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Abstract

A collective choice problem specifies a finite set of alternatives from which a group of

expected utility maximizers must choose. We associate a collective pseudo market with

every collective choice problem and establish the existence and efficiency of pseudo Lindahl

equilibrium (PLE) allocations. We also associate a cooperative bargaining problem with

every collective choice problem and define a set-valued solution concept, the ω-weighted

Nash bargaining set where ω is a vector of welfare weights. We provide axioms that

characterize the ω-weighted Nash bargaining set. Our main result shows that ω-weighted

Nash bargaining set payoffs are also the PLE payoffs of the corresponding collective pseudo

market with the same utility functions and incomes ω. We define a pseudo core for collective

pseudo markets and show that pseudo Lindahl equilibria are in the pseudo core. We

characterize the set of PLE outcomes of discrete allocation problems and show that they

contain the set of pseudo Walrasian equilibrium outcomes.

† We are grateful to Qiyuan Zheng for pointing out that the restriction to equal endowments in an
earlier version of this paper was unnecessary.



1. Introduction

An organization must choose among several alternatives that affect the welfare of

its members. The choice must be equitable and efficient. Monetary transfers among its

members are not feasible. Examples of this type of situation include a community’s decision

on how to allocate infrastructure investments among neighborhoods, the allocation of office

space among groups within an organization, or the assignment of college roommates.

In this paper, we analyze a pseudo-market solution to this problem. Each group

member is given a budget of fiat money, that is, money that has no value beyond the

confines of this specific market, and confronts a price for each alternative. As in standard

consumer theory, members choose an alternative that maximizes their utility subject to the

budget constraint. The organization acts as an auctioneer and implements an alternative

that maximizes revenue. We allow choices to be stochastic; that is, agents choose lotteries

over social outcomes.

In a standard public goods setting (Foley, 1969), individuals contribute tangible re-

sources to the public good and, by varying these contributions, can transfer resources

among each other. In our setting, agents cannot be asked to contribute or transfer tangi-

ble resources. Hylland and Zeckhauser (1979) introduced pseudo markets to study efficient

allocations of indivisible private goods when real money transfers are not feasible. We ap-

ply their approach to collective choice problems and, therefore, refer to our mechanism

as a collective pseudo market. A collective pseudo market treats each social outcome as

a collection of personalized goods, one for each agent, and agents behave like consumers

in a competitive economy. Thus, collective pseudo market equilibria resemble the Lindahl

equilibria (Foley, 1969) of the public goods literature. Therefore, we refer to them as

pseudo Lindahl equilibria (PLE).

As an example, consider an organization that must allocate office space to its members.

A member’s utility depends not only on her own office but also on who occupies nearby

offices. Thus, utilities depend on the office allocation. The organization must choose

among several plans. In the collective pseudo market, every member, i, has ωi units of

fiat money1 and faces price pji for plan j; she must choose an optimal lottery over plans

1 We normalize the fiat money endowments so that
∑

i
ωi = 1.
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subject to her budget constraint. In equilibrium, the organization chooses a lottery that

maximizes revenue, and that choice must coincide with each member’s optimal choice.

The organization’s decision problem can also be described as an n-person bargaining

problem. A bargaining problem takes as primitive the set of attainable utility profiles.

Thus, we map the organization’s decision problem into a bargaining problem by identifying

each lottery over outcomes with the corresponding vector of members’ utilities. We define

and characterize a set-valued and weighted version of the Nash bargaining solution for

n-person bargaining problems called the weighted-Nash bargaining set (wNBSet).2

The simplest bargaining problem is one of pure conflict where a single prize must be

allocated via a lottery, and the utility of each member is equal to the probability with

which she receives the prize. In this situation, the wNBSet contains a unique payoff vector

that assigns the prize to agent i with a probability equal to i’s bargaining weight ωi. We

interpret the pure-conflict case as a benchmark that reveals the organization’s attitude

to equity among its members. If every agent has the same bargaining weight, then the

organization treats each agent equally; other weights reflect the priority of some members

over others. For example, if the agents represent neighborhoods of a city, the bargaining

weight might be proportional to the neighborhood’s population. For bargaining games

that are not of the pure-conflict form, the wNBSet specifies all payoff vectors that can be

reconciled with the organization’s normative judgment derived from the benchmark case.

Our main result (Theorem 1) relates pseudo Lindahl equilibria to the wNBSet. It

shows that the set of equilibrium payoff vectors of a collective pseudo market with fiat

money endowments (ωi)
n
i=1 is the same as the wNBSet of the corresponding bargaining

problem with weights (ωi)
n
i=1. By relating pseudo Lindahl equilibria to wNBSet payoff vec-

tors, Theorem 1 clarifies the normative judgment implied by the fiat money endowments:

each person’s share of the budget reflects the probability that they would be awarded the

prize in a pure conflict situation.

We provide axiomatic foundations for the wNBSet in Theorem 3. It is similar to the

characterization of the Nash bargaining solution, except that we allow the solution to be

set-valued. As in Nash’s theorem (Nash, 1950), the substantive axioms are efficiency and

2 The wNBSet is a multivalued solution concept even for a fixed set of weights. We normalize the
bargaining weights ω so that ωi is between zero and one and

∑
i
ωi = 1.
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a version of independence of irrelevant alternatives (IIA). Our notion of IIA, which we call

Consistency, requires that x is a solution to the bargaining problem B if it is a solution to

a bargaining problem A that dominates B in the weak set order. The bargaining problem

A dominates B in the weak set order if for every utility profile y ∈ B there is a utility

profile x ∈ A such that y ≤ x, and conversely, for every utility profile x ∈ A there is a

utility profile y ∈ B with y ≤ x.

1.1 A Three Person Example

Consider an organization with three members who have equal bargaining weights,

given by the vector σ = (1/3, 1/3, 1/3). The symmetric Nash bargaining set — i.e., the

weighted Nash bargaining set with weights σ — for a bargaining problem B ⊂ IR3 consists

of all utility profiles x ∈ B that are the Nash bargaining solution of some set A that

dominates B in the weak set order.3

Suppose a single prize can be awarded to one of the members, and that each member’s

utility is 1 when receiving the prize and 0 otherwise. The unit simplex

∆ := {x ∈ IR3
+ |x1 + x2 + x3 ≤ 1}

describes this situation. The Nash bargaining solution of ∆ is σ, which is also the unique

element of the symmetric Nash Bargaining set. This uniqueness holds because if a set B

dominates ∆ in the weak set order, then the Nash bargaining solution of B is in ∆ if and

only if B = ∆.

For any a = (a1, a2, a3) and d = (d1, d2, d3) such that ai > 0, di ≥ 0 for all i, we let

a�∆ + d denote the simplex B such that

B = {y | for some x ∈ ∆, yi = aixi + di for i = 1, 2, 3}

Because our bargaining solution is invariant under affine transformations of utilities, the

unique solution of a�∆ + d is a/3 + d.

3 Recall that for bargaining problem B with disagreement point d, the Nash bargaining solution is the

unique maximizer of f(x) =
∑3

i=1
log(xi − di) over x ∈ B.
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(1, 0, 1
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(0, 1, 1)

B

Figure 1

Next, suppose that the organization must choose between two new locations for its

office space. The status quo yields the utility profile us = (0, 0, 0); location r yields

ur = (1, 0, 1/2); and location l yields ul = (0, 1, 1). The corresponding bargaining problem,

B, is the convex hull of us, ur and ul, as indicated in Figure 1.

u1

u2

u3

(3−
√

3, 0, 0)

(0,
√

3, 0)

(0, 0, 3+
√

3
2 )

â/3

(0, 0, 0)

Figure 2

Figure 2 depicts the simplex Â that dominates the bargaining problem B. The sim-

plex Â has the disagreement point (0, 0, 0) and the vertices (3 −
√

3, 0, 0), (0,
√

3, 0), and

(0, 0, 3+
√

3
2 ). As Figure 2 illustrates, every payoff vector in B is dominated by some payoff

vector in Â, and every payoff vector in Â dominates some payoff vector in B. Therefore,

Â dominates B in the weak set order.

The bargaining problem Â has â/3 as the unique element of the symmetric Nash

bargaining set, where â = (3−
√

3,
√

3, 3+
√

3
2 ) and Â = â�∆. Since â/3 is an element of B,
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it is an element of the symmetric Nash bargaining set of B. Note that the payoff vector â/3

is the Nash bargaining solution of B and corresponds to the allocation qr = 1−
√

3
3 , q

l =
√

3
3 ;

that is, the organization chooses location r with probability 1 −
√

3
3 and location l with

probability
√

3
3 .

The symmetric Nash bargaining set of B contains more than one solution. To identify

a second solution, let a = (1, 2, 1) and d = (0, 0, 1/2). Then, let A = a � ∆ + d be the

simplex with the extreme points (0, 0, 1/2), (1, 0, 1/2), (0, 2, 1/2) and (0, 0, 3/2). Figure 3,

below, depicts this bargaining problem and its intersection with the original bargaining

problem B. As Figure 3 shows, A also dominates B in the weak set order.

u1

u2

u3

(1, 0, 1
2 )

(0, 2, 1
2 )

(0, 0, 3
2 )

(0, 0, 1
2 )

a/3 + d

Figure 3

Note that player 3’s minimal payoff in A is 1/2 while it is 0 in B, and, therefore, A

raises the disagreement utility of player 3. The Nash bargaining solution of A is a/3 + d

and, since a/3+d is an element of B, it is also an element of the symmetric Nash bargaining

set of B. This solution corresponds to the outcome qr = 1/3, ql = 2/3.

The symmetric Nash bargaining set consists of all convex combinations of the solutions

in Figures 2 and 3. The solution in Figure 2, â/3, yields the lowest payoff for player 3 while

the solution in Figure 3, a/3 + d, yields the highest. For every other solution, x, there is a

simplex Ã = ã�∆ + d̃ such that B ≤ Ã, x = ã/3 + d̃ and d̃ = (0, 0, c) with 0 ≤ c ≤ 1/2.4

4 If c > 1/2 then, for any ã, the simplex ã � ∆ + (0, 0, c) either does not dominate B or its Nash
bargaining solution is not in B. Thus, the solution in Figure 3 is an extreme point of the symmetric Nash
bargaining set.
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The organization can implement every element of the symmetric Nash bargaining set

through a collective pseudo market with equal budgets. In such a market, each of the

three agents is endowed with 1/3-units of fiat money and confronts the personalized prices

pi = (pri , p
l
i). Agents treat the collective goods r and l as if they were private goods,

available for purchase at the indicated prices. Agents may also choose a lottery over the

two goods and, if they do, they must pay the lottery’s expected cost. The organization

acts as an auctioneer and picks the lottery that maximizes revenue.

