involve larger numbers of participants and allow for richer dynamics, disagreement may persist in some
matches—even in the context of MPEs—due to the (endogenous) evolution of outside options (e.g., Manea (2011,
2017), Abreu and Manea (2012b), Elliott and Nava (2019), Talamas (2019, 2020), Dilme (2023)).
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R2 (Disagreement is not beneficial to the seller). If vs is the seller’s payoff in any subgame
starting at the beginning of round t, and v′s is the seller’s payoff at the beginning of round t + 1

following any disagreement in round t on or off the equilibrium path (v′s may depend on play in
round t), then vs > δv′s.

The SPEs with threat of delay do not satisfy R2 because in every round of the delay phase, the
seller’s payoff is equal to her discounted payoff in the event of a disagreement with buyer l. We
next show that R2, in conjunction with R1(M ), is sufficient to deliver the OOP asymptotically.
One cannot drop either refinement in the statement of this result. The family of buyer-favoring
semi-Markov SPEs (Section 3) for a fixed seller payoff vs < l and δ ∈ (0, 1) satisfies R2, but
not R1(M ) for any finite M . The family of SPEs with threat of delay (Section 5) satisfies R1(M )
for any M ≥ 1, but not R2. The result demonstrates that the types of non-stationary behavior
highlighting the two main equilibrium constructions are in a way exhaustive—shutting them down
via the two refinements guarantees the asymptotic OOP predictions.

Proposition 3. In any family of SPEs for discount factors δ ∈ (0, 1) that satisfy R1(M ) for a
fixed M ≥ 1 and R2, the seller’s payoff converges to max(h/2, l), buyer h’s payoff converges to
min(h/2, h− l), and the discounted probability of trade with buyer h converges to 1 as δ → 1.

Whereas R1(M ) implies that the asymptotic price is at least max(h/2, l), R2 does not by itself
imply that the asymptotic price is at most max(h/2, l). Indeed, in the Appendix we construct a
family of SPEs for the case l > h/2 that satisfy R2 and yield prices close to h for high δ (by
Proposition 3, this family of SPEs violates R1(M ) for any M ). However, in the simpler case
l < h/2, every SPE that satisfies R2 for a fixed δ is outcome equivalent to the corresponding MPEs
and yields a seller payoff of h/2 = max(h/2, l).17

We now provide a summary of the proof of Proposition 3. For k ∈ {h, s}, let vk(δ) and v̄k(δ)
denote the infimum and supremum payoff of player k, respectively, in all SPEs satisfying R1(M )
and R2 for the game with discount factor δ ∈ (0, 1), and define vk = lim infδ→1 vk(δ) and v̄k =

lim supδ→1 v̄k(δ).
The main step of the proof establishes that vh ≥ min(h/2, h − l). By Corollary 1, we have

that vs ≥ max(h/2, l). Then, v̄s ≤ h − vh and v̄h ≤ h − vs lead to vs = v̄s = max(h/2, l) and
vh = v̄h = min(h/2, h − l). It follows that in any family of SPEs satisfying the two refinements,
the seller’s payoff converges to max(h/2, l) and buyer h’s payoff converges to min(h/2, h− l) for
δ → 1, which is possible only if the seller trades with buyer h with a limit discounted probability
of 1.

17In the proof of Proposition 3, we show that the seller’s payoff does not exceed l in any SPE satisfying R2 in which
the seller bargains with buyer l with positive probability in the first round. By Proposition 1, the seller’s payoff is at
least h/2 in every SPE. If l < h/2, it follows that in every SPE satisfying R2, the seller must bargain exclusively
with buyer h in all subgames. Standard two-player bargaining arguments then imply that every SPE that satisfies R2
is outcome equivalent to the MPEs (strategies are not pinned down off the equilibrium path in subgames in which the
seller approaches buyer l and need not be stationary in such SPEs).
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To prove that vh ≥ min(h/2, h− l), it is useful to consider a sequence of discount factors δ → 1

such that vh(δ) converges to vh as δ → 1, and additionally one of the following conditions holds
for all δ in the sequence: (1) vh(δ) is attained as the limit of buyer h’s payoffs in a sequence of
SPEs for discount factor δ that satisfy the two refinements, in which the seller approaches buyer
h with probability 1 in the first round of the game; (2) analogous statement to condition (1) with
“probability 1” replaced by “probability less than 1.”

In the first case, standard bargaining inequalities imply that vh(δ) ≥ h/2 for δ in the sequence.
As limδ→1 vh(δ) = vh, it follows that vh ≥ h/2 ≥ min(h/2, h− l).

In the (more interesting) second case, there exists a sequence of δ’s converging to 1 and as-
sociated SPEs σδ satisfying the two refinements under which the seller approaches buyer l with
positive probability in the first round of the game, and buyer h’s payoff converges to vh as δ → 1.

Let vs(δ) denote the seller’s payoff under σδ. We argue via R2 that vs(δ) ≤ l. Since under
σδ the seller approaches buyer l in the first round with positive probability, the seller’s expected
payoff conditional on approaching l should be vs(δ). However, no equilibrium agreement with
buyer l yields a payoff greater than l for the seller, so vs(δ) ≤ ql+ (1− q)δv′s(δ), where q denotes
the conditional probability of an agreement with buyer l in the first round, and v′s(δ) denotes the
expected value of the seller’s payoff after an (possibly stochastic) equilibrium disagreement with
buyer l. As σδ satisfies R2, we have that δv′s(δ) < vs(δ). It is then easy to show that vs(δ) ≤ l.
Two conclusions follow. Since vs(δ) ≥ h/2 (Proposition 1), this case can arise only if l ≥ h/2.
Since lim infδ→1 vs(δ) ≥ l (Proposition 2), limδ→1 vs(δ) = l.

Let xh(δ) and xl(δ) be the discounted probability of trade with buyers h and l, respectively,
under σδ. To complete the proof, we argue that xh(δ) → 1 as δ → 1. If xh(δ) → 1, then
limδ→1 vs(δ) = l implies that buyer h’s payoff under σδ converges to h − l as δ → 1, and thus
vh = h− l. Finally, h− l = min(h/2, h− l) because l ≥ h/2 in this case.

We are left to show that xh(δ)→ 1 as δ → 1. To obtain a contradiction, suppose that xh(δ) does
not converge to 1 for δ → 1. Then, there exists a subsequence of δ going to 1 for which xh(δ) and
xl(δ) converge to limits xh(1) < 1 and xl(1), respectively.

If xl(1) > 0, we obtain a contradiction via R1(M ) as follows. The fact that σδ satisfies R1(M )
implies that the discounted probability of trade with buyer h under σδ following a failed negotiation
with him is asymptotically bounded above by some q < 1 as δ goes to 1. Furthermore, buyer h’s
payoff in any agreement with the seller is asymptotically bounded above by h− l because vs ≥ l.
Hence, buyer h’s asymptotic payoff under σδ following any first-round rejection by buyer h is
bounded above by q(h− l). Consequently, by approaching buyer h in the first round and offering
him a price slightly below h− q(h− l) (which the buyer accepts under σδ for sufficiently high δ),
the seller can obtain an asymptotic payoff arbitrarily close to 1/2(h − q(h − l)) + 1/2vs. Since
vs ≥ l, this payoff is greater than l, contradicting the conclusion that limδ→1 vs(δ) = l.

If instead xl(1) = 0, then we show that xh(1) < 1 implies that limδ→1 vs(δ) < l, which again
contradicts limδ→1 vs(δ) = l. This part of the argument is by far the most involved and entails a
delicate classification of the different ways that the seller may ultimately trade with either type of
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buyer after a history of failed transactions. (Note that our refinements do not guarantee immediate
trade—indeed, later in this section we discuss an SPE that satisfies both refinements and exhibits
delay in every bargaining round with positive probability.) In particular, it is helpful to anchor
buyer h’s trades to the last round the seller has unsuccessfully bargained with buyer l, so that we
can use the following implication of R2. If the seller approaches buyer l with positive probability
at the beginning of a subgame under σδ, then the seller’s expected payoff following any sequence
of τ consecutive disagreements with buyer h in that subgame does not exceed l/δτ . The recursive
use of R2 is key to obtaining payoff bounds that yield a contradiction in this case. We refer the
reader to the proof for details.

The formulation of R2 is directly motivated by the SPEs with threat of delay, and R2 clearly rules
out the possibility that disagreement and delay occur with probability 1 in any round. However, R2
also rules out potential benefits to the seller following a disagreement with a buyer who deviates
from his own equilibrium strategy. Our proof of Proposition 3 involves applications of R2 for
disagreements both on and off the equilibrium path. Footnote 35 highlights a step in the proof of
Proposition 3 where implications of R2 for disagreements possibly off the equilibrium path are
invoked.

We conclude this section with two remarks. The first emphasizes that our refinements are not
so strong as to exclude non-Markov SPEs, and are even consistent with trading delay. The second
discusses alternatives to R2.

Non-Markov SPEs satisfying R1(M ) and R2. Let Σ(δ) be the set of SPEs satisfying R1(M ) for
some M ≥ 1 and R2. When l < h/2, footnote 17 implies that Σ(δ) consists only of SPEs that
are outcome equivalent to the MPEs. In the more interesting case l > h/2, the set Σ(δ) contains
two rich classes of non-Markov SPEs when δ > 2(1 − l/h): the first is a subset of semi-Markov
SPEs, and the second consists of SPEs in which there is positive probability of delay. In Section
3, we showed that for δ > 2(1− l/h), there exists a range of semi-Markov SPEs with πh + πl < 1

yielding the continuum of payoffs (v∗s , l/(2 − δ)] for the seller. Every such SPE satisfies R1(M )
for any M ≥ 1 as long as the seller approaches each buyer k with probability at least πk in the
first round. To see this, note that under these SPEs, there is immediate agreement in every round
(so a buyer’s discounted probability of trade in a subgame is simply the probability with which
the seller approaches that buyer in the first stage of the subgame), and following any disagreement
with either buyer, the probability of trade with that buyer either remains the same or decreases.
Furthermore, all semi-Markov SPEs satisfy R2 because in these SPEs the seller’s payoff is constant
across subgames. It follows that Σ(δ) contains SPEs covering the entire interval (v∗s , l/(2− δ)] of
seller payoffs when δ > 2(1− l/h). In the Appendix, we demonstrate by construction that in this
case Σ(δ) also contains SPEs that exhibit arbitrarily long delay with positive probability. However,
the discounted probability of trade with buyer h in this construction converges to 1 as δ → 1, a
necessary feature according to Proposition 3.
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Alternatives to R2. As mentioned above, R1(M ) and R2 do not imply that agreement is reached
without delay in every round. In fact, the property of immediate agreement in every subgame
(starting at the beginning of a round) has powerful implications. Indeed, we can prove a version
of Proposition 3 that replaces R2 with the immediate agreement property. We do not highlight this
characterization as we consider R2 to be a more primitive refinement.

The delay phase in our equilibrium construction from the previous section seems not to be
“renegotiation proof.” There are several notions of renegotiation proofness, but perhaps the most
common starting point is the requirement that equilibrium continuation values should not be Pareto
ranked (e.g., Bernheim and Ray 1989, Farrell and Maskin 1989). In this basic sense, the equilibria
with threat of delay are not renegotiation proof since any “scheduled” disagreement with buyer l
Pareto improves players’ payoffs. Note that R2 concerns only payoff comparisons for the seller,
and is neither weaker nor stronger than renegotiation proofness in its basic form. Whether a notion
of renegotiation proofness suitable for our bargaining environment can replace R2 is a question
worth pursuing in future research.