Suppose that q = (qr, ql) = (1/3, 2/3), the solution in Figure 3, is the desired payoff

vector. The dominating simplex in Figure 3 is A = a �∆ + d such that a = (1, 2, 1) and

d = (0, 0, 1/2). Using the parameters of A, we define pi as follows:

pi =
(
pri , p

l
i

)
=

(
uri − di
ai

,
uli − di
ai

)
which yields p1 = (1, 0), p2 = (0, 1/2) and p3 = (0, 1/2). Note that pi · q = ωi = 1/3 for

i = 1, 2, 3, and therefore all three agents can afford q. Furthermore, q maximizes the utility

of each agent at those prices. To verify that (p, q) is a PLE, it remains to check auctioneer

optimality. The auctioneer’s revenue from selling r is
∑
i p
r
i while the revenue from selling

l is
∑
i p
l
i. Since ∑

i

pri = 1 =
∑
i

pli,

the lottery q maximizes revenue. Thus, (p, q) is a PLE.

Using the simplex Â, the same algorithm yields the equilibrium prices for the solution

â/3, depicted in Figure 2. For the solutions between â/3 and a/3 + d, the prices can

be found with an analogous construction. Thus, every element of the symmetric Nash

bargaining set corresponds to an equilibrium with equal budgets. Theorem 1, our main

result, shows that the reverse implication holds as well: every PLE utility profile is in the

symmetric Nash bargaining set. Hence, convex combinations of â/3 and a/3 + d are the

only PLE utilities with equal budgets.

1.2 Properties and Applications

Foley (1970) shows that in standard public goods economies every Lindahl equilibrium

is in the core. In his framework, agents hold physical resources, and a coalition can block
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an allocation by reallocating these resources to achieve higher utility for its members than

what they would enjoy with the proposed allocation. In our model, however, agents are

endowed only with fiat money, which neither generates utility nor produces public goods.

Therefore, the usual notion of a blocking coalition does not apply.

To define the pseudo core, we reinterpret each agent’s fiat money endowment as

stochastic property rights over allocations. A coalition, I, with collective fiat money en-

dowment, ωI , can block an allocation if it can find a feasible alternative that assigns

probability 1 − ωI to the disagreement point and makes all its members better off. The

pseudo core is the set of all allocations that no coalition can block.

Theorem 2 shows that every PLE (and thus every element of the weighted Nash

bargaining set) belongs to the pseudo core. Moreover, when there are two agents, the

pseudo core coincides with the set of pseudo Lindahl equilibria.5

Pseudo Lindahl equilibria (PLEs) are generally not unique. However, in Proposition

1, we show that they are unique if utilities are binary, that is, if every agent views each

outcome as either ideal or no better than the disagreement point.

In the paper’s final section, we explore the connection between PLE allocations and

pseudo Walrasian equilibrium allocations in discrete allocation problems. Here, a finite set

of indivisible goods must be allocated among the agents. A private pseudo market trans-

forms the original allocation problem into an exchange economy by endowing agents with

fiat money and introducing an auctioneer who maximizes (fiat money) revenue. We show

that every pseudo Walrasian equilibrium in such an economy is a PLE of the corresponding

collective choice market. Our main theorem then implies that all pseudo Walrasian equi-

librium payoffs of a private pseudo market with endowments ω are in the ω−weighted Nash

bargaining set. However, while a PLE always exists, a pseudo Walrasian equilibrium may

not. In particular, pseudo Walrasian equilibria exist if the goods are gross substitutes6,

but they may fail to exist under more general preferences that allow for complementarities.

We also show that pseudo Walrasian equilibrium payoffs are sensitive to how the traded

goods are specified (i.e., how property rights are defined), whereas PLE payoffs are not.

5 Our definition of the pseudo core is related to the definition of the core in Fain, Goel and Munagala
(2016) who also analyze an economy without individual endowments. In their definition, each coalition
can allocate a share of the common resources proportional to the coalition size. Their model has a unique
Lindahl equilibrium and they show it is in the core.

6 See Gul, Pesendorfer and Zhang (2024)
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As Sertel and Yildiz (2003) demonstrate in a different context, two exchange economies

can yield the same bargaining set (i.e., the same set of feasible utility vectors) and have the

same money endowments, yet still produce different pseudo Walrasian equilibrium payoffs.

In contrast, as our main result shows, PLE payoffs depend only on the set of attainable

utilities and money endowments.

Finally, we provide a condition under which pseudo Walrasian and PLE payoffs coin-

cide. An example satisfying this condition is a matching market where individuals must

form pairs. Such markets include the one-sided roommate problem or the classic two-sided

matching problem7. Our results imply that pseudo Walrasian equilibrium payoffs in a

matching market with non-transferable utility and endowments, (ωi)
n
i=1, coincide with the

payoffs in the weighted Nash bargaining set, with weights (ωi)
n
i=1.

1.3 Related Literature

Our paper is related to the extensive literature on axiomatic bargaining theory (see

Thomson (1994) for a survey). Theorem 3 is related to Nash (1950) and Harsanyi (1959)

and we discuss this relationship in detail below. For 2-person bargaining, the symmetric

NBSet includes the Kalai-Smorodinsky solution (Kalai and Smorodinsky (1975)) and the

Perles-Maschler solution (Perles and Maschler (1981)). Kaneko (1980) provides a set-

valued extension of the Nash bargaining solution to incorporate non-convex bargaining

sets. His solution, when restricted to convex sets – i.e., in our setting – becomes the

(single-valued) Nash bargaining solution.

Hylland and Zeckhauser (1979) were the first to propose pseudo Walrasian equilibria

with randomization as solutions to allocation problems in situations with indivisibilities

and without transfers. Miralles and Pycia (2021), Gul, Pesendorfer, and Zhang (2024),

and Nguyen and Vohra (2024) extend Hylland and Zeckhauser from unit demand prefer-

ences to more general preferences. The collective pseudo markets studied in this paper

allow for arbitrary preferences, public goods, and externalities and hence provide a further

generalization of the environment considered in these papers.

Eisenberg and Gale (1959) show that Walrasian equilibria of a Fisher market8 with

equal budgets yield the Nash bargaining solution. Eisenberg (1961) extends this result

7 Gale and Shapley (1962)
8 A Fisher market is an exchange economy with fiat money but no indivisibilities.
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to non-equal budgets and the weighted Nash bargaining solution. As is well known, this

connection breaks down in the presence of indivisibilities. With indivisibilities, pseudo

Walrasian equilibria of Fisher markets may fail to exist and, if they exist, they generally

do not coincide with the Nash bargaining solution. By contrast, PLEs in our model always

exist and contain the set of pseudo Walrasian equilibrium outcomes of the associated

discrete allocation problem. Moreover, the weighted Nash bargaining set contains the

weighted Nash bargaining solution. Thus, using more permissive solution concepts, we

extend the classic results of Eisenberg and Gale (1959) and Eisenberg (1961) to include

indivisibilities and externalities.

Fain, Goel and Munagala (2016) consider an economy in which the planner must

allocate a fixed budget among a finite collection of public goods. Agents’ utilities for the

public goods are a linear function of the funding levels. They show that the Nash bargaining

solution yields a PLE allocation of an economy in which each agent controls an equal share

of the budget. We do not assume their linear structure9 and, as a result, there are typically

multiple pseudo Lindahl equilibria. Nonetheless, we show that pseudo Lindahl equilibria

implement a suitable set-valued generalization of the Nash bargaining solution. Brandl,

Brandt, Peters, Stricker and Suksompong (2020) examine the incentive properties of the

Nash bargaining solution and show that it satisfies a weak form of incentive compatibility.

Foley (1967), Schmeidler and Vind (1972) and Varian (1974) associate fairness with

envy-freeness. Pseudo Walrasian equilibria with equal budgets are envy free and, thus,

these authors establish a connection between Walrasian outcomes and fairness. In a public

goods setting, it is difficult to identify fairness with envy-freeness. Efficiency may require

two agents to contribute different amounts to the same public good and, therefore, the

notion of envy-freeness is difficult to apply. Several authors have developed notions of

fairness for public goods settings with transfers. Sato (1987) adapts the notion of envy-

freeness to Lindahl equilibria by assuming that agent i converts j’s actual consumption

of the public good into a virtual quantity based on j’s utility of that good. Buchholz

and Peters (2007) characterize Lindahl equilibria with axioms on agents’ marginal rates

9 In our model, randomization creates some linearity. However, allowing lotteries is fundamentally
different from having a linear production technology since probabilities are constrained to be in the unit
simplex. This “probability constraint” is the source of multiplicity in our model.
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of substitution between private and public goods. Silvestre (2003) develops a connection

between Lindahl’s normative ideas and the core of an economy.

Chen and Zeckhauser (2018) analyze a public goods provision game between countries.

They discuss the Nash bargaining solution and a version of Lindahl equilibrium. In a two

country application, they find that their version of Lindahl equilibrium is close (but not

identical) to the Nash bargaining solution. Our model differs from theirs in two key aspects.

First, agents in Chen and Zeckhauser’s model contribute tangible resources to the public

good and, second, the disagreement outcome in their setting is not exogenous; it is the

Nash equilibrium of a non-cooperative contribution game.

Finally, our paper is related to the analysis of random assignment problems and fair-

ness (Abdulkadiroglu and Sonmez (1998), Bogomolnaia and Moulin (2001), Budish (2011),

Basteck (2018)). That literature takes the agents’ ordinal preferences over the relevant al-

ternatives as a primitive while the pseudo-market approach, followed here, takes the agents’

lottery preferences as a primitive and, therefore, imposes stronger efficiency requirements.

2. PLE and ω-NBSet

In this section, we describe two different solutions to a social choice problem. Our

main result establishes their equivalence and the subsequent sections take advantage of

this equivalence to study properties of the solution.

There are n agents, i ∈ {1, . . . , n}, who must decide on one of k social outcomes,

j ∈ K = {1, . . . , k} or settle for the disagreement outcome (outcome 0). A random

outcome is a probability distribution over social outcomes. We let

Q := {q ∈ [0, 1]k |∑
j∈K

qj ≤ 1}

be the set of random outcomes with the understanding that 1−
∑
j∈K q

j is the probability

of disagreement.

Agents are expected utility maximizers; i’s utility from outcome j ∈ K is uji ≥ 0 and

ui = (u1
i , . . . , u

k
i ) denotes i’s von Neumann-Morgenstern utility index. The disagreement

outcome, outcome 0, yields the utility profile u0 = o := (0, . . . , 0). We dismiss all agents
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who have no stake in the collective decision; that is, we assume that for every utility ui,

there is some j such that uji > 0.