7. THE MODEL WITH RANDOM MATCHING

Although the strategic matching protocol seems natural in the context of a model with a single
seller and multiple asymmetric buyers, it is worthwhile to investigate whether equilibrium mul-
tiplicity issues arise under other protocols, and whether intuitive refinements narrow down their
“perfect” equilibrium predictions. An alternative protocol that has been widely considered in the
literature is random matching.18 In our setting, the random matching protocol entails that in every
round the seller and buyer k are matched with exogenous probability pk, where ph + pl = 1. As
in the original model, when the seller is matched with buyer k, either player gets the opportunity
to make an offer with probability 1/2. We consider the symmetric version of this protocol with
ph = pl = 1/2.

We first observe that in the model with random matching all MPEs are outcome equivalent, and
that the MPEs in this model also conform asymptotically with the OOP when δ goes to 1.19 In
particular, when l < h/2, for high enough δ, every match with buyer l results in disagreement,
and the first match with buyer h leads to an agreement. In this case, the seller and buyer h expect
a common payoff of h/(4 − 2δ), reflecting delay caused by matches with buyer l (whereas the
corresponding payoff in the model with strategic matching is exactly h/2 for every δ). When
l ≥ h/2, in a match with buyer h an agreement is reached with probability 1, while in a match with
buyer l an agreement is reached with a positive probability that converges to 0 as δ → 1. The prices
at which trade takes place with either buyer converge to l as δ → 1. In this case, for sufficiently
high δ, the seller’s expected payoff in the MPE is l/δ, while buyer l’s is exactly 0; buyer h’s payoff

18This protocol seems more suitable for modeling bargaining in markets with a large number of buyers and sellers.
19The exact offers being made and the probability with which certain offers are accepted in a match with buyer l are not
pinned down in MPEs when there is a positive probability of disagreement with buyer l. However, all MPEs generate
the same expected payoffs and probability of trade with each buyer, and as before we simply refer to the unique MPE
outcome as “the MPE.”
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converges to h− l as δ → 1. Hence, the MPEs for the game with random matching also conform
asymptotically with the OOP.

As mentioned earlier, Rubinstein and Wolinsky (1990) explore both the strategic and the random
matching protocols in a setting with multiple buyers, all of which have the same value l. In the
model with random matching, they show that the MPE is also the unique SPE (see their Proposition
4.i). For the convenience of the reader, we provide a (shorter) proof of this result in the Online
Appendix.

It may be easily checked that the counterpart of Proposition 1 for the model with random match-
ing is that the seller’s payoff is greater than or equal to h/(4 − 2δ) for every discount factor δ.
Hence, h/2 is an asymptotic lower bound on the seller’s payoff as δ → 1. It follows that if
l < h/2, then for sufficiently high δ, the seller never trades with buyer l in any SPE. In this case,
all SPEs must be outcome equivalent (to the MPE), and correspond to a two-player bargaining
game in which the seller and buyer h are matched to bargain with probability 1/2 in every round
(in the complementary event, the round elapses without trade), in which both the seller and buyer
h obtain expected payoffs of h/(4 − 2δ). Therefore, when l < h/2, every SPE under random
matching generates (asymptotic) profits of h/2 for the seller and buyer h, and 0 for buyer l. Re-
call that even for l < h/2, the range of SPE profits under strategic matching is the entire interval
[h/2, h]. To understand the divergence between these predictions, note that the construction of
SPEs with threat of delay leverages the fact that the strategic matching protocol allows the seller to
avoid matching with buyer h for any length of time. This type of threat to buyer h is not available
under random matching, where the seller is exogenously matched with buyer h in every round with
positive probability.

We have argued that in the simple cases h = l and l < h/2, all SPEs for high δ are outcome
equivalent to the MPE. We next establish that the range of SPE outcomes is significantly richer
when h > l ≥ h/2.

8. EXTREME SPE PAYOFFS UNDER RANDOM MATCHING

Here we explore the range of SPE payoffs for the seller and the buyers in the game with random
matching. As in the bargaining model with strategic matching, the random matching protocol sup-
ports a wide range of trading outcomes if h > l ≥ h/2. For brevity, we highlight the extremal SPE
payoffs although intermediate values are also attainable. In particular, we identify the maximum
payoff of the seller and the minimum payoff of each buyer over all SPEs, and show that these
extreme payoffs converge to h for the seller and 0 for either buyer. While the underlying equi-
librium constructions are distinct from those we developed for strategic matching, the asymptotic
equilibrium payoffs most favorable to the seller are the same.

What about least favorable SPE outcomes for the seller? In a market where both buyers have
value l, Rubinstein and Wolinsky’s uniqueness result establishes that the MPE is the only SPE in
the random matching model. A reasonable conjecture is that increasing the value of one of the
buyers from l to h ∈ (l, 2l) in such a market could not possibly make the seller worse off or the
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low-valuation buyer better off in any SPE. This conjecture would then imply that under random
matching, the seller’s asymptotic payoff cannot fall below l, and buyer l’s asymptotic payoff must
be 0 in any family of SPEs. We show that this is not the case—and hence the conjecture is false—
by constructing SPEs for the case h ∈ (l, 2l) in which the seller gets an asymptotic payoff below
l.

This construction requires fundamentally new ideas since the random matching protocol does
not sustain interdependence in consecutive matches like the corresponding construction of semi-
Markov SPEs. Recall that in buyer-favoring semi-Markov SPEs, after a round of failed negotiations
with buyer l, the seller favors buyer l by trading with him in the next round with probability close
to 1 in equilibrium. In the state favoring buyer l in the new equilibrium construction, the seller
trades with small probability when matched with buyer h, and with probability 1 when matched
with buyer l, inducing a similar trading pattern as a time average. To minimize the probability of
agreement in every match with buyer h, we design discontinuous acceptance rules that incentivize
the proposer to lowball the responder with an offer that is accepted with small probability instead
of making a generous offer that would guarantee acceptance. In general, constructions of extremal
SPEs under random matching are more involved due to the seller’s lack of agency in the matching
process.

Can the seller’s asymptotic payoff under random matching get as low as h/2 when the outside
option is asymptotically binding (l > h/2) as it does under strategic matching? Interestingly, the
answer is negative. In the Appendix, we prove that h/4 + l/2 (> h/2) is an asymptotic lower
bound on the seller’s payoff in all SPEs under random matching.

Best SPE for the seller and worst SPE for buyers. Under the retained assumption that h > l ≥
h/2, we first construct an SPE that yields the highest payoff v̄s for the seller. Not surprisingly,
this construction involves an SPE that generates the lowest equilibrium payoff vh for buyer h in
a subgame. The construction relies on the following modification of the MPE, which we call the
quasi-MPE. In the MPE, conditional on being matched with buyer l, trade occurs with positive
probability, but this probability converges to 0 as δ → 1. In the quasi-MPE, play follows the MPE
strategies after all histories except that in the first round, conditional on a match with buyer l, the
selected proposer offers a payoff equal to the discounted MPE payoff of the responder, and the
responder accepts this offer with probability 1.

In the best SPE for the seller, play begins in “state s̄,” in which the seller expects payoff v̄s.
Following any first-round rejection by buyer h, play transitions to “state h,” in which buyer h
expects payoff vh. In state s̄, if the seller is matched with buyer l in the first round, then no
agreement is reached: buyer l accepts only price offers smaller than or equal to l, the seller accepts
only price offers greater than or equal to δv̄s, and both players make unacceptable offers. If the
seller is matched with buyer h in the first round, then when selected to propose, the seller offers
a payoff of δvh, and buyer h accepts only offers greater than or equal to this amount. If selected
to make the offer, buyer h offers δv̄s to the seller, and the seller accepts only offers greater than
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or equal to δv̄s. As mentioned earlier, when buyer h rejects an offer, play transitions to state h.
Following any other disagreement, play remains in state s̄. In state h, if the seller is matched with
buyer l in the first round, then play follows the quasi-MPE strategies thereafter. However, if the
seller is matched with buyer h in the first round, then play reverts to state s̄.

For the constructed strategies to generate the desired payoffs and form an SPE, (v̄s, vh) must
solve the following system of equations:

v̄s =
1

4
(h− δvh) +

3

4
δv̄s(3)

vh =
1

4
(h− δv̄s) +

1

4
δvh.(4)

The system has the unique solution

v̄s =
(2− δ)h

8− 8δ + δ2
(5)

vh =
2(1− δ)h

8− 8δ + δ2
.(6)

As δ → 1, these payoffs converge to h for the seller and 0 for buyer h.
Given the definition of (v̄s, vh), this construction generates an SPE whenever δv̄s ≥ l (so that the

seller and buyer l do not have incentives to make acceptable offers to each other), which is the case
for δ sufficiently close to 1 since limδ→1 δv̄s = h > l. In the Online Appendix, we prove that for
high enough δ, v̄s is the seller’s maximum payoff among all SPEs, and vh is buyer h’s minimum
payoff among all SPEs. The construction also yields the lowest SPE payoff (0) for buyer l.

SPEs favorable to buyers and unfavorable to the seller. We now turn to SPEs that generate low
payoffs for the seller. For l = h/2, the MPE delivers asymptotic payoff l = h/2 to the seller,
which is her lowest possible asymptotic profit in all SPEs given the universal asymptotic lower
bound h/2 discussed earlier. The construction below assumes that h > l > h/2.

We construct two interlinked SPEs that generate a common low payoff vs for the seller and high
payoffs for the corresponding buyer. One of the SPEs delivers a high payoff v̄h to buyer h and
payoff 0 to buyer l, while the other delivers a high payoff v̄l to buyer l and a low payoff vh to buyer
h. We show that vh is identical to vh, buyer h’s minimum SPE payoff identified in the previous
subsection. We conjecture that these constructions yield the minimum payoff for the seller and
the maximum payoff for each buyer over all SPEs, and the notation (vs, v̄h, v̄l) is meant to be
suggestive.

In this construction, behavior may be in “state” h̄, l̄ or s′, and certain deviations trigger transi-
tions to the best SPE for the seller (described in the previous subsection), which for convenience
we refer to as “state s̄.”20 In state k ∈ {h̄, l̄}, buyer k expects a high SPE payoff v̄k, while the
other buyer receives his lowest SPE payoff. In both states h̄ and l̄, the seller expects the same low
payoff vs, which converges to (4h + l −

√
12h2 − 12hl + l2)/4 as δ → 1; this limit lies in the

20The full description of this SPE involves three additional states corresponding to state h, the initial state of the
quasi-MPE, and a state describing behavior in the MPE.
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interval (h/4 + l/2, l). As explained in the opening of the section, the fact that in this equilibrium
construction buyer l’s asymptotic payoff is positive—and correspondingly the seller’s asymptotic
profit is below l—means that the seller’s lowest SPE asymptotic profit does not respond in the
expected monotonic fashion to an increase in a buyer’s value.