A social choice rule, then, is a mapping that associates a (feasible) set of utility vectors

S(u) ⊂ IRn+ with every profile of utilities u. Feasibility requires that each x ∈ S(u) can be

achieved by some probability distribution, q, over random outcomes; that is,

S(u) ⊂ {(u1 · q, . . . , un · q) | q ∈ Q}

Below, we consider two classes of social choice rules: The first is an application of PLE

to our setting while the second is a multi-valued version of the Nash bargaining solution,

which we call the weighted-Nash bargaining set (wNBSet).

2.1 Collective Pseudo Markets and Pseudo Lindahl Equilibrium

Hylland and Zeckhauser (1979) introduce pseudo markets as a way of allocating in-

divisible private goods in settings where transfers are not possible. The designer (or auc-

tioneer) of a pseudo market issues fiat money, that is, money without value beyond the

market’s confines. Participants use this money to purchase probabilistic shares of the in-

divisible goods; the auctioneer earns revenue by selling these shares. A collective pseudo

market applies this idea to a setting with collective goods. As in a standard exchange

economy, all agents, including the auctioneer, are price takers. Market clearing requires

every agent, including the auctioneer, to (optimally) choose the same outcome.

Agent i is endowed with ωi > 0 units of fiat money and confronts the personalized

prices pi = (p1
i , . . . , p

k
i ) ≥ 0 for the k social outcomes. We normalize the aggregate money

endowments to 1, that is, ∑
i

ωi = 1

Agents in a collective pseudo market choose random social outcomes as if they were private

goods. Let

Ui(p, ωi) = max
q∈Q

ui · q subject to pi · q ≤ ωi (1)

be the maximal utility agent i can attain at prices pi and money endowment ωi. The

random outcome q is a solution to the agent’s problem if ui · q = Ui(p, ωi). It is a least-cost
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solution if, in addition, pi · q̂ ≥ pi ·q for every q̂ such that ui · q̂ = Ui(p, ωi). Throughout our

analysis we will assume that agents choose least-cost solutions. This restriction ensures

that the first welfare theorem holds and is standard in the literature on pseudo markets

with private goods (see Mas-Colell, 1992). Without it, there may be additional, possibly

inefficient, equilibria.10

The social planner (or auctioneer) takes prices as given and chooses the random out-

come that maximizes revenue. Specifically, the auctioneer chooses q to solve

R(p) = max
q∈Q

n∑
i=1

pi · q (2)

Market clearing requires that all agents and the auctioneer choose the same random out-

come.

Definition: The pair (p, q) is a pseudo Lindahl equilibrium (PLE) for the collective

pseudo market (u, ω) if, at prices p, q is a least-cost solution to every consumer’s maxi-

mization problem and solves the auctioneer’s maximization problem.

The collective pseudo-market approach yields the following class of social choice rules,

indexed by the fiat-money endowments ω:

Lω(u) = {(u1 · q, . . . , un · q) | q is a PLE outcome for (u, ω)}

The social choice rule Lω(u) identifies all utility profiles that correspond to pseudo Lindahl

equilibria of the collective pseudo market (u, ω).

2.2 The Bargaining Problem and the weighted-Nash Bargaining Set

Next, we define our set-valued generalization of the Nash bargaining solution, the

weighted-Nash Bargaining set (wNBSet). As in the standard Nash bargaining solution,

the weights are welfare weights.

10 Inefficiency arises because, with finitely many social alternatives, utilities cannot satisfy local non-
satiation. For example, consider the following 2-person, 2-alternative problem. Let ω = (1/2, 1/2); that
is, the two agents have equal endowments of fiat money, and u1 = (1, 1);u2 = (1, 0). In this example,
p1 = (1, 0), p2 = (0, 1), and q = (1/2, 1/2) is an inefficient PLE. Notice that q is not a least-cost solution
for agent 2 since q̂ = (1, 0) costs agent 2 zero and yields the same utility as q.
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For any x, y ∈ IRn, we write x ≤ y to mean xi ≤ yi for all i. For any bounded set X,

d(X) is the greatest lower bound of X and b(X) is the least upper bound of X. We refer

to d(X) as the disagreement point and to b(X) as the bliss point. A polytope is the convex

hull of finitely many points in IRn. A bargaining problem is a polytope that contains its

disagreement point and some payoff vector that strictly dominates the disagreement point.

Let B be the set of polytopes B such that o ≤ d(B) ∈ B and, for some x ∈ B, di(B) < xi

for all i. Thus, B is the set of bargaining problems.

We map the utility u of the social choice problem to the bargaining problem

Bu := conv{(uj1, . . . , ujn) | j ∈ K ∪ {0}}

where convX is the convex hull of X ⊂ IRn and (u0
1, . . . , u

0
n) = o. Note that Bu ∈ B

with d(Bu) = o. Thus, the set of social choice problems consists of all those elements

of B that have o as their disagreement point. The larger class of bargaining problems

with non-negative disagreement points is needed to define our bargaining solution and to

provide an axiomatic foundation for it.

We write B ≤ A if A dominates B in the weak set order, that is, if for every utility

vector in B, there is a corresponding utility vector in A that dominates it and, conversely,

for every utility vector in A, there is a corresponding utility vector in B that is dominated

by it.

Definition: For A,B ∈ B, B ≤ A if for every x ∈ B, y ∈ A, there exist x′ ∈ B, y′ ∈ A

such that x′ ≤ y and x ≤ y′.

The Nash bargaining solution (Nash (1950), Harsanyi (1959)) is the unique element

of B that maximizes f(B, ·) where

f(B, x) :=
∑
i

log(xi − di(B))

Let ω = (ω1, . . . , ωn) be a set of weights; that is ωi > 0 for all i and
∑
i ωi = 1. Then, let

fω(B, x) :=
∑
i

ωi log(xi − di(B))
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The unique element of B that maximizes fω(B, ·) is the ω-weighted Nash bargaining solu-

tion, denoted ηω(B). The ω-weighted Nash bargaining set of B, denoted Nω(B), consists of

all those x ∈ B that are the ω-weighted Nash bargaining solutions of bargaining problems

that dominate B:

Definition: Nω(B) = {ηω(A) ∈ B |B ≤ A}

The set Nω(B) is non-empty since ηω(B) ∈ Nω(B). In our applications and examples,

we often choose symmetric weights, that is, ω = σ := (1/n, · · · , 1/n). We refer to Nσ(B) as

the symmetric Nash bargaining set. We interpret the weights as an exogenous parameter

reflecting the normative judgment of the social planner. However, it is instructive to

consider the range of payoff vectors that can be obtained by varying these weights. For

any Pareto efficient x ∈ B with xi > d(B)i for all i, there are weights, ω, such that

x = ηω(B).11 The converse is also true: if x is a weighted Nash bargaining solution for

some weights, then it is Pareto efficient, and every xi is strictly greater than agent i’s

disagreement utility. The same is true for the weighted Nash bargaining set: x ∈ Nω(B)

for some weights ω if and only if x ∈ B, x is Pareto efficient, and xi > d(B)i for every i.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) denote the n-dimensional vector with i coordinate 1 and

all other coordinates zero. Let e = (1, . . . , 1), and let ∆ = conv {o, e1, . . . , en} be the

unit simplex. As we noted in the introduction, ∆ represents a situation of pure conflict

in which a single prize must be awarded to one of the n agents. For any a, x ∈ IRn, let

a � x = (a1 · x1, . . . , an · xn), a � B = {a � x |x ∈ B}, and B + z = {x + z |x ∈ B}.

The bargaining set, A, is a simplex if, for some a > 0 and d ≥ 0, A = a �∆ + d. Every

simplex represents the same situation of pure conflict as the unit simplex with utilities

undergoing the affine transformation xi 7→ aixi + di. It is well known (and easy to verify)

that ηω(∆) = ω and

ηω(a�∆ + d) = ω � a+ d (3)

Lemma 1 shows that for simplices the weighted Nash bargaining set contains no other

solutions.

11 We provide a proof of this assertion in Lemma A3(iv). Recall that welfare weights must be strictly
positive for every agent. The converse – that is, ηω(B) is Pareto efficient and ηω(B)i > d(B)i – follows
from the fact that all weights are strictly positive, that B contains x such that xi > d(B)i for all i, and
that the weighted Nash bargaining solution is Pareto efficient.
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Lemma 1: (i) For any simplex A, Nω(A) = {ηω(A)}; (ii) For any B ∈ B, there is a

simplex A such that B ≤ A and ηω(B) = ηω(A).

Proof: See proof of Lemma A3 (ii) and (iii) in the appendix.

Part (ii) of Lemma 1 shows that in our definition of Nω, above, we can assume, without

loss of generality, that A is a simplex. Thus, x ∈ B is an element of the ω−weighted Nash

bargaining set for the bargaining problem B if and only if there is a simplex A = a�∆+d

such that B ≤ A and x = a� ω + d.

2.3 The Main Result

Our main result, Theorem 1 below, shows that the weighted Nash Bargaining set with

weights ω coincides with the set of PLE payoffs with budgets ω.

Theorem 1: The set of PLE payoffs of (u, ω) is the same as the wNBSet of the corre-

sponding bargaining problem with weights ω: Lω(u) = Nω(Bu) for all u, ω.

Theorem 1 enables us to use the term Lindahl-Nash solution and write LNω for both

the bargaining solution and social choice rule. Thus, LNω(u) = Lω(u) = Nω(Bu).

Below, we provide intuition for Theorem 1 by outlining the argument for the two-

person case. Consider the two-person bargaining problem Bu, depicted in Figure 4a below,

and let x be an element of its ω-weighted Nash bargaining set.

uA

uB

o

x

Bu

Figure 4a

We will show that x is the payoff vector of a PLE with endowments ω. By Lemma 1,

x is the ω-weighted Nash bargaining solution of some simplex A = a�∆ + d, depicted in

Figure 4b, below:
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uA

uB

o

(d1, d2 + a2)

(d1 + a1, d2)

x

(d1, d2)

A

Figure 4b

Since x = ηω(A), we have xi = aiωi + di for i = 1, 2. Since x is undominated, there is

a distribution q over Pareto efficient outcomes that delivers the utility vector x. We will

show that q is a PLE allocation. To do so, we must find the corresponding PLE prices. Let

j be any outcome that is undominated in A, so that (uj1, u
j
2) is a convex combination of

the extreme points (a1, 0) and (0, a2). Then, there are zj1, z
j
2 ≥ 0 such that zj1 + zj2 = 1 and

(a1z
j
1 +d1, a2z

j
2 +d2) = (uj1, u

j
2). Let pji = zji and note that pj1 +pj2 = 1 for those outcomes.

Since A dominates Bu in the weak set order, any other j is dominated by some vector in A.

Therefore, there are zj1, z
j
2 ≥ 0 such that zj1 + zj2 ≤ 1 and (a1z

j
1 + d1, a2z

j
2 + d2) ≥ (uj1, u

j
2).

Again, let pji = zji for those outcomes.