In constructing equilibria of a bargaining game, a central concern is deterring non-equilibrium
offers which, if accepted, end the game, precluding punishment of the deviator(s). A non-equilibrium
offer can be punished only if it is declined, and this is achieved most effectively if the rejection of
such offers triggers the best SPE for the rejecting player. In other words, a non-equilibrium offer
“signals” a transition to the most favorable SPE for the responder.21 Our equilibrium constructions
embody this signaling mechanism in subgames associated with the “wrong” match (buyer h in
state l̄, and buyer l in state h̄), while relying on familiar recursion in subgames associated with the
right match.

We will determine the payoffs (vs, v̄h, vh, v̄l) consistent with the prescribed strategies after we
describe behavior in each state. In state l̄, the three players expect payoffs (vs, vh, v̄l), and play
proceeds as follows. For any proposer-responder pair selected by nature, the proposer offers δvs
to the seller, δvh to buyer h, and δv̄l to buyer l. In a match with buyer l, the equilibrium offer
is accepted with probability 1; the responder rejects lower offers and accepts higher offers. In a
match with buyer h, when responding to an offer: (i) buyer h accepts the seller’s equilibrium offer
with probability θ, accepts offers greater than δv̄h with probability 1, and rejects all other offers;
and (ii) the seller accepts buyer h’s equilibrium offer with probability θ′, accepts offers greater
than δv̄s with probability 1, and rejects all other offers. The probabilities θ and θ′ will be specified
shortly; for now, we note that both converge to 0 as δ → 1. Following a disagreement between the
seller and either buyer, play continues in state l̄ with the following exceptions. If buyer h rejects an
offer different from the seller’s equilibrium offer, play switches to state h̄, while if the seller rejects
an offer different from buyer h’s equilibrium offer, play switches to state s̄.

State l̄ behavior has a standard stationary structure when the seller is matched with buyer l.
However, if the seller is matched with buyer h, then maximizing buyer l’s payoff entails returning
to the initial state with high probability while providing incentives for the proposer to make the
“right” offer, and for the responder to reject the offer with appropriate probability. In the favorable
scenario in which the seller is selected to propose in a match with buyer h, she is guaranteed a
payoff arbitrarily close to h− δv̄h. An efficient way to deliver this minimal “bribe” to the seller in
terms of the dual objective of returning to the initial state with high probability and increasing total
available surplus via opportunistic trade with the high valuation buyer is given by equation (10)
below: θ(h−δvh)+(1−θ)δvs = h−δv̄h. The seller trades with buyer h at the highly favorable price
h − δvh (we will argue that vh = vh), but with low probability θ. Buyer h is indifferent between
accepting and rejecting the equilibrium offer, as needed to justify his randomization. Equation
(10) implicitly defines the minimal probability θ with which buyer h should accept the seller’s

21This interplay between best and worst equilibria is reminiscent of Abreu (1986).
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demanding equilibrium offer in a recursive environment where the seller receives the bribe h−δv̄h
in expectation, and a rejection of the equilibrium offer leads to the same unfavorable state.22 When
buyer h proposes, the seller randomizes and incentives are maintained in an analogous manner by
ensuring that buyer h’s on-path conditional expected payoff is h − δv̄s (where v̄s represents the
seller’s highest SPE payoff characterized earlier).

In state h̄, the three players expect payoffs (vs, v̄h, 0), and play proceeds as follows. In a match
with buyer h, the seller offers δv̄h to h, and buyer h offers δvs to the seller. The equilibrium offers
and better ones are accepted, and worse ones are rejected. In a match with buyer l, the seller
demands a price of l and buyer l rejects, while buyer l proposes a price of 0 and the seller rejects.
The seller accepts only price offers greater than δv̄s, and buyer l accepts only offers that give him
a utility greater than δv̄l; hence, the seller does not trade with buyer l in equilibrium. Following
a disagreement between the seller and either buyer, play continues in state h̄ with the following
exceptions. If the seller rejects an offer different from buyer l’s equilibrium offer, play switches
to state s̄. If buyer l rejects any non-equilibrium offer, play switches to state l̄. Finally, if buyer l
rejects the seller’s equilibrium offer—as prescribed in this state—play switches to state s′.

State s′ completes the equilibrium construction by delivering a “bribe” to the seller that has
expected discounted value l − δv̄l in exchange for having passed on an agreement with buyer l
when she is selected to propose to buyer l.23 Given the goal of maximizing buyer h’s payoff,
this bribe is most efficiently delivered in the future via exclusive trade with buyer h.24 Indeed,
if δh/(2 − δ) ≥ l (which holds for high δ given that h > l), then the maximum attainable total
(expected future) surplus under the random matching protocol following an initial match with
buyer l is δh/(2 − δ), and is achieved by waiting for the first opportunity to trade with buyer h.
Hence, maximizing buyer h’s payoff subject to providing the seller’s expected bribe is perfectly
aligned with efficient surplus creation.

We are led to prescribe that in state s′ the seller is rewarded for making an unacceptable offer to
buyer l in state h̄ with the expected payoff equivalent of the bribe (l − δv̄l)/δ, which leaves buyer
h with the rest of the total expected discounted surplus, h/(2− δ)− (l − δv̄l)/δ (and buyer l with
0). To attain these payoffs, play in state s′ is as follows. In a match with buyer l, behavior and state
transitions are identical to those in state h̄ except that a rejection of either player’s equilibrium offer
leads back to state s′ (in equilibrium, a match with buyer l leads to disagreement). When nature

22The seller cannot obtain acceptance with probability 1 by a modest sweetening of the offer to buyer h because such
a deviation signals a transition to the best equilibrium for buyer h. Then, buyer h should accept only non-equilibrium
price offers below h−δv̄h, which is precisely the seller’s conditional expected payoff on the equilibrium path via (10).
23Since v̄l is the highest available equilibrium payoff for buyer l, the seller’s expected payoff conditional on being
selected to propose to buyer l should be at least l − δv̄l. By contrast, when buyer l is selected to propose to the seller,
if the seller expects her most attractive equilibrium continuation payoff δv̄s > l, it is not necessary to provide buyer l
with positive utility in the current match or in the future.
24The seller does not have an incentive to demand the bribe from buyer l because such an attempt would be perceived
as a signal that play will shift to state l̄, in which buyer l expects payoff δv̄l. Conversely, buyer l is prevented from
making an acceptable offer to the seller via the equilibrium expectation that any such offer signals a transition to the
best equilibrium for the seller (we show that δv̄s > l).
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selects the seller to propose to buyer h, behavior and state transitions are specified as in state h̄ (in
equilibrium, the seller obtains payoff h − δv̄h). If nature selects buyer h to propose to the seller,
then the buyer offers price v′s, and the seller accepts this equilibrium offer, where v′s solves

(7)
l − δv̄l
δ

=
1

2− δ

(
1

2
(h− δv̄h) +

1

2
v′s

)
.

The seller accepts offers greater than δv̄s, and rejects all other offers different from v′s. In equi-
librium, trade occurs only with buyer h, generating an expected payoff for the seller given by the
right-hand side of (7). Play continues in state s′ unless the seller rejects a non-equilibrium offer
from buyer h, in which case it switches to state s̄, or the seller rejects buyer h’s equilibrium offer,
in which case it switches to state h̄.

We are left to define (vs, vh, v̄h, v̄l, θ, θ
′). The prescribed equilibrium behavior implies the fol-

lowing payoff equations for the two buyers:

v̄h =
1

4
(h− δvs) +

1

2
δv̄h +

1

4

(
δ

h

2− δ
− (l − δv̄l)

)
(8)

v̄l =
1

4
(l − δvs) +

1

4
δv̄l +

1

4
(1− θ)δv̄l +

1

4
(1− θ′)δv̄l.(9)

The probabilities θ and θ′ are chosen to satisfy

h− δv̄h = θ(h− δvh) + (1− θ)δvs(10)

h− δv̄s = θ′(h− δvs) + (1− θ′)δvh.(11)

Moreover, buyer h’s payoff in state l̄ must solve

vh =
1

4
(θδvh + (1− θ)δvh) +

1

4
(θ′(h− δvs) + (1− θ′)δvh).(12)

We will argue that the seller’s payoff in both states h̄ and l̄ solves

vs =
1

4
(h− δv̄h) +

1

4
(l − δv̄l) +

1

2
δvs.(13)

Substituting (11) into (12) and simplifying yields a linear equation in vh that is equivalent to
equation (4) defining vh. Therefore, vh = vh. This identity holds because in both states h and l̄,
the seller trades with buyer l when they are matched, and buyer h has the same expected payoffs
when matched with the seller and selected as proposer or responder, respectively, although these
payoffs are achieved via sure trade in state h and via randomization in state l̄.

In the Appendix, we establish that for sufficiently high δ, the system of equations has a (unique)
solution with vs, v̄h, v̄l ≥ 0 and θ, θ′ ∈ [0, 1]. We argue that both θ and θ′ converge to 0 at rate 1−δ
as δ → 1. The exact limit values of θ/(1−δ) and θ′/(1−δ) determine buyer l’s positive limit payoff
in state l̄. We find that as δ → 1, v̄l converges to v̄l(1) := (3l +

√
12h2 − 12hl + l2 − 4h)/4 ∈

(0, h− l), while vs and v̄h converge to l − v̄l(1) and h− l + v̄l(1), respectively.
Also in the Appendix, we verify that the construction delivers the same payoff vs to the seller

in both states h̄ and l̄. In either state, the seller expects a payoff of δvs when one of the buyers
proposes (even though the equilibrium proposal is not accepted in all cases). In state l̄, trade with
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FIGURE 2. Buyer l’s limit payoffs in SPEs favorable to him for l = 1 and h ∈ (1, 2)

buyer l takes place at price l− δv̄l when the seller proposes, while a match with buyer h generates
an expected payoff of θ(h− δvh) + (1− θ)δvs = h− δv̄h (via (10)) for the seller in the event she is
the proposer. In state h̄, trade with buyer h takes place at price h − δv̄h when the seller proposes,
while the seller receives an expected discounted payoff of l− δv̄l via the transition to state s′ when
buyer l rejects her offer in equilibrium.

The recursive structure of states h̄ and s′ is almost identical, with the main difference being that
buyer h offers the seller price δvs in state h̄, but the higher price v′s in state s′. Indeed, we have
that v′s > δvs because the seller’s target expected payoff (l − δv̄l)/δ in state s′ is greater than her
expected payoff vs in state h̄ (since l − δv̄l > δvs). In state s′, buyer h is disciplined to make the
required offer v′s via the threat than any other offer signals a transition to the unfavorable state s̄
for him (h − v′s > h− δv̄s), whereas the seller is happy to accept the price v′s because rejecting it
leads to state h̄ (v′s > δvs). In the Appendix, we confirm the three requisite inequalities. We also
verify the other two main inequalities precluding profitable (one-shot) deviations: h − δv̄h > δvs
and δv̄s > l.