We have constructed prices that yield revenue 1 to the auctioneer for every outcome

in the support of q and revenue no greater than 1 for all outcomes. Hence, q maximizes

the auctioneer’s revenue. It remains to show that q also maximizes the utility of every

agent. By construction, uji ≤ aip
j
i + di for all outcomes j. Therefore, for any alternative

allocation q̂, we have

∑
j

uji · q̂
j ≤

∑
j

(aip
j
i + di)q̂

j = ai
∑
j

pji q̂
j + di

∑
j

q̂j (4)

The budget constraint implies that
∑
pji q̂

j ≤ ωi, and the fact that q̂ is a probability (the

probability constraint) implies that
∑
j q̂

j ≤ 1. Therefore,

∑
j

uji · q̂
j ≤ aiωi + di =

∑
j

uji · q
j = xi (5)

and, thus, q maximizes utility.
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As (4) and (5) reveal, we have constructed the prices p such that the parameters (a, d)

of the supporting simplex A are the shadow prices of the agents’ maximization problems.

In particular, ai is the shadow price of i’s budget constraint, and di is the shadow price of

i’s probability constraint. This observation enables us to reverse the argument: for a given

pseudo Lindahl equilibrium, (p, q), we can find the supporting simplex A = a�∆ + d by

identifying the shadow prices, ai, di, in agent i’s utility maximization problem. To prove

that the pseudo Lindahl equilibrium is in Nω(Bu), we must also show that Bu ≤ A. To

do this, we use the fact that q also solves the auctioneer’s revenue maximization problem.

For the general case of n ≥ 2, our proof relies on a linear programming duality argument

to establish this relationship between the shadow prices a, d and the dominating simplex

A = a�∆ + d.

3. Properties of the Lindahl-Nash Solution

In this section, we use Theorem 1 to show that the Lindahl-Nash payoffs are in the

pseudo core and to identify problems that have a unique Lindahl-Nash payoff.

3.1 The Pseudo Core

For any coalition of agents I ⊂ {1, . . . , n}, define ωI =
∑
i∈I ωi and

QI :=
{
q ∈ Q

∣∣∣∑
j
qj ≤ ωI

}
Thus, random outcomes in QI allocate probability less than or equal to the share of

coalition I’s collective money endowment to the k social outcomes.

Definition: The coalition I ⊂ {1, . . . , n} blocks the payoff vector x if there is q ∈ QI
such that ui · q ≥ xi for all i ∈ I with at least one inequality strict. The payoff x ∈ Bu is

in the pseudo core, Cω(u), if no coalition blocks it.

The definition of the pseudo core, above, translates fiat money endowments into prob-

abilistic property rights over social outcomes. Every coalition of agents controls a prob-

abilistic share of the social outcome corresponding to its share of the total supply of fiat

money. Theorem 2, below, shows that Lindahl-Nash payoffs must respect those stochastic

17



property rights. With two agents, the pseudo core coincides with the set of PLE pay-

offs; with more than two agents the pseudo core typically includes payoffs that are not

Lindahl-Nash.

Theorem 2: If x is a Lindahl-Nash payoff, then it is in the pseudo core; the converse

also holds for n = 2. That is, LNω(u) ⊂ Cω(u) for all n; for n = 2, Cω(u) = LNω(u).

Foley (1970) introduces Lindahl equilibria in a standard competitive model and shows

that Lindahl equilibria are in the core of that economy. In Foley’s model, as in the standard

definition of the core, a coalition’s resources are the sum of the physical endowments of

its members. A coalition can block a proposed allocation if it can deploy its resources in

a way that improves the utility of the coalition members over the utility of the proposed

allocation. In a collective pseudo market, agents are endowed with fiat money that has no

intrinsic value and, therefore, the standard definition of the core would render coalitions

powerless. By converting the endowments of fiat money into stochastic property rights

over social outcomes, we restore the coalitions’ blocking power and obtain the appropriate

definition of the core for collective pseudo markets.

3.2 Uniqueness

The Lindahl-Nash social choice rule is typically not single valued. Proposition 1 below

identifies a class of cases in which it is. Suppose each agent considers every outcome either

ideal or no better than the disagreement outcome. In such situations, we can assume,

without loss of generality, that each agent’s utility takes on the values 0 or 1, that is,

ui ∈ {0, 1}K .

Proposition 1: If uji ∈ {0, 1} for all i, j, then LNω(u) = {ηω(Bu)}.

Note that the Lindahl-Nash social choice rule always includes the ω−weighted Nash

bargaining solution and, therefore, uniqueness implies that LNω(u) = {ηω(Bu)}. Con-

versely, since the ω−weighted Nash bargaining solution is unique, establishing that every

element of LNω(u) is the ω−weighted Nash bargaining solution is enough to establish

uniqueness.

The proof of Proposition 1 in the appendix uses a characterization of PLE prices

together with the fact that the equilibrium allocation must maximize the auctioneer’s
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revenue. To provide an alternative argument, consider the case in which no agent can

receive their bliss point (that is, utility 1) in any weighted Lindahl-Nash payoff vector

x∗ ∈ LNω(u). This happens, for example, if no agent shares an ideal outcome with all

other agents. We will argue that x∗ must be the weighted Nash bargaining solution ηω(Bu).

Let q be a PLE allocation that yields the utility profile x, that is, ui · q = xi. Because

agent i’s utility is less than 1, there must be an outcome j such that qj > 0 and uji = 0. As

a result, the probability constraint,
∑
j q

j ≤ 1, must be slack and, therefore, this constraint

must have a shadow price ci = 0. Since x ∈ LNω(u), there is a dominating simplex A

that has x as its solution. As we note in the discussion following Theorem 1, in this

dominating simplex an agent’s disagreement point equals the shadow price of that agent’s

probability constraint. In our case, this means that d(A) = 0 = d(Bu). We conclude that

d(A) = d(Bu) and x ∈ Bu ⊂ A. Since x maximizes the ω−weighted Nash product in A, it

must also maximize the ω−weighted Nash product in Bu, that is, x = ηω(Bu).

The uniqueness result does not extend to cases with more general utilities. For exam-

ple, if uji ∈ {r, s} with 0 < r < s, then equilibria are typically not unique. Proposition 1

allows only two distinct utility values, one of which must be the outside option. Therefore,

it does not cover this case.

4. A Characterization of the weighted Nash Bargaining Set

This section provides an axiomatic foundation of the weighted Nash bargaining set.

The axioms are closely related to Nash’s (1950) axioms. The main difference is that we

abandon single-valuedness. A set-valued bargaining solution is a mapping S : B → 2IR
n\∅

such that S(B) ⊂ B.

The first axiom, scale-invariance, is shared by most bargaining solutions including

the Nash bargaining solution and the Kalai-Smorodinsky solution. It asserts that positive

affine transformations of utilities lead to a corresponding positive affine transformation of

the solution set.

Scale Invariance: S(a�B + z) = a� S(B) + z whenever ai > 0 for all i.

The second axiom, efficiency, applies only to the bargaining problem ∆. It ensures

that a unique x is chosen from ∆, that this x is undominated, and that it yields positive

utility to all agents.
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Efficiency: S(∆) = {x} for some x such that x · e = 1 and xi > 0 for all i.

The simplex ∆ represents a situation in which a single prize must be awarded to one

of the n agents and agents’ utilities are equal to the probabilities with which they receive

the prize. The efficiency axiom says that there is a single undominated x that results in

this situation of pure conflict. This x encapsulates the planner’s fairness judgment and

determines the bargaining weights.

The third axiom is related to independence of irrelevant alternatives (IIA) of the Nash

bargaining solution. The set valued version of IIA, due to Harsanyi (1959) and Kaneko

(1980), considers two bargaining problems A and B with identical disagreement points. If

B ⊂ A, then IIA requires that any solution to the bargaining problem A that is available

in B must also be a solution to B, that is, S(A)∩B ⊂ S(B). The consistency axiom below,

modifies this assumption by replacing B ⊂ A with B ≤ A and omitting the requirement

that A and B must share a common disagreement point.

Consistency: B ≤ A implies S(A) ∩B ⊂ S(B).

Note that B ≤ A implies d(B) ≤ d(A); that is, Consistency requires that the dis-

agreement point in A (weakly) dominates the disagreement point in B. The logic behind

Consistency is as follows. If x ∈ S(A), then x is judged a reasonable choice from A; that

is, no agent can raise a compelling objection to x. Now suppose B ≤ A and x ∈ B. Since

B does not offer an alternative that improves upon those in A, and since each agent’s

disagreement utility in B is lower (or no higher) than in A, there remains no compelling

objection to x in B. Hence, Consistency requires x ∈ S(B). Note that Consistency is

“stronger” than the set-valued version of IIA because, whenever B ⊂ A and d(A) = d(B),

we have B ≤ A. As a result, in any situation where the set-valued version of IIA dictates

that S(A) ∩B ⊂ S(B), Consistency imposes the same requirement.

The fourth axiom, completeness, requires that no outcomes other than those neces-

sitated by the preceding three axioms are included in the set of solutions. This axiom is

due to Harsanyi (1959).

Completeness: If Ŝ satisfies the three axioms above and Ŝ(B) ⊂ S(B) for all B, then

Ŝ(B) = S(B) for all B.
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Theorem 3, below, establishes that the four axioms above characterize the weighted

Nash bargaining set:

Theorem 3: A bargaining solution, S, satisfies the four axioms above if and only if

there are weights, ω, such that S(B) = Nω(B) for all B.

The Nash bargaining set is a set-valued solution concept with parameter ω. This

parameter is the planner’s vector of welfare weights and is pinned down by a single decision

of the planner: the probability that each agent gets the prize in the pure conflict situation

∆. If we replace Efficiency with Symmetric Efficiency, below, then the bargaining weights

become equal. Let σ = 1
ne.

Symmetric Efficiency: S(∆) = {σ}.

To see how our axioms relate to the axioms for the Nash bargaining solution (Nash

1950), assume that S(B) is a singleton for all B. Then, replace efficiency with symmetric

efficiency. Then, restricting Consistency to cases in which d(A) = d(B) yields the Nash

bargaining solution. Alternatively, we can replace Consistency with the set-valued version

of Nash’s IIA to again obtain the Nash bargaining solution. Indeed, this is the axiom-

atization of the n-person Nash bargaining solution in Harsanyi (1959) who shows that

symmetric efficiency, IIA and completeness imply the n-person Nash bargaining solution.

Strengthening IIA to Consistency makes S(B) larger at every B and, therefore, we obtain

a more permissive solution concept.