To visualize buyer l’s most favorable limit payoff v̄l(1) in (state l̄ of) this construction, fix l = 1

and assume that h ∈ (1, 2). Figure 2 plots v̄l(1) as a function of h. This limit payoff goes to
0 as l → 1 and l → 2, and achieves a maximum of 1/4 −

√
6/12 ≈ 0.046 (which represents

approximately 4.6% of buyer l’s value) for h = 1/2 +
√

2/3 ≈ 1.316. Since buyer l’s asymptotic
payoff is 0 in every family of SPEs when l ∈ {h/2, h},25 we conclude that buyer l’s payoff in the
equilibrium most favorable to him is not monotonic in h.26

25For l = h, this is a consequence of Rubinstein and Wolinsky’s result, while for l = h/2, this follows from the
general lower bound h/2 on asymptotic seller profits.
26If we alternatively fix h and vary l in [h/2, h], we reach the conclusion that neither buyer l’s limit payoff v̄l(1) nor
the share v̄l(1)/l of his own value he appropriates in his preferred equilibrium is monotonic in l.
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9. REFINEMENTS FOR RANDOM MATCHING

As was the case for the strategic matching protocol, a single refinement yields an asymptotic
payoff of 0 for buyer l and an asymptotic lower bound of l for the seller’s payoff. This refinement
is a symmetric version of R2 introduced earlier, and for this reason we label it R2’.

R2’ (Disagreement does not improve payoffs). If vs and vk are the payoffs of the seller and buyer
k ∈ {h, l}, respectively, in any subgame starting at the beginning of some round t, and v′s and v′k
are the corresponding payoffs at the beginning of round t + 1 following any disagreement with
buyer k in round t (both payoffs may depend on play in round t of the subgame), then vs ≥ v′s and
vk ≥ v′k.

R2’ requires that neither party involved in a disagreement has future payoffs increase (but the
buyer not involved in the disagreement might well experience a payoff increase). This version
of R2 is stronger than the original in that it applies symmetrically to the seller and both buyers.
However, in limiting payoff increases to a disagreeing buyer, R2’ is closer in spirit to R1(M ).
Proposition 2 established that R1(M ) is sufficient for an asymptotic lower bound of l on seller
profits in the model with strategic matching. R2’ delivers the corresponding result for random
matching.27

Proposition 4. In any family of SPEs of the bargaining game with random matching for discount
factors δ ∈ (0, 1) that satisfy R2’, buyer l’s payoff converges to 0 as δ → 1, and lim infδ→1 of the
seller’s payoff is at least l.

A key feature of the equilibria that generate the asymptotic payoff vs(1) < l is that rejections
by the seller or buyer k of some non-equilibrium offers are “rewarded” by transitions to the re-
jector’s preferred equilibrium. These high rewards are triggered in a context in which on-path
pre-match payoffs are low, vs and vk in state k̄′ where {k, k′} = {h, l}, respectively, leading to
robust violations of R2’.

We now turn to a novel refinement that is particular to the random matching protocol. Recall
that in the MPE, every match with buyer h leads to trade with probability 1. When l < h/2, a
match with buyer l results in no trade for sufficiently high δ, and when l ≥ h/2, a match with
buyer l results in trade with a positive probability that converges to 0 as δ → 1. In either case,
successive random matches with buyer l might occur (and end in disagreement) before the seller is
matched and trades with buyer h. Thus, under random matching, the probability of encountering
buyer l is excessive when l ≥ h/2, and even more starkly so when l < h/2. The strategic matching
protocol precludes such redundant matches in the MPE. Indeed, the MPE under strategic matching
has the property that if the seller chooses to bargain with a specific buyer with positive probability

27The proof of Proposition 2 uses only implications of R1(M ) for buyer h’s relative probability of trade following a
disagreement with buyer h. Analogously, the proof of Proposition 4 relies only on implications of R2’ for buyer h’s
payoffs.
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in equilibrium, then trade occurs with conditional probability 1, so there are no “wasted” matches
or delay.

This discussion reveals that the random matching protocol strips the seller of agency in the
selection of buyers and may mechanically induce delay. To mitigate this issue, we introduce a
refinement requiring that, in equilibrium, the “bad luck” of being matched with the wrong buyer
does not impact the seller’s utility excessively when we account for her patience.

R3 (Random mismatch is not worse than delay). For every k ∈ {h, l}, if vks is the seller’s payoff
in any subgame in which the seller is matched to bargain with buyer k in round t (before nature
selects the proposer), and vs is the seller’s payoff prior to the matching at the beginning of round
t, then vks ≥ δvs.

The random matching protocol “forces” a match with each buyer k ∈ {h, l} with probability
1/2. R3 posits that if a match with buyer k is undesirable for the seller in equilibrium, the impact
should be limited to at most the cost of one round of delay relative to the ex ante pre-match ex-
pectations. This implies that the seller’s expected payoff cannot vary excessively in response to
nature’s draw of the match (as it actually does in our constructions of extremal SPEs). Note that
R3 places no restriction on the inter-temporal evolution of seller payoffs, and is thus not directly
linked to stationarity.

To see that the MPE satisfies both refinements, let v∗k denote player k’s MPE payoff. The MPE
satisfies R2’ because in the MPE each player’s payoff is the same at the beginning of every round.
To check that the MPE satisfies R3, note that in the event the seller is matched with any buyer k,
she can prevent an agreement in equilibrium by making an unreasonable offer (e.g., demanding
price h) and rejecting any offer. Such a strategy delivers a discounted payoff of δv∗s to the seller at
the time of the match with buyer k. Therefore, the seller’s equilibrium payoff in the event she is
matched with buyer k must be at least δv∗s . The conclusion follows from the fact that the seller’s
pre-match utility in the MPE is v∗s .

Our final result establishes that the two refinements introduced here jointly imply the asymptotic
predictions of the OOP in the model with random matching.

Proposition 5. In any family of SPEs of the bargaining game with random matching for discount
factors δ ∈ (0, 1) that satisfy R2’ and R3, the seller’s payoff converges to max(h/2, l), buyer h’s
payoff converges to min(h/2, h−l), and the discounted probability of trade with buyer h converges
to 1 as δ → 1.

The conclusion is trivially true when l < h/2 because, as argued in Section 7, in this case all
SPEs are outcome equivalent to the MPE for high δ. When l ≥ h/2, for high δ, the quasi-MPE
satisfies R3 but violates R2’. Indeed, the quasi-MPE satisfies R3 because the seller’s pre and post
match payoffs in every round—including the first—are identical to the corresponding payoffs in
the MPE, and the MPE satisfies R3. Quasi-MPEs for high δ violate R2’ because they yield limit
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payoff (h − l)/2 for buyer h, but a first-round disagreement with buyer h leads to a subgame in
which they yield the greater (MPE) limit payoff h− l for buyer h.

While the quasi-MPEs deliver limit payoff l to the seller, they lead to an agreement with buyer
l with probability 1/2 and generate limit payoff (h − l)/2 for buyer h as δ → 1. In the Online
Appendix, we showcase SPEs building on quasi-MPEs that continue to satisfy R3 (while violating
R2’) and yield limit payoffs different from l for the seller. We also construct SPEs that satisfy R2’
but violate R3 and generate asymptotic outcomes inconsistent with the OOP. Therefore, neither
refinement alone is sufficient for the conclusion of Proposition 5.

10. CONCLUSION

Many dynamic strategic models display a vast multiplicity of “perfect” equilibria, and these
have been elaborately documented in the extensive “folk theorem” literature. From the point of
view of predictive economics, this multiplicity is problematic. For repeated games and other types
of dynamic games susceptible to substantial multiplicity, there have been few attempts to propose
selection criteria.28

Since Rubinstein’s (1982) seminal paper, it has been typical to model non-cooperative bargain-
ing as unfolding over an infinite horizon. Rubinstein showed that his two-player model has a unique
SPE, and uniqueness has become a traditional desideratum in the theory of non-cooperative bar-
gaining. But even with complete information, once we move beyond the two-player case, unique-
ness of SPEs is not guaranteed.

In this paper, we investigated the robustness of the classic outside option principle as an equi-
librium prediction. We considered bilateral bargaining between a seller and two potential buyers
with valuations h > l. We analyzed two bargaining protocols: in our benchmark model, the seller
strategically chooses which buyer to negotiate with in every bargaining round, while in the other
the seller is randomly matched with one of the buyers for negotiations in every round.

Both protocols generate a unique MPE outcome, but less was known about the range of possible
SPE trading outcomes. One of the contributions of the paper is to explore this range in both models.
In doing so, we developed several equilibrium constructions that characterize the set of prices at
which trade can occur in SPEs. We found that a wide range of prices may arise. Under strategic
matching, in the limit as players become patient, trade can occur at any price in the interval [h/2, h]

and no other. In the model with random matching, in the interesting case when the outside option
is binding (l > h/2), trade can take place at prices arbitrarily close to h and also prices below l,
but not as low as h/2. Moreover, substantial allocative efficiency and costly delay are possible.

The OOP posits that as players become patient, trade occurs without costly delay and with
the high-value buyer with limit probability 1 at limit price max(h/2, l). As discussed above, for
both protocols, there exist SPEs that deviate from the OOP along all these dimensions. While

28Exceptions include Abreu and Pearce (2007, 2025). We have in mind here complete information games. There is,
of course, a large literature on refinements of sequential equilibrium via restrictions on plausible beliefs about player
types in settings with incomplete information.
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the MPE delivers the intuitive OOP predictions, the underlying assumption of stationary behavior
is unsatisfactory absent further justification. Indeed, in other contexts (e.g., repeated oligopoly),
history dependent strategies are a staple even in stationary environments and are used to rationalize
cooperative behavior and other outcomes considered more appealing than MPE outcomes.

Our goal was to identify refinements less restrictive and more interpretable than stationarity
that are sufficient for the OOP. For the strategic matching protocol, the first refinement requires
that buyer h’s relative probability of trade in any subgame does not increase dramatically in the
event the seller chooses to bargain with buyer h and agreement is not reached. We showed that
this simple refinement eliminates the seller’s potential vulnerability in an SPE relative to the OOP
prediction when l > h/2, guaranteeing that the price is asymptotically bounded below by l in
the patient limit. The second refinement postulates that a seller never approaches a buyer hoping
that negotiations fail. Our main result for the strategic matching protocol establishes that SPEs
satisfying both refinements conform asymptotically with the OOP predictions (although they do
not imply Markov behavior or immediate agreement).

Similarly, for the random matching protocol, we introduced two refinements that together yield
the OOP predictions. One of them has a similar flavor to the second refinement for the strategic
matching model. The key new refinement, which is particular to the random matching protocol,
requires that seller payoffs within a bargaining round do not vary excessively (relative to discount-
ing costs) depending on which buyer she is exogenously matched with. This refinement does not
per se place any restrictions on the evolution of seller payoffs across bargaining rounds.

Our refinements are intuitively appealing and have substantial cutting power in the bargaining
problem we analyzed. The refinements are by design, context, and indeed, protocol specific. They
are not general-purpose refinements that can be applied to any game or refinements derived from
epistemic considerations.29 While such refinements are valuable in their universality, this feature
is a double edged sword, and one edge is likely to be blunt in many applications. We have instead
looked for refinements tailored to the model in question, and behaviorally plausible in context.
This approach may prove fruitful in other dynamic settings.30

29In a different approach, Sabourian (2004) and Gale and Sabourian (2005) provide foundations for competitive equi-
librium predictions in a class of market games via a refinement positing that players prefer less complex strategies. In
their bargaining game with no discounting, the complexity refinement implies Markov behavior, which in turn implies
competitive equilibrium outcomes. Due to the absence of discounting, MPEs in their game for the three-player mar-
ket we consider are consistent with any price in the interval [l, h], and are not directly related to the OOP. Whether
the introduction of discounting combined with a complexity refinement reinstates the OOP is a question for future
research. There is an older tradition of using equilibrium refinements to rule out implausible beliefs about player types
in bargaining games with incomplete information (e.g., Rubinstein 1985, Admati and Perry 1987).
30Extending the analysis to more general models of bargaining in networks is a logical next step. However, the OOP
does not yet have a generally accepted counterpart in settings with multiple buyers and sellers—there is variation in
predictions across various models (see Manea (2016) for a survey). Furthermore, multiplicity of MPEs is common in
many of the leading models in this literature (e.g., Sabourian (2004), Gale and Sabourian (2005), Abreu and Manea
(2012b), Manea (2017), Elliott and Nava (2019)), and the appropriate counterpart of the OOP in these richer settings
is likely a set-valued solution concept.
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APPENDIX

Proof of Proposition 1. Let vs be the infimum of the seller’s payoff and v̄h be the supremum of
buyer h’s payoff in all SPEs for the game with discount factor δ. Standard bargaining arguments
imply that

vs ≥
1

2
δvs +

1

2
(h− δv̄h)(14)

v̄h ≤
1

2
δv̄h +

1

2
(h− δvs).(15)

The first inequality reflects a lower bound on seller payoffs in every SPE derived from the strategy
whereby the seller chooses to bargain with buyer h in the first round, makes an acceptable offer to
buyer h arbitrarily close to δv̄h, and rejects buyer h’s offer to obtain a payoff of at least vs in the
continuation subgame. The second inequality is a consequence of the following upper bound on
buyer h’s payoff in every SPE:

max
(
δv̄h,

1

2
δv̄h +

1

2
max(h− δvs, δv̄h)

)
.

Indeed, in the event the seller does not bargain with buyer h in the first round of an SPE, buyer
h’s expected continuation payoff does not exceed v̄h. In the event she does, the seller becomes the
proposer with probability 1/2, in which case buyer h’s payoff does not exceed δv̄h,31 and buyer h
becomes the proposer with probability 1/2, in which case either the seller accepts an offer of at
least δvs, leaving buyer h with a payoff of at most h− δvs, or rejects the buyer’s offer, resulting in
a continuation payoff of at most v̄h for the buyer.

If either of the maxima in the expression displayed above is achieved by δv̄h, then it must be that
v̄h ≤ 0. However, v̄h > 0 because buyer h receives a positive payoff in the MPE, a contradiction.
This argument leads to inequality (15).

We can derive an upper bound on v̄h from inequality (15), which we then substitute on the
right-hand side of inequality (14) to obtain an inequality equivalent to vs ≥ h/2 (this is intuitive
as inequalities (14) and (15) are familiar from a two-player bargaining setting in which the seller
can trade only with buyer h; in that setting, in the unique SPE, both players receive payoffs of
h/2). �

Proof of Proposition 2. Fix M ≥ 1, and let v̄l be the lim supδ→1 of buyer l’s supremum payoff and
vs be the lim infδ→1 of the seller’s infimum payoff in the game with discount factor δ under SPEs
satisfying R1(M ).

For every ε > 0, there exists δ < 1 such that in every SPE for the game with any discount
factor δ > δ that satisfies R1(M ), buyer l’s payoff is smaller than v̄l + ε. As R1(M ) is a “recursive
property,” buyer l’s payoff following any history in which he just rejected the seller’s offer is
smaller than v̄l +ε in such SPEs; this implies that buyer l should accept an offer of v̄l +ε (or more)

31In equilibrium, buyer h must accept any offer above δv̄h, which makes it non-optimal for the seller to offer more
than δv̄h to the buyer. Hence, buyer h either receives at most δv̄h from an agreement with the seller or expects a
discounted payoff not exceeding δv̄h after a disagreement.
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in any round. A strategy available to the seller is to approach buyer l in every round and reject all
offers from l until she is selected to make an offer, at which point she offers v̄l + ε to l. In every
SPE for δ > δ that satisfies R1(M ), buyer l should accept such offers, so this strategy generates
an asymptotic payoff of l − v̄l − ε for the seller. It follows that vs ≥ l − v̄l − ε, which given the
arbitrary choice of ε > 0 implies that vs ≥ l − v̄l.

We will argue that v̄l = 0. Consider a family of SPEs σδ for a sequence of δ going to 1 that
satisfy R1(M ), in which buyer l’s payoff converges to v̄l as δ → 1. Assume by possibly passing to a
subsequence that as δ → 1, the seller’s payoff under σδ converges to ṽs, the discounted probability
q(δ) with which the seller makes an offer that buyer l accepts in the entire game under σδ converges
to q, and the discounted probability q′(δ) with which buyer l makes an offer that the seller accepts
in the game under σδ converges to q′.

Fix ε > 0. Since for δ sufficiently close to 1 in the sequence, buyer l should accept an offer
of v̄l + ε or more from the seller after any history under σδ, it is not optimal for the seller to
offer more than v̄l + ε in any round. Hence, for high δ, any agreement reached with buyer l
under σδ when the seller proposes yields a payoff of at most v̄l + ε for buyer l. Furthermore,
for high δ, the seller should reject offers lower than vs − ε from buyer l following any history
under σδ, so any agreement reached when buyer l proposes yields a payoff of at most l − vs + ε

for l. It follows that for sufficiently high δ, buyer l’s expected payoff under σδ does not exceed
q(δ)(v̄l + ε) + q′(δ)(l− vs + ε). As q(δ)→ q, q′(δ)→ q′ and buyer l’s payoff under σδ converges
to v̄l for δ → 1, it follows that v̄l ≤ q(v̄l + ε) + q′(l − vs + ε). Taking the limit ε→ 0 in the latter
inequality, we get that

v̄l ≤ qv̄l + q′(l − vs).

As vs ≥ l − v̄l is equivalent to l − vs ≤ v̄l, it follows that v̄l(1− q − q′) ≤ 0.
Suppose, by way of contradiction, that v̄l > 0. Then, v̄l(1−q−q′) ≤ 0 combined with q+q′ ≤ 1

leads to q + q′ = 1. Hence, the discounted probability with which the seller trades with buyer l
under σδ converges to 1 as δ → 1. Since an agreement with buyer l generates total payoffs of l,
and the seller’s and buyer l’s payoffs under σδ converge to ṽs and v̄l, respectively, as δ → 1, it
follows that ṽs + v̄l = l. Therefore, ṽs ≤ vs.

For any fixed ε > 0, the seller can deviate from σδ by approaching buyer h in the first round and
proposing a price of h − ε when chosen to make an offer, rejecting any offer from buyer h, and
following σδ thereafter. Since σδ satisfies R1(M ) and the discounted probability of trade for buyers
h and l under σδ converge to 0 and 1, respectively, as δ → 1, buyer h’s discounted probability of
trade if he rejects the seller’s offer under this deviation converges to 0 as δ → 1 (see footnote 14).
Hence, for high enough δ, buyer h should accept the price offer h− ε under σδ. For this deviation
not to be profitable for the seller for high δ, it must be that

(16) ṽs ≥
1

2
(h− ε) +

1

2
vs.
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Taking the limit ε→ 1, it follows that

ṽs ≥
1

2
h+

1

2
vs ≥

1

2
h+

1

2
ṽs,

which leads to ṽs ≥ h. This contradicts ṽs = l − v̄l < l ≤ h.
We conclude that v̄l = 0, and hence vs ≥ l − v̄l = l. �

The SPE with threat of delay from Section 5 satisfies R1(M ) for any M ≥ 1. R1(M ) is satisfied
for buyer h in subgames where play is isomorphic to prescribed behavior in the first round or in the
T stages of delay because the (discounted) probability of trade with buyer l in these subgames is 0,
and in this case the refinement has no bite. R1(M ) is satisfied for buyer l in any such subgame since
buyer l trades with discounted probability 0 in the subgame, and if the seller bargains with buyer
l unsuccessfully at the beginning of the subgame, then buyer l continues to trade with probability
0,32 while buyer h trades with positive probability in every subgame that starts at the beginning of
a round (the corresponding relative trading probabilities for buyer l in the statement of R1(M ) are
both 0). R1(M ) is satisfied in subgames in which MPE play is to be followed because the MPE
satisfies R1(M ).

Proof of Proposition 3. Fix M ≥ 1. For k ∈ {h, s}, let vk(δ) and v̄k(δ) be the infimum and
supremum payoff of player k, respectively, in all SPEs satisfying R1(M ) and R2 for the game with
discount factor δ ∈ (0, 1), and define vk = lim infδ→1 vk(δ) and v̄k = lim supδ→1 v̄k(δ). Corollary
1 implies that vs ≥ max(h/2, l).

We will use the following implications of R2. In every SPE σ for a discount factor δ that satisfies
R2 in which the seller approaches buyer l in the first round of the game with positive probability,
the seller’s expected payoff does not exceed l. Moreover, for such a σ, the seller’s expected payoff
at the beginning of round t + 1 following any history of t disagreements does not exceed l/δt. To
prove the first claim, let vs denote the seller’s payoff under an SPE σ with the properties above.
Since the seller approaches buyer l in the first round with positive probability under σ, the seller’s
expected payoff conditional on approaching l should also be vs. As no equilibrium agreement with
buyer l can yield a payoff greater than l for the seller, we have that vs ≤ ql + (1− q)δv′s, where q
denotes the conditional probability of an agreement with buyer l in the first round, and v′s denotes
the expected value of the seller’s payoff after an (possibly stochastic) equilibrium disagreement
with buyer l. As σ satisfies R2, we have that δv′s < vs. If q = 0, then vs = δv′s, a contradiction.
Hence, q > 0. Since vs ≤ ql + (1 − q)vs implies that q(l − vs) ≥ 0, we conclude that vs ≤ l.
The second claim follows inductively from the first and the observation that σ induces an SPE that
satisfies R2 in every subgame.

Suppose—as we prove below—that vh ≥ min(h/2, h − l). As the sum of the three players’
payoffs in the game with discount factor δ cannot exceed h, it must be that v̄s(δ) ≤ h − vh(δ).
Applying lim supδ→1 to the previous inequality, we get that v̄s ≤ h − vh, and hence v̄s ≤ h −
32It is important for this conclusion that a deviation by the seller to bargaining with buyer l in the first round triggers
the delay phase (as opposed to MPE play).
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min(h/2, h − l) = max(h/2, l). Similarly, we have that v̄h ≤ h − vs, and vs ≥ max(h/2, l)

leads to v̄h ≤ min(h/2, h − l). Since v̄s ≥ vs and v̄h ≥ vh, we conclude that vs = v̄s =

max(h/2, l) and vh = v̄h = min(h/2, h− l). Therefore, in every sequence of SPEs satisfying the
two refinements for δ → 1, the seller gets a limit payoff of max(h/2, l), and buyer h gets a limit
payoff of min(h/2, h − l), leaving buyer l with a limit payoff of 0. This is possible only if the
seller trades with buyer h with a limit discounted probability of 1. Thus, to complete the proof, we
need to show that vh ≥ min(h/2, h− l).