Thomson (1994) provides a comprehensive survey of existing, single-valued, bargain-

ing solutions. In the symmetric two-agent case, the ω-weighted Nash bargaining set in-

cludes all scale-invariant solutions discussed in Thomson’s survey. These are the Nash

bargaining solution, the Kalai-Smorodinsky solution (Kalai and Smorodinsky, 1975), the

Perles-Maschler solution (Perles and Maschler, 1981), and the Raiffa solution.12 The fol-

lowing example illustrates how the symmetric Nash bargaining set for the two person case

relates to other bargaining solutions.

4.1 Two Cakes

Ann and Bob would like to divide two cakes, a peanut butter cake and a chocolate

cake, in a reasonable manner. Utilities are linear but Bob is allergic to peanuts while Ann

12 It excludes solutions, such as the egalitarian solution, that violate Scale Invariance.
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likes the peanut butter cake just as much as the chocolate cake. Ann and Bob have equal

bargaining weights. Figure 5, below, illustrates this bargaining problem.

uA

uB

0,0 2,0

0,1
1,1

Figure 5

As we show in Lemma 1 above, x is in the symmetric bargaining set if and only if

there exists a dominating simplex that has this x as its (unique) solution. The bargaining

problem in Figure 6 is one such simplex. This bargaining problem has the unique solution

(1, 1). Therefore, (1, 1) is an element of the symmetric Nash bargaining set of the original

problem. Note that this solution is achieved by giving the peanut butter cake to Ann and

the chocolate cake to Bob and corresponds to the Nash bargaining solution.

uA

uB

0,0 2,0

0,1
1,1

Figure 6

The utility profile (1.5, 0.5) is a second element of the symmetric Nash bargaining set.

In this case, the dark-shaded bargaining problem in Figure 7, below, is the dominating

simplex. This simplex has disagreement point (1, 0) and the unique solution (1.5, .5). This

payoff vector can be achieved if we divide the chocolate cake equally between the two

players and give the peanut butter cake to Ann. Note that (1.5, .5) corresponds to the

Perles-Maschler solution (Perles and Maschler (1981)) of the original bargaining problem.
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uA

uB

0,0 2,0

0,1
1,1

1.5,0.5

1,0
Figure 7

The two solutions, (1, 1) and (1.5, .5), are the extreme points of the symmetric Nash

bargaining set which consists of all utility profiles of the form λ(1, 1) + (1 − λ)(1.5, .5)

for λ ∈ [0, 1]. These payoff vectors correspond to allocations in which Ann receives the

peanut butter cake and at most 1/2 of the chocolate cake. This set contains all standard

bargaining solutions that satisfy scale invariance (see Thomson (1994) for a discussion of

bargaining solutions). For example, the Kalai-Smorodinsky solution would give 1/3 of the

chocolate cake to Ann.

As the example shows, the choice of a dominating simplex can favor one or the other

agent. Our solution concept takes no position on which of those payoff vectors is nor-

matively best or fairest; in effect, it concedes that both the Perles-Maschler axioms and

Nash’s axioms make valid normative arguments.

5. Discrete Allocation Problems

A finite set of indivisible goods must be allocated, without transfers, to a group of

agents. More precisely, a discrete allocation problem A is a triple (H,F , v) where H is the

(finite) set of goods, F , the production set, is a collection of non-empty subsets of H that

represent feasible supply choices,13 and v = (v1, . . . , vn) is a vector of utility functions.

Throughout this section, we assume every agent, i, has a utility function vi : 2H → IR

such that vi(∅) = 0 and vi(M) ≤ vi(M̂) whenever M ⊂ M̂ ⊂ H. We write vi(h) instead

of vi({h}). Without loss of generality, we assume
⋃
F∈F F = H. That is, we ignore any

good that is never available. Finally, we assume that for every i there exists some F ∈ F

such that vi(F ) > 0.

13 In pseudo markets, often the constraints that define F are logical rather than technological. For
example, if agent i gets the unique good j, then l cannot get j or if i matches with l then l must match
with i. Nevertheless, the term production set seems appropriate.
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An allocation assigns each agent a bundle of goods. The allocation is feasible if the

assigned bundles are non-overlapping and their union is a feasible supply. Thus, a (feasible)

allocation is a vector a = (a1, . . . , an) such that ai ⊂ H for all i, ai ∩ al = ∅ whenever

i 6= l, and
⋃
i ai ∈ F . Henceforth, allocation will mean feasible allocation. The set of

social outcomes, K, is the set of allocations, {a1, . . . , ak}. As in previous section, we will

identify K with {1, . . . , k} and let Q denote the set of random allocations. To map discrete

allocation problems to collective choice problems, let uji = vi(a
j
i ). The assumptions on v

and F ensure that, for all i, uji ≥ 0 for all j ∈ K and uji > 0 for some j ∈ K. Therefore,

the utilities satisfy the assumptions in section 2 and the weighted Lindahl-Nash solution

is well defined. We write LNAω to denote the Lindahl-Nash solutions of the allocation

problem A with weights ω.

Hylland and Zeckhauser (1979) introduce private pseudo markets as an efficient alloca-

tion mechanism for a class of discrete allocation problems.14 A pseudo market transforms

the discrete allocation problem into an exchange economy with random private consump-

tion. Next, we describe this approach and relate it to the Lindahl-Nash solutions. As in the

collective pseudo market, each agent is endowed with ωi units of fiat money. Agents choose

consumption lotteries, while a price taking firm chooses the (random) supply. Hence, each

agent chooses a (personal) consumption bundle not an entire allocation as in the collective

pseudo market. Formally, let D be the set of all probability distributions over 2H and let

P = IR
|H|
+ be the set of all prices. We write p(M) to mean

∑
h∈M p(h). Then, given any

price p and endowment ωi, agent i’s budget set is

B(p, ωi) :=
{
d ∈ D

∣∣∣ ∑
M

p(M)d(M) ≤ ωi
}

and the agent’s utility maximization problem is:

Vi(p, ωi) = max
d∈B(p,ωi)

∑
M

vi(M)d(M)

A least-cost solution to this problem is an optimal random consumption such that no other

optimal random consumption costs less.15

14 Hylland and Zeckhauser consider unit demand preferences. Miralles and Pycia (2021), Gul, Pesendor-
fer and Zhang (2024) and Nguyen and Vohra (2022) extend the analysis to multi-unit demand.

15 The restriction to least-cost solutions is a standard assumption in pseudo markets to ensure Pareto
efficiency of the resulting equilibrium allocations (see Mas-Colell (1992) in the discussion in Section 2.1).
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On the supply side, the firm must choose a probability distribution over F . Let

BF :=
{
d ∈ D

∣∣∣ ∑
F∈F

d(F ) = 1
}

be the feasible random supplies. Then, the firm’s revenue maximization problem is

R(p,F) = max
d∈BF

∑
F∈F

p(F )d(F )

Recall that elements of Q are probability distributions over the set of feasible allocations

K. For q ∈ Q, let dqi ∈ D be i’s random consumption; that is,

dqi (M) =
∑

{j∈K | aj
i
=M}

qj

Let dqT be the random aggregate consumption, that is,

dqT (F ) =
∑

{j∈K | ∪ia
j
i
=F}

qj

The pair (p, q) is a pseudo Walrasian equilibrium if, for all i, dqi is a least-cost solution to

consumer i’s utility maximization problem and dqT solves the firm’s revenue maximization

problem. Let WAω be the set of Walrasian equilibrium utility vectors in this pseudo market.

The following theorem shows that Walrasian equilibrium payoffs are Lindahl-Nash payoffs:

Theorem 4: WAω ⊂ LNAω .

The construction of the PLE prices (pji ) from the pseudo-Walrasian prices p ∈ P

is straightforward: we set pji = p(aji ). At those prices, every consumption plan that is

affordable in the collective pseudo market is affordable in the private pseudo market. That

is, agent i can afford q in the collective pseudo market only if she can afford dqi in the

private pseudo market. Thus, q is least-cost optimal in the collective pseudo market if the

random consumption dqi is least-cost optimal in the private pseudo market. Next, consider

the auctioneer. For any allocation j ∈ K, we have

∑
i

pji =
∑
i

p(aji ) = p(∪iaji )
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The left hand side is the auctioneer’s revenue from allocation j in the collective pseudo

market while the right hand side is the revenue from the corresponding supply, F = ∪iaji ,

in the private pseudo market. It follows that the auctioneer receives the same revenue

from dqT in the private pseudo market as he does from allocation q in the collective pseudo

market and, since dqT maximizes revenue in the private pseudo market, q must maximize

revenue in the collective pseudo market.

In general, it is not possible to go in the reverse direction. In a PLE, (p, q), it may be

that qj , qk > 0, ak1 = a
j
2 and pj1 6= pk2 ; that is, different agents may be charged different prices

for the same bundle. The results in sections 2-4 establish limits on these asymmetries: the

asymmetries must be consistent with the normative criteria established in Theorem 3 and

they must not conflict with the pseudo core. The next sections explore the relationship

between pseudo Walrasian and pseudo Lindahl equilibria in more detail.

5.1 Examples

While Lindahl equilibria of a collective pseudo market always exist, pseudo Walrasian

equilibria of a private pseudo market may not. The following example16 illustrates the

difference between the two mechanisms.

5.1.1 Example of Non-Existence of Pseudo Walrasian Equilibrium

There are two goods, H = {a, b}, and two agents. Agent 1 receives utility 1 if she

consumes both goods and zero otherwise; thus, the two goods are complements for agent

1. Agent 2 receives utility 0 if he consumes nothing and 1 otherwise. The allocation (H, ∅)

yields the utility profile (v1, v2) = (1, 0) and all other allocations either yield the utility

profile (v1, v2) = (0, 1) or the disagreement point (0, 0). Therefore, the corresponding

bargaining problem is a simplex, Bv = ∆. It follows that there is a unique symmetric PLE

payoff vector, σ = (1/2, 1/2).

There is no pseudo Walrasian equilibrium in corresponding private pseudo market.

To see this, note that by Theorem 4, any candidate for a pseudo Walrasian equilibrium

must yield the unique symmetric Nash-Lindahl payoff vector. In a private pseudo market

with endowments σ = (1/2, 1/2), V1(p, ω1) = 1/2 if and only if the pseudo Walrasian price

16 This example is used to illustrate non-existence of pseudo-market equilibria in Gul, Pesendorfer and
Zhang (2024)
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p satisfies p(a) + p(b) = 1. Then, min{p(a),p(b)} ≤ 1/2 and therefore, V2(p, ω2) = 1, a

contradiction. The presence of complementarities creates well-known difficulties with ex-

istence of pseudo Walrasian equilibria in private pseudo markets.17 By contrast, collective

pseudo markets have no difficulties incorporating complementarities.