For every δ, at least one of the following conditions must hold: (1) vh(δ) is attained as the limit
of buyer h’s payoffs in a sequence of SPEs for discount factor δ that satisfy the two refinements, in
which the seller approaches buyer h with probability 1 in the first round of the game; (2) analogous
statement to condition (1) with “probability 1” replaced by “probability less than 1.” Moreover,
there exists a sequence of discount factors δ → 1 such that vh(δ) converges to vh as δ → 1, and
additionally condition (1) or condition (2) is uniformly satisfied for every δ in the sequence. We
prove that vh ≥ min(h/2, h−l) by considering these two possibilities: cases 1 and 2 below assume
the existence of sequences of δ satisfying conditions (1) and (2), respectively.
Case 1. For every δ in the sequence corresponding to this case, the payoff vh(δ) is the limit of buyer
h’s payoffs in a sequence of SPEs satisfying the two refinements in which the seller approaches
buyer h with probability 1 in the first round of the game. Then, standard bargaining arguments
imply that

(17) vh(δ) ≥
1

2
δvh(δ) +

1

2
(h− δv̄s(δ)).

Assume by way of contradiction that vh < min(h/2, h− l). Then, for sufficiently high δ in the
sequence, we have that h − δvh(δ) > l, so the payoff the seller can receive from having an offer
accepted by one of the buyers is bounded above by h − δvh(δ). Again, standard arguments lead
to33

(18) v̄s(δ) ≤
1

2
δv̄s(δ) +

1

2
(h− δvh(δ)).

If we group the terms v̄s(δ) in (18) to derive an upper bound on v̄s(δ) that depends on vh(δ),
and then substitute the bound in the right-hand side of (17), we obtain an inequality equivalent to
vh(δ) ≥ h/2. Since vh is the limit of vh(δ) for δ → 1 in the sequence, it follows that vh ≥ h/2 ≥
min(h/2, h− l), a contradiction.
Case 2. For every δ in the sequence corresponding to this case, there exists an SPE σδ satisfying the
two refinements in which the seller approaches buyer l with positive probability in the first round of
the game, and buyer h receives a payoff vh(δ) ∈ [vh(δ), vh(δ) + 1− δ). Then, limδ→1 vh(δ) = vh.

33We have that

v̄s(δ) ≤
1

2
δv̄s(δ) +

1

2
max(h− δvh(δ), l, δv̄s(δ)),

and the maximum in the expression above is achieved by the term h− δvh(δ). Indeed, we argued that h− δvh(δ) > l,
and it must also be that h− δvh(δ) > δv̄s(δ) because otherwise the displayed inequality leads to v̄s(δ) ≤ 0. However,
v̄s(δ) > 0 since the MPE for discount factor δ satisfies the two refinements and yields a positive payoff for the seller.
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Let vs(δ) denote the seller’s payoff under σδ. By the claim related to R2 from the preamble
of the proof, vs(δ) ≤ l. If h/2 > l, this yields a contradiction with Proposition 1. It follows
that Case 2 can arise only if l ≥ h/2, which we assume for the remainder of the proof. Since
lim infδ→1 vs(δ) ≥ l by Proposition 2, it follows that limδ→1 vs(δ) = l (for δ in the sequence).

Let xh(δ) and xl(δ) be the discounted equilibrium probability of trade with buyers h and l,
respectively, under σδ. We will show that xh(δ)→ 1 as δ → 1. If xh(δ)→ 1, then limδ→1 vs(δ) = l

implies that buyer h’s payoff under σδ converges to h − l as δ → 1. Hence, vh = h − l =

min(h/2, h− l).
We are left to prove that xh(δ) → 1 as δ → 1. To obtain a contradiction, suppose that xh(δ)

does not converge to 1 as δ → 1. Then, there exists a subsequence of δ’s where xh(δ) and xl(δ)
converge to limits xh(1) < 1 and xl(1), respectively, for δ → 1. We refer to this subsequence as
“the sequence” in what follows.

Assume first that xl(1) > 0. Since σδ satisfies R1(M ), if x′h(δ) and x′l(δ) denote the discounted
probabilities of trade with buyers h and l, respectively, following a disagreement with buyer h,
then x′l(δ) > 0 and

M
xh(δ)

xl(δ)
≥ x′h(δ)

x′l(δ)
≥ x′h(δ)

1− x′h(δ)
.

Letting M̃ = Mxh(1)/xl(1), this leads to lim supδ→1 x
′
h(δ) ≤ M̃/(M̃+1) := q < 1. Since vs ≥ l,

buyer h’s payoff in any agreement with the seller is asymptotically bounded above by h− l. Hence,
buyer h’s asymptotic payoff under σδ in the subgame following any first-round rejection by buyer
h does not exceed q(h− l).

However, in this case the seller would have a profitable deviation from σδ for sufficiently high
δ in the sequence: she can approach buyer h, offer slightly more than q(h − l) to buyer h so that
the buyer accepts the offer under σδ, and reject the buyer’s offer (following σδ thereafter). This
deviation yields an asymptotic seller payoff of at least 1/2 × (h − q(h − l)) + 1/2 × l, which is
greater than l, contradicting the conclusion that limδ→1 vs(δ) = l.

Assume now that xl(1) = 0. We will show that in this case, xh(1) < 1 implies that limδ→1 vs(δ) <

l, which again contradicts limδ→1 vs(δ) = l.
Fix a finite positive integer T . To develop an upper bound on the seller’s payoff under σδ for δ

in the sequence, we classify the seller’s trades as follows:

(1) trades with buyer h after histories in which the seller approached buyer h a total of τ ≤ T

times, the seller was the proposer each of the τ times, and the buyer accepted the seller’s
τ -th offer (these histories may also include prior disagreements with buyer l);

(2) trades with buyer h or l in subgames following histories in which the seller approached
buyer h at least τ ≤ T times, and the seller was the proposer the first τ − 1 times, while
buyer h was the proposer the τ -th time (there may be disagreements with buyers h and l
after the τ -th approach to buyer h before trade occurs);

(3) trades with buyer h following histories in which the seller approached buyer h for a total
of τ ≥ T + 1 times, and the seller was the proposer the first T times;
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(4) trades with buyer l that are not of type (2).

For every non-terminal history of play ω, let t(ω) denote the calendar time at which nature or a
player takes the next action after history ω. Let Ωs

τ denote the set histories that arise with positive
probability under σδ in which the seller approached buyer h for a total of τ times, and the seller
was selected as the proposer every time she approached buyer h, ending with the τ -th selection of
the seller as proposer. Define the set of histories Ωh

τ analogously except that the τ -th time the seller
approaches buyer h, the buyer is selected as proposer for the first time at the end of the history.34

Finally, let µ be the probability distribution over histories generated by σδ.
For every ω ∈ Ωs

τ , we argue that the seller’s expected payoff under σδ in the subgame starting at
date t(ω) after observing the first t(ω) − 1 rounds of history ω does not exceed l/δτ . If the seller
never approaches buyer l during ω, then t(ω) = τ . Since the seller approaches buyer l with positive
probability in the first round of the game under σδ, the claim related to R2 from the preamble of the
proof implies that the seller’s expected payoff in the subgame starting at date t(ω) after observing
the first t(ω)− 1 rounds of ω does not exceed l/δt(ω)−1, which is smaller l/δτ . If instead the seller
approaches buyer l during ω, let tl(ω) denote the last date at which this happens. Then, the seller
approaches buyer h at dates tl(ω) + 1, . . . , t(ω) under ω. By definition, ω ∈ Ωs

τ implies that the
seller approaches buyer h a total of τ times along the history ω, so it must be that t(ω)− tl(ω) ≤ τ .
Another consequence of ω ∈ Ωs

τ is that the seller approaches buyer l with positive probability at
date tl(ω) in the subgame following the truncation of history ω up to that date. As in the preceding
case, R2 implies that the seller’s expected payoff under σδ at date t(ω) after observing rounds
tl(ω), . . . , t(ω) − 1 of history ω in this subgame—i.e., the seller’s payoff after observing the first
t(ω) − 1 rounds of history ω—does not exceed l/δt(ω)−tl(ω), which is in turn bounded above by
l/δτ .

An analogous argument shows that for any ω ∈ Ωh
τ , the seller’s expected payoff in every sub-

game starting at date t(ω) + 1 after history ω and any follow-up play at date t(ω) does not exceed
l/δτ+1.

In the next four paragraphs, we develop bounds on the seller’s payoffs under σδ deriving from
each of the four types of trades enumerated above. Let ε = 1/2T+1.

Consider a trade of type (1) at time t(ω) following a history ω ∈ Ωs
τ for τ ≤ T . Since σδ and

the equilibria it induces in any subgame satisfy R1(M ), Proposition 2 implies that for sufficiently
high δ, the seller’s expected payoff under σδ exceeds l − ε in any subgame. Let θ(ω, p) denote the
probability that buyer h accepts an offer of price p from the seller at date t(ω) after the history ω.
Offering price p and rejecting buyer h’s offer in round t(ω) should not be a profitable deviation
for the seller. Since as argued above, the seller’s expected payoff under σδ at the beginning of
round t(ω) is at most l/δτ , and the seller obtains a continuation payoff of at least l − ε after a

34Given the maintained assumption that behavior strategies have finite support after every history, the sets Ωsτ and Ωhτ
are countable, but not necessarily finite because they may include histories in which the seller approaches buyer l an
arbitrary number of times.
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disagreement with buyer h, it must be that

θ(ω, p)p+ (1− θ(ω, p))δ(l − ε) ≤ l/δτ .

Since τ ≤ T , if δ is sufficiently high, this leads to

θ(ω, p)p ≤ (1/δτ − δ)l + (1− θ(ω, p))δε+ δθ(ω, p)l ≤ θ(ω, p)l + 2ε.

Every trade of type (2) takes place in a subgame induced by a history ω ∈ Ωh
τ (not necessarily in

the first round of the subgame) for τ ≤ T . Let xωh(δ) and xωl (δ) denote the discounted probabilities
of trade with the two buyers in this subgame (relative to the beginning of the subgame). In the
subgame, the sum of expected payoffs of the three players under σδ is xωh(δ)h+xωl (δ)l. Since buyer
h is the proposer in the first round of the subgame, and we argued above via R2 that the seller’s
continuation payoff under σδ at date t(ω) + 1 after history ω and any rejection by the seller at date
t(ω) does not exceed l/δτ+1,35 buyer h’s payoff in the subgame is at least h−δl/δτ+1. It follows that
the seller’s expected payoff in the subgame is at most xωh(δ)h+xωl (δ)l−(h−l/δτ ). This expression
is bounded above by xωh(δ)l/δτ + xωl (δ)l, which is smaller than or equal to xωh(δ)l/δT + xωl (δ)l

because τ ≤ T . Note that the subgame arises under σδ with probability µ(ω).
We will argue that trades of type (3) have probability at most 1/2T . The probability of such

trades does not exceed the probability of reaching a subgame in Ωs
T under σδ, which is µ(Ωs

T )

in notation introduced earlier. Consider a history ω ∈ Ωs
T−1. Let Ωs

T (ω) denote the subset of
histories in Ωs

T that emerge with positive probability under σδ following ω. For ω′ ∈ Ωs
T (ω), let ω′−

denote the truncation of history ω′ omitting its last component, in which nature selects the seller
to make an offer (ω′− ends with the seller’s T -th approach of buyer h at date t(ω′)). Since the
seller becomes the proposer at t(ω′) following history ω′− with probability 1/2, the probability of
reaching ω′ ∈ Ωs

T (ω) from ω under σδ is µ(ω′−|ω)/2. Then,

µ(Ωs
T (ω)) =

∑
ω′∈ΩsT (ω)

1

2
µ(ω′−|ω)µ(ω) ≤ 1

2
µ(ω),

where the inequality is a consequence of
∑

ω′∈ΩsT (ω) µ(ω′−|ω) ≤ 1. Then,

µ(Ωs
T ) =

∑
ω∈ΩsT−1

µ(Ωs
T (ω)) ≤

∑
ω∈ΩsT−1

1

2
µ(ω) =

1

2
µ(Ωs

T−1).