5.1.2 Sensitivity to the specification of the commodity space

Even when pseudo Walrasian equilibria exist, payoffs may be sensitive to how the

traded goods are defined. Pseudo Lindahl equilibria of collective pseudo markets, however,

depend only on the set of feasible payoffs. We say that the allocation problems A and A∗

are utility-equivalent if they yield the same bargaining problem. That is, the convex hull

of the feasible utility profiles is the same for A and A∗. Theorem 1, above, shows that the

weighted Lindahl-Nash payoff vectors of the two allocation problems must coincide. This

is not true for pseudo Walrasian equilibrium payoff vectors as the two economies below

demonstrate.

Economy 1: There are two goods, H = {a, b} and two consumers with utilities v1 and

v2 such that, vi(∅) = 0, v1(b) = 2, and v1(M) = 3 if a ∈ M ; v2(b) = 1, v2(M) = 2 if

a ∈ M . The bargaining set associated with this economy is the convex hull of the set

{o, (3, 1), (2, 2)}. Let ω = σ = (1/2, 1/2) so that the two consumers have identical budget

sets. The two efficient allocations are a = {{a}, {b}} and a′ = {{b}, {a}}. Since consumers

have identical budgets and both prefer a over b, the two efficient allocations a and a′ must

be chosen with equal probabilities in equilibrium. The associated equilibrium payoff vector

is (5/2, 3/2).

Economy 2: There are two consumers and four goods, H = {a, b, c, d}. The four goods

are perfect substitutes. Both consumers have additive utility functions but consumer 1 can

derive utility from at most three goods while consumer 2 can derive utility from at most

two goods. Specifically, v1(M) = min{|M |, 3} and v2(M) = min{|M |, 2} where |M | is the

cardinality of the set M . This economy yields the same bargaining set as the one above:

the convex hull of the set {o, (3, 1), (2, 2)}. Again, let ω = σ. We claim that the unique

pseudo Walrasian equilibrium payoff is (2, 2). First, note that the efficient allocations are

17 See Gul, Pesendorfer and Zhang (2024), for a more detailed discussion
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of the form (M1,M2) such that |M1|+ |M2| = 4, 2 ≤ |M1| ≤ 3. Since both consumers can

afford the same consumption plans, equilibrium allocations (M1,M2) must be of the form

|M1| = |M2| = 2. Any of these allocations yields the payoffs (2, 2).

Theorem 4 and Theorem 1 imply that both (5/2, 3/2) and (2, 2) are symmetric

Lindahl-Nash payoff vectors for either specification of this economy. The observation

above is related to Sertel and Yildiz (2003) who provide a general statement and proof

of the existence of distinct standard n-person exchange economies that yield the same set

of feasible payoffs but have disjoint sets of pseudo Walrasian equilibrium payoffs. The

example above shows that the same is true in a pseudo-market setting.

Theorem 1 and Theorem 4 above reveal an advantage of pseudo Lindahl equilibria over

pseudo Walrasian equilibria: the set of PLE payoffs depends only on the implied bargain-

ing problem whereas the set of pseudo Walrasian equilibria depends on how commodities

are defined. Moreover, pseudo Lindahl equilibria exist even in the presence of complemen-

tarities. On the other hand, pseudo Walrasian equilibria are simpler than pseudo Lindahl

equilibria because the former often involve fewer prices. This is so because the number of

allocations typically exceeds the number of goods and because Lindahl prices are personal

while pseudo Walrasian prices are not. Nonetheless, there are cases in which pseudo Lin-

dahl and pseudo Walrasian equilibrium payoffs coincide. The following section provides a

sufficient condition for this to occur.

5.2 Single-minded Consumers and Matching

Consumer i has unit demand if she never benefits from consuming more than one good.

That is, for all M , vi(M) = maxh∈M vi(h). The unit demand consumer i is single-minded

at F ∈ F if there is at most one h ∈ F such that vi(h) > 0, that is, i has demand for at

most one of the goods in F . We say that consumers are single-minded if every consumer

has unit demand and is single minded at every F ∈ F .18 Theorem 5 shows that PLE and

pseudo Walrasian payoffs coincide if consumers are single-minded:

Theorem 5: Let A = (H,F , v) be a discrete allocation problem. If consumers are

single-minded, then WAω = LNAω .

18 We are grateful to an anonymous referee for suggesting this condition.
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As an example of single-mindedness, let F = {{h} |h ∈ H}, that is, every feasible

supply choice offers a single good. In this case, the PLE assigns each consumer their

most preferred good with probability ωi.19 The same outcome is also a pseudo Walrasian

equilibrium. To see this, set the price of every good equal to one so that consumer i can

afford an ωi−probability of her favorite good.20

A more interesting application of Theorem 5 are matching problems. Suppose a group

of agents must choose roommates or partners. A matching is a bijection ι from the set

of all agents to itself such that ι(ι(i)) = i for all i ∈ N . If ι(i) = i, then i is said to

be unmatched. Let K denote the set of feasible matchings. We write ιj for the feasible

matching j ∈ K.

In this case, goods are ordered pairs (i, l) denoting i’s right to match with l. Let

H = {(i, l)|i, l ∈ N} denote the commodity space. Let vi : H → IR be the utility of agent

i; that is, vi(i, l) is agent i’s utility of matching with l. We normalize agents’ utilities so

that being unmatched yields 0 utility for every agent, i.e., vi(i, i) = 0, and assume that

vi(i, ι
j(i)) > 0 for some j ∈ K. We eliminate all matchings that are not individually

rational and, therefore, we assume vi(i, ι
j(i)) ≥ 0 for all j ∈ K. We set vi(i

′, ιj(i′)) = 0 if

i′ 6= i. Thus, every agent i can purchase (i′, ιj(i′)) but only agent i′ can benefit from this

purchase.

The firm supplies the goods (matches). Since it is impossible to match agents 1 and

2 and, at the same time, match agents 1 and 3, not all goods can be supplied at the same

time. Specifically, feasible F must correspond to some feasible matching ιj . Thus, let

F j = {(i, l)|l = ιj(i)}. Then, F = {F j | j ∈ K} captures the supply constraint for the

matching problem. In this economy, consumers are single-minded because the only good

in F j that may yield strictly positive utility for agent i is (i, ιj(i)). Since each agent can

match with at most one person, consumers have unit demands.

Therefore, Theorems 1 and 5 establish that in matching markets, pseudo Walrasian

equilibrium exists and that the ω-weighted Nash bargaining solution is a pseudo Walrasian

19 The most preferred good of consumer i may not be unique. In that case, the equilibrium allocation
is not unique. However, the equilibrium utility profile is unique.

20 To see why the unit demand assumption is needed, consider the following example: F = {{a}, {b}}
and there is a single consumer with utility v(a) = v(b) = 1 and v({a, b}) = 4. The auctioneer can either
supply a or b but not both. This allocation problem has a PLE but no pseudo Walrasian equilibrium.
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equilibrium payoff of the matching market with endowment ω. In particular, the Nash

bargaining solution is a pseudo Walrasian equilibrium payoff of the matching market with

equal endowments.

The matching market features personalized commodities, that is, good (i, l) yields zero

utility for all agents other than i, l. We can use Theorem 5 and the idea of personalized

goods to show that for each allocation problem there exists a utility-equivalent alternative

in which pseudo Walrasian and pseudo Walrasian payoffs coincide. As in the previous

section, we say that the allocation A and A∗ are utility equivalent if they correspond to

the same bargaining problem. For A = (H,F , v), construct the following utility-equivalent

allocation problem A∗ = (H∗,F∗, v∗). The goods are personalized commodity bundles:

H∗ = {h∗|h∗ = (i,M) ∈ N × 2H}

The feasible supply choices F∗ correspond to the feasible allocations:

F∗ = {{(i, aji ) | i ∈ N}j∈K}

The utilities are unit demand and respect personalization:

v∗i (l,M) =
{
vi(M) if i = l
0 otherwise.

We have constructed A∗ to be utility-equivalent with A and, therefore, Theorem 1 im-

plies that LNAω = LNA
∗

ω ; furthermore, consumers in A∗ are single-minded and, therefore,

Theorem 5 implies that LNA
∗

ω = WA
∗

ω . Thus, we have the following:

Corollary: For every A, there exists a utility-equivalent A∗ such that LNA
∗

ω = WA
∗

ω .

The number of goods in A∗ can grow exponentially as the number of goods in A
grows. Therefore, the pseudo Walrasian setting loses much of its simplicity advantage

over the collective pseudo market setting once goods are personalized. Hence, applying

pseudo Walrasian methods in discrete allocation problems entails a trade-off: either fairly

restrictive assumptions must be imposed on preferences in the original market to ensure

existence, or the complexity of personalization has to be confronted. In many situations,

neither of these alternatives will be plausible and pseudo Lindahl equilibrium might be a

reasonable alternative.
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6. Conclusion

When there are indivisibilities, randomization may be needed to achieve compromise

and avoid unfair outcomes. In practice, this randomization is often employed ex ante to

assign priorities to the agents while the mechanism remains deterministic. For example,

when allocating offices, an organization may randomly determine a priority order and then

ask members to choose their preferred office sequentially. As Hylland and Zeckhauser

(1979) point out, such mechanisms lead to ex ante inefficiency. As an alternative, they

propose a market mechanism in which agents are given a budget of fiat money and choose

lotteries over the available offices. The pseudo Walrasian mechanism proposed by Hylland

and Zeckhauser is efficient but limited in its applicability to unit demand preferences. Gul,

Pesendorfer, and Zhang (2024) extend Hylland and Zeckhauser’s approach from unit de-

mand to multi-unit demand with gross substitutes utilities. As is shown in that paper,

demand complementarities create existence problems for the standard market mechanism.

Moreover, externalities and public goods render pseudo Walrasian equilibria inefficient. In

contrast, the collective pseudo markets proposed in the current paper are broadly applica-

ble to all discrete allocation problems and are always efficient.

In a collective pseudo market, each agent expresses her demand for social alternatives

rather than private outcomes. This formulation allows us to deal with a much broader range

of applications. However, the number of social alternatives can be large and, therefore,

the collective pseudo market may be too unwieldy to implement in practice. For matching

markets, we have shown that pseudo Lindahl equilibria coincide with standard Walrasian

equilibria and, therefore, each agent need only consider the set of possible partners and not

the set of possible matchings (allocations) when formulating her demand. An important

direction for future research is to examine other circumstances in which a smaller set of

markets (and prices) suffices to implement pseudo Lindahl equilibria.
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7. Appendix

7.1 Preliminaries

Let pi ∈ IRK+ be a price. We say that q is a solution to (ui, pi, ωi) if q solves

Ui(pi, ωi) = max
q
ui · q subject to pi · q ≤ ωi, e · q ≤ 1, 0 ≤ q (P)

The constraint 0 ≤ q never binds since 0 ≤ uji ,∀j and, therefore, we drop it in the remainder

of the analysis. We say that q is a least-cost solution to (ui, pi, ωi) if pi · q′ ≥ pi · q for all

solutions q′ to (ui, pi, ωi). The dual of the maximization problem (P) is

min
µ0,µ1≥0

µ0 + µ1ωi subject to µ0e+ µ1pi ≥ ui (D)

The vector (q, µ0, µ1) is feasible for (ui, pi, ωi) if q satisfies the constraints of (P) and

(µ0, µ1) satisfies the constraints of (D). A feasible vector (q, µ0, µ1) is optimal (that is, q

solves (P) and µ0, µ1 solves (D)) if and only if

µ0(e · q − 1) = 0

µ1(pi · q − ωi) = 0

for all j, qj(µ0 + µ1pji − u
j
i ) = 0

(CS)

For any utility ui and ci ≥ 0, let ūji (ci) = max{0, uji − ci} and let ūi(ci) = (ūji (ci))
K
j=1. If

ci < maxj u
j
i for some j, then ūi(ci) is a utility; that is, ūji (ci) ≥ 0 for all j and ūji (ci) > 0

for some j.