It follows that µ(Ωs
T ) ≤ 1/2T . Therefore, the probability of a trade of type (3) is at most 1/2T .

The seller obtains a price of at most h from buyer h in each trade of this type.
Finally, the discounted probability of trades of type (4) can be computed as

xl(δ)−
T∑
τ=1

∑
ω∈Ωhτ

µ(ω)δt(ω)−1xωl (δ).

The seller obtains a price of at most l from buyer l in each trade of this type.

35 Implications of R2 for disagreements off the equilibrium path are essential in this step.
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Putting together the bounds on seller payoffs and trading probabilities for each of the four types
of trades implies the following bound on the seller’s expected payoff vs(δ) under σδ for high
enough δ:

vs(δ) ≤
T∑
τ=1

∑
ω∈Ωsτ

∑
p∈P(ω)

δt(ω)−1µ(ω, p) (θ(ω, p)l + 2ε) +

T∑
τ=1

∑
ω∈Ωhτ

δt(ω)−1µ(ω)

(
xωh(δ)

l

δT
+ xωl (δ)l

)
+

1

2T
h+

(
xl(δ)−

T∑
τ=1

∑
ω∈Ωhτ

δt(ω)−1µ(ω)xωl (δ)
)
l,

where P(ω) denotes the finite set of prices the seller offers with positive probability at date t(ω)

after history ω ∈ Ωs
τ , and (ω, p) denotes the history formed by ω followed up by the seller offering

price p.36

Using the formulae for the discounted probabilities x1
h(δ) and x2

h(δ) of type (1) and type (2)
trades with buyer h, respectively,

x1
h(δ) =

T∑
τ=1

∑
ω∈Ωsτ

∑
p∈P(ω)

δt(ω)−1µ(ω, p)θ(ω, p)

x2
h(δ) =

T∑
τ=1

∑
ω∈Ωhτ

δt(ω)−1µ(ω)xωh(δ),

and canceling out the terms involving xωl (δ), the bound on seller payoffs becomes

vs(δ) ≤ x1
h(δ)l + 2ε

T∑
τ=1

∑
ω∈Ωsτ

∑
p∈P(ω)

δt(ω)−1µ(ω, p) + x2
h(δ)

l

δT
+

1

2T
h+ xl(δ)l.

For τ ≥ 1, we have that∑
ω∈Ωsτ

∑
p∈P(ω)

δt(ω)−1µ(ω, p) ≤
∑
ω∈Ωsτ

∑
p∈P(ω)

µ(ω, p) =
∑
ω∈Ωsτ

µ(ω) = µ(Ωs
τ ) ≤ 1.

Since ε = 1/2T+1 and x1
h(δ) + x2

h(δ)/δ
T ≤ xh(δ)/δ

T , it follows that

vs(δ) ≤
xh(δ)

δT
l +

T

2T
+

1

2T
h+ xl(δ)l.

Taking the limit δ → 1 (for δ in the sequence) in the inequality above, and noting that limδ→1 xh(δ)/δ
T =

xh(1) and limδ→1 xl(δ) = 0, we obtain

lim
δ→1

vs(δ) ≤ xh(1)l +
T

2T
+

1

2T
h.

As T can be chosen to be arbitrarily large in the arguments above and xh(1) < 1, it follows that
limδ→1 vs(δ) < l, a contradiction with limδ→1 vs(δ) = l, which completes the proof. �

36We suppress the dependence of the sets Ωsτ , Ωhτ and P(ω) and of the probabilities µ and θ on δ (and σδ).
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SPEs that satisfy R2, but not R1(M ) for any M with asymptotic profits in (l, h). Assume that
l > h/2 and fix δ > 2(1− l/h), so that in the MPE the seller approaches both buyers with positive
probability. Consider an SPE σ under which buyer h has an expected payoff vh ≤ v∗h. We can
construct an SPE in which the seller trades with buyer h in the first round and expects payoff
vs := (h − δvh)/(2 − δ) as follows. In the first round, the seller approaches buyer h, and trade
is supposed to happen: the seller offers δvh to buyer h, and buyer h accepts only offers of δvh or
higher; buyer h offers δvs to the seller, and the seller accepts only offers of δvs or higher. If buyer h
rejects any first-round offer from the seller, then play proceeds according to σ in the second round.
If the seller rejects any offer from buyer h in the first round, then play restarts using the first-round
strategies specified above. If the seller deviates to bargaining with buyer l in the first round, then
play follows MPE strategies.

The definition of vs implies that the seller’s expected payoff from the first-round agreement
under the constructed strategies is vs. Note that vh ≤ v∗h implies that vs = (h − δvh)/(2 − δ) ≥
(h−δv∗h)/(2−δ) = v∗s . It follows that the seller does not have an incentive to deviate to bargaining
with buyer l in subgames in which play is isomorphic to the first round. We can easily verify the
other incentives to conclude that the constructed strategy profile constitutes an SPE.

Since in the case under consideration limδ→1 v
∗
h = h − l, this construction demonstrates that

the availability of a family of SPEs for discount factors δ ∈ (0, 1) that yield an asymptotic payoff
ṽh < h − l for buyer h as δ → 1 implies the existence of a family of SPEs in which the seller
efficiently trades with buyer h in the first round and holds down buyer h to an asymptotic payoff
of ṽh to effectively obtain the “take-it-or-leave-it” asymptotic profit h− ṽh.

We now specialize the construction above to obtain SPEs that satisfy R2 and yield prices in the
interval (l, h) for high δ. Fix q ∈ (0, 1) and let σq be the SPE that differs from the MPE in that the
seller approaches buyer h with probability q, and buyer l with probability 1 − q in the first round,
but is identical to the MPE in all other subgames. Buyer h’s asymptotic payoff under σq is q(h− l),
which is smaller than h − l. The construction above then delivers an SPE σ̃q in which rejections
by buyer h are punished by continuation play according to σq, and the seller obtains an asymptotic
profit of h− q(h− l). As we vary q in the interval (0, 1), asymptotic profits under this construction
cover the interval (l, h).

We can easily verify that the SPE σ̃q corresponding to high discount factors δ satisfies R2. For
high δ, the SPE satisfies R2 in subgames where play is isomorphic to first-round strategies because
the seller’s equilibrium payoff converges to h − q(h − l) as δ → 1, and the seller’s payoff after a
disagreement is either unchanged or becomes v∗s (we have that h−q(h−l) > l = limδ→1 v

∗
s ). In all

other subgames, the seller gets payoff v∗s , and continues to get the same payoff after a disagreement.
The SPE σ̃q does not satisfy R1(M ) for any given M ≥ 1 when δ is close to 1 because under

σ̃q the relative trading probability for buyer h in a subgame following a rejection by buyer h in the
first round is q/(1 − q), but if there is another disagreement with buyer h in the second round, it
changes to π∗h/π

∗
l , which diverges to∞ for δ → 1.
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Asymptotic lower bound on SPE seller payoffs under random matching. Fix a discount factor δ,
and let v̄s denote the supremum of seller payoffs and vk the infimum of buyer k ∈ {h, l} payoffs
in SPEs for the discount factor δ. Arguments by now familiar lead to the following inequalities:

vs ≥
1

4
(h− δv̄h) +

1

4
(l − δv̄l) +

1

2
δvs(19)

v̄l ≤
1

4
(l − δvs) +

3

4
δv̄l(20)

v̄h ≤
1

4
(h− δvs) +

1

2
δv̄h +

1

4

(
δ

h

2− δ
− (l − δv̄l)

)
.(21)

The last term on the right-hand side of (21) represents an upper bound on buyer h’s payoff in the
event that the seller is matched to buyer l and is selected to make the offer. When h/(2− δ) ≥ l,37

the maximum total surplus that can be created in any subgame is achieved by trading only when
the seller is matched with buyer h, and has an expected discounted value of h/(2 − δ). Then,
conditional on the seller being matched with buyer l and being selected to make the offer, the
maximum total surplus that can be generated by trading under the random matching protocol is the
amount h/(2 − δ) obtained with one round of delay: δh/(2 − δ). Since the seller’s payoff in this
subgame is at least l−δv̄l, the highest payoff buyer h can expect in this event is δh/(2−δ)−(l−δv̄l).

Deriving an upper bound on v̄l as a function of vs from (20), which we then use to obtain an
upper bound on v̄h as a function of vs via (21), and then substituting both of these bounds in (19),
we get that

vs ≥
(4− 3δ)h+ (4− 2δ)l

4(2− δ)2
,

whenever h/(2− δ) ≥ l, or equivalently δ ≥ 2l/(h+ l). We conclude that if h > l, then

lim inf
δ→1

vs ≥
h

4
+
l

2
.

Applying lim supδ→1 to (20) and (21), we obtain that

lim sup
δ→1

vl ≤
l

2
− h

4
& lim sup

δ→1
vh ≤

3h

4
− l

2
.

Proofs of claims about SPEs favorable to buyers and unfavorable to the seller. Recall that this
equilibrium construction presumes that h > l > h/2. Solving for (vs, v̄h) in the linear system of
equations formed by (8) and (13), we obtain that

vs =
2(1− δ)h+ (2− δ)(l − δv̄l)

(2− δ)(4− 3δ)
(22)

v̄h =
h− l + δv̄l

4− 3δ
.(23)

37This argument works for high δ when h > l. For h = l, Rubinstein and Wolinsky’s (1990) SPE uniqueness result
implies a tighter lower bound of h on the seller’s asymptotic profits.
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Deriving θ and θ′ from (10) and (11), respectively, and substituting the expressions for vs, v̄s, v̄h, vh,
we get

θ =
h− δv̄h − δvs
h− δvh − δvs

=
2(1− δ)(4− 3δ)(8− 8δ + δ2)h

∆
(24)

θ′ =
h− δvh − δv̄s
h− δvh − δvs

=
4(1− δ)(4− 3δ)(2− δ)2h

∆
,(25)

where ∆ = (64− 176δ + 180δ2 − 78δ3 + 11δ4)h− δ(2− δ)(8− 8δ + δ2)(l − δv̄l).
Note that (9) is equivalent to

(26) 4v̄l =
l − δv̄l − δvs

1− δ
− θ + θ′

1− δ
δv̄l,

and l − δv̄l − δvs simplifies to

l − δv̄l − δvs =
2(1− δ)((4− 2δ)(l − δv̄l)− δh)

(2− δ)(4− 3δ)
.