The vector (q, ci, αi) is an ideal solution to (ui, pi, ωi) if (1) q is a least-cost solution

to (ui, pi, ωi) and (2) αip
j
i ≥ u

j
i − ci for all j and αip

j
i = uji − ci for j such that qj > 0.

Lemma A1: If q ∈ Q is a least-cost solution to (ui, pi, ωi) and pi · q = ωi, then there

are ci ≥ 0 and αi > 0 such that

(i) (q, ci, αi) is an ideal solution to (ui, pi, ωi)

(ii) ūi(ci) is a utility and q is a least-cost solution to (ūi(ci), pi, ωi).

Proof: Let

J(q) =

{
{j | qj > 0} if

∑
j∈K q

j = 1

{j | qj > 0} ∪ {0} otherwise
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and set u0
i = 0 = p0

i . Let µ0, µ1 be the associated solution of the dual (D). First, consider

the case in which uji 6= umi for some j,m ∈ J(q). Then, (CS) implies µ1 > 0. Set

ci = µ0, αi = µ1. Feasibility and (CS) imply αip
l
i ≥ uli− ci with equality if ql > 0, proving

that (q, ci, αi) is an ideal solution.

Assume, without loss of generality, that uji > umi . Since αip
m
i = umi − ci and pmi ≥ 0,

we must have uji − ci > umi − ci ≥ 0. Hence, ūi(ci) is a utility. Next, we show that q

is a solution to (ūi(ci), pi, ωi). Since (q, ci, αi) is an ideal solution to (ui, pi, ωi), we have

αip
l
i ≥ uli − ci ≥ 0; that is, αip

l
i ≥ ūli(ci) for all l. Since uli − ci = ūli(ci) for all l ∈ J(q) we

conclude that ql(αip
l
i − ūi(ci)) = 0 for all l. Hence, (q, 0, αi) is feasible and satisfies (CS)

for (ūi(ci), pi, ωi); that is, q is a solution to (ūi(ci), pi, ωi).

Second, consider the case in which there is β = uji for all j ∈ J(q) and µ1 > 0. Set

αi = µ1 and ci = µ0. Then, arguing as above, we conclude that feasibility and (CS) imply

αip
l
i ≥ uli − ci with equality if ql > 0, and, therefore, (q, ci, αi) is an ideal solution. Since

q is a least-cost solution to (ui, pi, ωi) and pi · q = ωi, we must have pji = ωi > 0 for all

j ∈ J(q). Then, since (q, ci, αi) is an ideal solution, we have uji − ci > 0 for all j ∈ J(q).

We conclude that ūi(ci) is a utility and that αip
j
i = ūji (ci) for all j ∈ J(q). To see that q

solves (ūi(ci), pi, ωi), note that (q, 0, αi) is feasible and satisfies (CS).

Finally, consider the case in which there is β = uji for all j ∈ J(q) and µ1 = 0. Then,

by (CS), β = µ0 > 0 and 0 /∈ J(q). Hence,
∑
j∈K q

j = 1. Since q is least-cost optimal, pji

must be constant for all j ∈ J(q). Let π be this constant. Note that π > 0 since pi ·q = ωi.

Note, also, that µ0 = β ≥ uji for all j since (µ0, µ1) is feasible for (D) and µ1 = 0. Set

ci =

{
max{uji : uji < β} if {uji : uji < β} 6= ∅
0 otherwise.

αi =
β − ci
π

Clearly αi > 0, αip
j
i = αiπ = β − ci = uji − ci for all j ∈ J(q). For j /∈ J(q), if uji = β, the

least-cost optimality of q implies pji ≥ π and therefore αip
j
i ≥ β − ci = uji − ci; if uji < β,

then uji − ci ≤ 0 and hence, αip
j
i ≥ u

j
i − ci in this case as well. This proves that (q, ci, αi)

is an ideal solution. The function ūi(ci) is a utility since β − ci > 0. To see that q is a

solution to (ūi(ci), pi, ωi), note that ūji (ci) ≤ β − ci = ūi(ci) · q for all j.
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In all cases, we have established that q solves (ūi(ci), pi, ωi) and that ūi(ci) · q > 0

since ūi(ci) is a utility. It remains to show that q is a least-cost solution to (ūi(ci), pi, ωi).

Let q̂ be any other solution to (ūi(ci), pi, ωi). If q̂ solves (ui, pi, ωi), then pi · q̂ ≥ pi · q since

q is a least-cost solution to (ui, pi, ωi). If q̂ does not solve (ui, pi, ωi), then ūji (ci) + ci > uji

for some j such that q̂j > 0. In that case, ūji (ci) = 0. Since q̂ solves (ūi(ci), pi, ωi) there is

m in the support of q̂ such that ūmi (ci) > 0. Together with q̂j > 0, this implies that the

budget constraint cannot be slack, that is, pi · q̂ = ωi and, therefore, pi · q̂ ≥ pi · q = ωi also

in this case.

Lemma A2: Let o ≤ λ and vi = ui+(λi, . . . , λi) for all i. Then, (p, q) is a PLE of (u, ω)

implies (p, q) is a PLE of (v, ω).

Proof: Suppose o ≤ λ and let (p, q) be a PLE of (u, ω). Then, for all i and q̂ such that

e · q̂ ≤ 1, ui · q̂ ≤ ui · q = vi · q − λi and vi · q̂ − λi ≤ ui · q̂. It follows that q is a least-cost

solution to consumer i’s maximization problem in v. Clearly, q is a solution to the firm’s

maximization problem in the collective pseudo market v and hence (p, q) is a PLE.

Recall that A ∈ B is a simplex if A = a�∆ + b for some a such that ai > 0 for all i

and b such that bi ≥ 0 for all i. We say that the simplex A supports B at x with (exterior

normal) θ if x ∈ B ⊂ A, d(B) = d(A) and θ · y ≤ θ · x for all y ∈ A. Let ∇fω(B, x) denote

the gradient of fω(B, ·) at x. Define Aωx = conv {o, (x1/ω1)e1, . . . , (xn/ωn)en} to be the

simplex with disagreement point o and bliss point xi/ωi for agent i.

Lemma A3: Let B ∈ B and let A be a simplex.

(i) ηω(B) = ηω(B − d(B)) + d(B), ηω(A) = ω � (b(A) − d(A)) + d(A) and Nω(B) =

Nω(B − d(B)) + d(B).

(ii) Let x = ηω(B)− d(B). Then, Aωx + d(B) supports B at ηω(B) with ∇fω(B, x).

(iii) Nω(A) = {ηω(A)}.

(iv) If x ∈ B is undominated and xi > d(B)i for all i, then x = ηω(B) for some ω.

Proof: The proof of (i) is straightforward and, therefore, omitted. To prove (ii), first

assume d(B) = 0. Let x = ηω(B) and θ = ∇fω(B, ηω(B)) = (ω1/x1, . . . , ωn/xn).

Then, θ · y ≤ θ · x for all y ∈ B. Note that θ · x = 1. Hence, the simplex Aωx =
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conv {o, (x1/ω1)e1, . . . , (xn/ωn)en} supports B at ηω(B) with∇fω(B, ηω(B)). If d(B) 6= 0,

let C = B − d(B) so that d(C) = o. By the previous argument, Aωηω(C) supports C with

θ = ∇fω(C, x). By (i), ηω(B) = ηω(C) + d(B). Since ∇fω(B, ηω(B)) = ∇fω(C, ηω(C)), it

follows that Aωηω(C) + d(B) supports B at ηω(B) with ∇fω(B, ηω(B)).

To prove part (iii), first note that ηω(A) ∈ Nω(A) since A ≤ A. It remains to show

that Nω(A) is a singleton set. Assume x ∈ Nω(A). Then, there is B such that A ≤ B

and ηω(B) = x. By part (ii) there is a simplex A′ such that B ⊂ A′, d(B) = d(A′) and

x = ηω(B) = ηω(A′). Hence B ≤ A′ and therefore A ≤ A′. Since both A and A′ are

simplices either they are equal or ηω(A′) strictly dominates ηω(A). Since ηω(A′) = x, we

conclude x = ηω(A′) = ηω(A).

To prove (iv), it is enough to consider only B such that d(B) = o and appeal to (i)

above. Let x be undominated with xi > 0 for all i. Since B is a polytope (and hence

finitely generated), Theorem 1 in Arrow, Barankin and Blackwell (1953) shows that there

exists v with vi > 0 for all i such that v · x ≥ v · y for all y ∈ B. Let λi = vixi, λ =
∑
λi

and let ωi = λi/λ. Then, x maximizes fω(B, ·) since λ∇fω(B, x) = v.

7.2 Proof of Theorem 1

Lemma A4(i), below, proves one direction of Theorem 1: x ∈ Nω(Bu) implies x ∈

Lω(u).

Lemma A4: Let x ∈ Nω(Bu). Then, there is (p, q, c) such that

(i) (p, q) is a PLE of (u, ω) and (u1 · q, . . . , un · q) = x.

(ii) c ∈ IRn+ such that for all i, ci < xi and
uj
i
−ci
pj
i

= xi−ci
ωi

if pji > 0,

(iii) uji ≤ ci if and only if pji = 0,

(iv) uji ≥ ci if qj > 0

Proof: Let x ∈ Nω(Bu). Then, x = ηω(B) for some B such that Bu ≤ B. By Lemma

A3, B ⊂ Aωx̂ + d(B) such that x̂ = x − d(B) and x = ηω(Aωx̂ + d(B)). For any j ∈ K,

let yj = (uj1, . . . , u
j
n). Since x ∈ Bu there is a q ∈ Q such that x =

∑
yjqj . Since x is

on the efficient frontier of Aωx̂ + d(B), qj > 0 implies yj is also on the efficient frontier of

Aωx̂ + d(B).
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First, consider the case where d(B) = o. Then, x = x̂ and Bu ⊂ Aωx. Let yj =

(uj1, . . . , u
j
n). Since yj ∈ Aωx, it is a convex combination of the extreme points of Aωx.