Multiplying both sides of (26) by ∆/2, we obtain a quadratic equation of the form a(δ)v̄2
l +b(δ)v̄l+

c(δ) = 0, where a(δ), b(δ) and c(δ) are continuous functions of δ with a(1) = 4, b(1) = 8h− 6l,
and c(1) = (h− l)(h− 2l). The quadratic a(1)v̄2

l + b(1)v̄l + c(1) has positive leading coefficient
and changes sign between v̄l = 0 ((h− l)(h− 2l) < 0) and v̄l = h− l ((13h− 12l)(h− l) > 0),
and hence its largest root

v̄l(1) =
−4h+ 3l +

√
12h2 − 12hl + l2

4

belongs to the interval (0, h− l). It follows that for sufficiently high δ, equation (26) has a solution
v̄l ∈ (0, h − l) that converges to v̄l(1) as δ → 1. Then, this value of v̄l along with the values of
vs, v̄h, θ and θ′ computed by substituting v̄l in (22)-(25) solve the system of equations (8)-(13) for
sufficiently high δ. It is easy to check that for δ close to 1, we have that v̄l, vs, v̄h > 0. As ∆

converges to h− l + v̄l(1) for δ → 1, it follows that θ and θ′ converge to 0 from above for δ → 1,
so θ, θ′ ∈ (0, 1) for δ close to 1, as desired.

To confirm that the seller receives payoff vs in state l̄ under the constructed strategies, note that
her payoff vls in this state must solve the following linear equation:

vls =
1

4
(θ(h− δvh) + (1− θ)δvls) +

1

4
(θ′δvs + (1− θ′)δvls) +

1

4
(l − δv̄l) +

1

4
δvs.

Equations (10) and (13) imply that vls = vs is the unique solution.
Similarly, the seller’s payoff vhs in state h̄ solves the linear equation

vhs =
1

4
(h− δv̄h) +

1

4
δvs +

1

4
δ
l − δv̄l
δ

+
1

4
δvhs ,

which has the unique solution vhs = vs due to (13).
When the solution (vs, v̄h, v̄l, θ, θ

′) is “in range,” we have that v̄l,∆ > 0, so (24) implies that
h− δv̄h − δvs > 0, while (26) implies that l − δv̄l − δvs > 0.
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Clearly, for high δ, we have that h − v′s > h − δv̄s because v′s and v̄s converge to l − v̄l(1) < l

and h > l as δ → 1, respectively, so v′s < l < δv̄s.
We are left to argue that v′s > δvs. Equation (13) leads to

vs =
1

2− δ

(
1

2
(h− δv̄h) +

1

2
(l − δv̄l)

)
.

As l − δv̄l > δvs, we have that (l − δv̄l)/δ > vs. Then, (7) implies that v′s > l − δv̄l, so v′s > δvs.

Proof of Proposition 4. Define vs and v̄l as in the proof of Proposition 2 for SPEs in the bargaining
game with the random matching protocol that satisfy R2’ (instead of R1(M )). Note that like
R1(M ), R2’ is a recursive property. For every ε > 0, a strategy available to the seller is to reject
all offers, demand price h from buyer h and propose a price of l − v̄l − ε to buyer l in all rounds.
Since buyer l should accept such offers for sufficiently high δ in SPEs satisfying R2’, this strategy
generates an asymptotic payoff of at least l − v̄l − ε for the seller. We conclude that vs ≥ l − v̄l.

Consider a set of SPEs σδ for a sequence of δ going to 1 that satisfy R2’ in which buyer l’s payoff
converges to v̄l as δ → 1, and the seller’s payoff converges to some ṽs. If v̄l > 0, then analogous
arguments to those for Proposition 2 establish that the discounted probability with which the seller
trades with buyer l under σδ converges to 1 as δ → 1. It follows that ṽs + v̄l = l and consequently
that ṽs ≤ vs.

In addition, the probability of trade with buyer h under σδ converges to 0 as δ → 1. Hence for
any ε > 0, buyer h’s expected payoff under σδ is lower than εh for sufficiently high δ. Then, the
fact that σδ satisfies R2’ for buyer h implies that following any disagreement with buyer h, buyer
h’s continuation payoff is smaller than εh. Hence, for high enough δ, buyer h should accept the
price offer h− εh under σδ.

In the first round, the seller can offer a price of h(1−ε) when matched with buyer h and selected
to propose, make an unreasonable demand (e.g., price h) when matched with buyer l and selected
to propose, and reject any first-round offer from either buyer, and then follow σδ from the second
round on. Given that in equilibrium buyer h should accept the seller’s price offer h(1− ε) for high
enough δ, for this strategy not to be a profitable deviation from σδ for the seller, it must be that

ṽs ≥
1

4
h(1− ε) +

3

4
vs.

As in the proof of Proposition 2, this implies that ṽs ≥ h, generating a contradiction. We conclude
that v̄l = 0 and vs ≥ l. �

Proof of Proposition 5. If l < h/2, then every SPE is outcome equivalent to the MPE (see Section
7), and the result clearly holds. For the remainder of the proof, we assume that l ≥ h/2.

For k ∈ {h, s}, let vk(δ) and v̄k(δ) be the infimum and supremum payoff of player k, respec-
tively, in all SPEs satisfying R2’ and R3 for the game with random matching for discount factor
δ ∈ (0, 1), and define vk = lim infδ→1 vk(δ) and v̄k = lim supδ→1 v̄k(δ). By Proposition 4, we
have that that vs ≥ l. Then, the result follows if we show that vh ≥ h− l.
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For every δ, at least one of the following conditions must hold: (1) vh(δ) is attained as the limit
of buyer h’s payoffs in a sequence of SPEs for discount factor δ that satisfy the two refinements, in
which the seller trades with buyer l with probability 0 in the first round of the game; (2) analogous
statement to condition (1) with “probability 0” replaced by “positive probability.” Moreover, there
exists a sequence of discount factors δ → 1 such that vh(δ) converges to vh as δ → 1, and
additionally condition (1) or condition (2) is uniformly satisfied for every δ in the sequence. We
prove that vh ≥ h − l by considering these two possibilities: cases 1 and 2 below assume the
existence of sequences of δ satisfying conditions (1) and (2), respectively.
Case 1. For every δ in the sequence corresponding to this case, the payoff vh(δ) is the limit of
buyer h’s payoffs in a sequence of SPEs satisfying the two refinements in which the seller does
not trade when matched with buyer l in the first round of the game. Since buyer h can deviate
from his first-round strategy to making an offer arbitrarily close to δv̄s(δ), which the seller should
accept in equilibrium, and rejecting any offer from the seller, while following equilibrium play
in the probability 3/4 event in which he rejects the seller’s offer or the seller has an equilibrium
disagreement with buyer l, we have that

(27) vh(δ) ≥
1

4
(h− δv̄s(δ)) +

3

4
δvh(δ).

We also have that

v̄s(δ) ≤
1

4
max(h− δvh(δ), δv̄s(δ)) +

1

4
max(l, δv̄s(δ)) +

1

2
δv̄s(δ).

Since the seller’s payoff in the MPE for high δ is l/δ when l ≥ h/2, and the MPE satisfies both
refinements, we have that v̄s(δ) ≥ l/δ, which means that max(l, δv̄s(δ)) = δv̄s(δ). If δv̄s(δ) >
h− δvh(δ) then the inequality displayed above implies that v̄s(δ) ≤ 0, contradicting v̄s(δ) ≥ l/δ.
It follows that max(h− δvh(δ), δv̄s(δ)) = h− δvh(δ), which leads to

(28) v̄s(δ) ≤
1

4
(h− δvh(δ)) +

3

4
δv̄s(δ).

If we group the terms v̄s(δ) in (28) to derive an upper bound on v̄s(δ) that depends on vh(δ),
and then substitute the bound in the right-hand side of (27), we obtain an inequality equivalent to
vh(δ) ≥ h/(4 − 2δ). Since vh is the limit of vh(δ) for δ → 1 in the sequence, it follows that
vh ≥ h/2 ≥ h− l.
Case 2. For every δ in the sequence corresponding to this case, there exists an SPE σδ satisfying the
two refinements in which the seller trades with buyer l with positive probability in the first round
of the game, and buyer h receives a payoff vh(δ) ∈ [vh(δ), vh(δ) + 1 − δ). Then, limδ→1 vh(δ) =

vh. Let vs(δ), vhs (δ), vls(δ) denote the seller’s expected payoffs under σδ at the beginning of the
game and conditional on being matched to buyers h and l in the first round, respectively, and
r(δ) the (unconditional) probability that the seller trades with buyer l in the first round under σδ.
Consider a subsequence of δ converging to 1 for which these variables converge to limits denoted
by vs(1), vhs (1), vls(1) and r(1), respectively.

Since lim infδ→1 vs(δ) ≥ l by Proposition 4, it follows that vs(1) ≥ l.
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Let V ′s (δ) denote the set of expected payoffs the seller can obtain in the second round under
σδ following any first-round disagreement with buyer l. Since σδ satisfies R2’, we have that
supV ′s (δ) ≤ vs(δ). The fact that σδ satisfies R3 implies that δvs(δ) ≤ vls(δ). Hence,

vls(δ) ≤ r(δ)l + (1− r(δ))δ supV ′s (δ) ≤ r(δ)l + (1− r(δ))δvs(δ) ≤ r(δ)l + (1− r(δ))vls(δ),

or equivalently r(δ)(l−vls(δ)) ≥ 0. As r(δ) > 0, it must be that vls(δ) ≤ l. Therefore, vs(δ) ≤ l/δ.
Then, vs(1) ≥ l leads to vs(1) = l. Since σδ satisfies R3 for every δ in the sequence, we have that
vhs (1), vls(1) ≥ l, which along with l = vs(1) = (vhs (1) + vls(1))/2 implies that vhs (1) = vls(1) = l.

Suppose now that r(1) > 0, and fix ε > 0. Proposition 4 implies that for sufficiently high δ,
the seller’s payoff in every subgame under σδ is bounded below by l − ε, so buyer h’s payoff in
every subgame is bounded above by h − l + ε. Hence, it is not optimal for the seller to accept
prices below δ(l − ε) or offer a price above h− δ(h− l + ε) to buyer h in equilibrium. It follows
that any transaction with buyer h takes place at an asymptotic price not lower than l, implying that
v̄h < (1− r(1))(h− l).

Since σδ satisfies R2’, for sufficiently high δ, buyer h’s payoff under σδ following any rejection
of the seller’s offer does not exceed (1 − r(1))(h − l) + ε. It follows that buyer h should accept
a payoff offer of (1 − r(1))(h − l) + ε under σδ. However, in this case, for high δ, the seller
would have a profitable deviation whereby in the first round she offers payoff (1− r(1))(h− l) + ε

to buyer h, demands price h from buyer l, and rejects all offers from either buyer, and from the
second round on follows σδ. This deviation yields an asymptotic payoff of at least 1/4× (h− (1−
r(1))(h− l)− ε) + 3/4× l for the seller, which is greater than the seller’s limit payoff vs(1) = l

for small enough ε.
Suppose insted that r(1) = 0. Since σδ satisfies R2’ and limδ→1 vs(δ) = l, for any ε > 0 there

exists δ such that the seller’s payoff in a subgame following a disagreement with buyer h is smaller
than l + ε for δ > δ in the sequence. Then, for δ > δ, the seller should accept an offer of δ(l + ε)

from buyer h, so buyer h’s equilibrium payoff under σδ satisfies

vh(δ) ≥
1

4
(h− δ(l + ε)) +

(
3

4
− r(δ)

)
δvh(δ).

Taking the limit δ → 1 along the sequence, we obtain that

vh ≥
1

4
(h− (l + ε)) +

3

4
vh,

which is equivalent to vh ≥ h − (l + ε). As ε is an arbitrary positive number, we conclude that
vh ≥ h− l. �
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