Let zji be the weight of (xi/ωi)e
i in that convex combination and set pji = zji . Note that∑

j z
j
i (xi/ωi)q

j = xi and, therefore,
∑
j z

j
i q
j =

∑
j p

j
i q
j = pi · q = ωi. Furthermore,∑

i p
j
i =

∑
i z
j
i ≤ 1 for all j.

Clearly,

ui = (xi/ωi)pi

Hence, we have shown (ii). By the display equation above, for any q̂ such that pi · q̂ ≤ ωi

we have

ui · q̂ =
xi
ωi
pi · q̂ ≤ xi = ui · q

with equality if and only if pi · q̂ = pi · q = ωi. Therefore, q is a least-cost solution to the

consumer’s problem.

Recall that
∑
i p
j
i ≤ 1 for all j and that yj must be on the Pareto frontier of Aωx

whenever qj > 0. Therefore,
∑
i z
j
i = 1 whenever qj > 0 and, hence,

∑
i p
j
i = 1 for all j

such that qj > 0. This proves the optimality of q for the auctioneer and completes the

proof of (i). Set ci = 0 for all i and note that (iv) is satisfied. Note also that uji > 0 if and

only if pji > 0 and therefore (iii) is satisfied.

Next, consider the case o = d(Bu) 6= d(B). Since Bu ≤ B ⊂ Aωx̂ + d(B), we must

have d(Bu) ≤ d(B) = d(Aωx̂ + d(B)). Let c = d(B) and define a set of outcomes, K̂, as

follows: for each j ∈ K, let vφ(j) = (v
φ(j)
1 , . . . , v

φ(j)
n ) where v

φ(j)
i = max{0, yji − ci}. If

vφ(j) = vφ(l) for l 6= j, let K1 = K\{l}. Continue in this fashion until reaching Km such

that the mapping φ : Km → IRn is one to one.

Then, repeat the above construction for x̂ = x − d(B) to obtain a PLE (p, q) for

the collective pseudo market (v, ω) such that v
φ(j)
i > 0 if and only if p

φ(j)
i > 0 and

v
φ(j)
i /p

φ(j)
i = x̂i/ωi if p

φ(j)
i > 0. By Lemma A2, (p, q) is also a PLE of the collective

pseudo market (v̂, ω) such that v̂ji = vji + ci. It is straightforward to verify that this

equilibrium satisfies (ii)-(iv) above.

To convert this PLE into a PLE of the original collective pseudo market (u, ω), set

p̂ji = p
φ(j)
i for all j ∈ K. Note that v

φ(j)
i + ci ≥ uji for all j. Recall that qj > 0 implies that
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yj is on the efficient frontier of Aωx̂ + d(B) and therefore yj ≥ d(B) = c for all j such that

qj > 0. We conclude that v
φ(j)
i + ci = uji if qj > 0. It is then straightforward to verify

that (p̂, q) is a PLE of (u, ω) and that this equilibrium satisfies (ii)-(iv).

It remains to show that x ∈ Lω(u) implies x ∈ Nω(Bu). Let u and c = (c1, . . . , cn) ∈

IR+ be such that for all i there is j with uji > ci. Then, define ū(c) := (ū1(c1), · · · , ūn(cn))

where each ūi(ci) is defined as above.

Lemma A5: For all x ∈ Lω(u) there are (p, q, α, c) such that

(i) (p, q) is a PLE for (u, ω) with x = (u1 · q, . . . , un · q) and pi · q = ωi for all i;

(ii) α�∆ supports Bū(c) at ηω(α�∆) with (1/α1, . . . , 1/αn)

(iii) Bu ≤ α�∆ + c and x = ηω(α�∆) + c.

Proof: Let x ∈ Lω(u) and let (p, q) be the corresponding PLE. If pi · q < ωi for some i,

let I be the set of all such agents. Let J∗i = {j|uji ≥ umi ∀m} be the bliss outcomes for i. If

i ∈ I and qj > 0, then j ∈ J∗i since otherwise i is not choosing a utility maximizing plan.

Furthermore, since q is a least-cost solution for consumer i ∈ I, pji = pmi for all j,m such

that qj > 0 and qm > 0. Define p̄ = (p̄1, . . . , p̄n) as follows: p̄ji = ωi if i ∈ I and j ∈ J∗i ;

otherwise, p̄ji = pji . Note that consumer i can afford q at p̄. Since q is a least-cost solution

for consumer i at prices p, it must be a least-cost solution for consumer i at prices p̄ ≥ p.

We conclude that (p̄, q) is also a PLE. Moreover, every consumer satisfies p̄i · q = ωi for all

i. Hence, part (i) is satisfied.

So, assume pi · q = ωi for all i. By Lemma A1, for each i there is some ci ≥ 0 and

αi > 0 such that (q, ci, αi) is an ideal solution to (u, pi, ωi), ūi(ci) is a utility, and q is a

least-cost solution to (ūi(ci), pi, ωi). It follows that (p, q) is a PLE for (ū(c), ω) as well.

Let c = (c1, . . . , cn) and α = (α1, . . . , αn) be the corresponding vectors.

Let ri = 1
αi

and r = (r1, . . . , rn). Note that α � ∆ = IR+ ∩ {w | r · w ≤ 1}. Since

(u, pi, ωi) is an ideal solution for all i, we have αip
j
i ≥ uji − ci for all i, j and therefore,

αip
j
i ≥ ūji (ci); that is, pji ≥ riū

j
i (ci). Firm optimality of (p, q) implies 1 =

∑
i ωi =∑n

i=1 p
j
i ·q ≥

∑n
i=1 p

j
i for all j and, therefore, 1 ≥

∑
riū

j
i (ci). Thus, we have ūj(c) ∈ α�∆

and therefore, (1) Bū(c) ⊂ α�∆.

Clearly, ηω(α�∆) = α� ω. Since αip
j
i = ūji (ci) = uji − ci for all j such that qj > 0,

we have
∑
j αip

j
i q
j = xi − ci for all i. Since pi · q = ωi for all i, we have αiωi = xi − ci for
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all i; that is (2) ηω(α �∆) = x − c = ū(c) · q. That α �∆ supports Bū(c) at ηω(α �∆)

with (1/α1, . . . , 1/αn) follows from (1) and (2) above and establishes (ii).

Finally, x = ηω(α�∆) + c. Since Bū(c) ≤ α�∆ we have Bū(c) + c ≤ α�∆ + c and

since Bu ≤ Bū(c) + c, we conclude Bu ≤ α�∆ + c as desired. This proves (iii).

To complete the proof of Theorem 1, let x ∈ Lω(u) and let (p, q, α, c) have the prop-

erties defined in Lemma A5. Then, by Lemma A3(i) and Lemma A5(iii), ηω(α�∆ + c) =

ηω(α�∆)+c = x. Moreover, by Lemma A5(iii), Bu ≤ α�∆+c and therefore x ∈ Nω(Bu).

7.3 Proof of Theorem 2

Let (p, q) be a PLE and let p̄ =
∑
i pi. Revenue maximization implies that p̄ · q̂ ≤

p̄ · q ≤ 1 for all q̂ ∈ Q. If q̂ ∈ QI then q̂/ωI ∈ Q and, therefore,

p̄ · q̂ ≤ ωI (6)

for all q̂ ∈ QI .

Let I = {1, . . . , n} be the coalition of all agents and assume that there exists q̂ with

ui · q̂ ≥ ui · q for all i with a strict inequality for at least one agent. Since q is least-cost

optimal, it follows that p̄ · q̂ > p̄ · q, contradicting revenue maximization.

Let I ( {1, . . . , n}. First, consider the case pi · q = ωi for all i ∈ I. If q̂ ∈ QI and

ui · q̂ ≥ ui · q for all i ∈ I with at least one inequality strict, then p̄ · q̂ ≥
∑
i∈I pi · q̂ >∑

i∈I pi · q = ωI , contradicting equation (6). Second, consider the case pi · q < ωi for

some i ∈ I. Then, utility maximization implies that q is a bliss point for i. That is,

ui · q = maxj u
j
i > 0 and ui · q > ui · q̂ for all q̂ ∈ QI . Thus, I cannot block q.

Next, assume that n = 2 and q is an element of the pseudo core. Normalize ui so that

maxj u
j
i = 1 for i = 1, 2. Let v1 = u1 · q, v2 = u2 · q. Since q is in the pseudo core we have

(1) vi ≥ ωi for i = 1, 2 and (2) there are λ1, λ2 > 0 such that λ1v1 + λ2v2 ≥ λ1u
j
1 + λ2u

j
2

for all j = 1, . . . k. Normalize λ1, λ2 such that λivi ≥ ωi for i = 1, 2 with equality for either

i = 1 or i = 2. For concreteness, assume that λ1v1 = ω1. By (1) above, λi ≥ 1 for i = 1, 2.

Then, there exists c2 ≥ 0 such that λ2(v2− c2) = ω2. Let b = (λ1v1 +λ2v2)/λ2, a = λ1/λ2

and

S = {(x1, x2) |x1 ≥ 0, x2 ≥ c2 and x2 ≤ b− ax1}.
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It is easy to verify that S is the simplex with extreme points (0, y2), (y1, c2) and (0, c2)

where y2 = (1 + λ2c2)/λ2 and y1 = 1/λ1. Note that the ω-weighted Nash Bargaining

solution of S is (ω1y1, ω2(y2 − c2)) = (v1, v2). Since λi ≤ 1 for i = 1, 2, yi ≥ 1 for i = 1, 2.

Then (2) implies Bu ≤ S. Hence, (v1, v2) ∈ Nω(Bu) as desired.

7.4 Proof of Proposition 1

First, we show that an allocation q is a PLE if and only if, for all j in the support of

q, ∑
{i:uj

i
=1}

ωi
ui · q

≥
∑

{i:uk
i
=1}

ωi
ui · q

(7)

for all k = 1, . . . ,K.

To see why (7) is necessary, let (p, q) be a PLE. Since uji ∈ {0, 1}, there is some constant

ri ≥ 0 that does not depend on j such that for all j in the support of q, pji ∈ {0, ri}. If

ri = 0 for some i, then i’s equilibrium payoff must be 1 and uji = 1 for all j in the support

of q. Then, replace every price pji for j such that uji = 1 with p̂ji = 1. For i such that

ri 6= 0, let p̂ji = pji for all j. Clearly, (p̂, q) is also a PLE and the ris for this equilibrium

are all strictly positive.

Consumer optimality implies ui · q = ωi/ri and, therefore, ri = ωi/(ui · q). Price p̂ji

for an alternative j that yields utility 1 to i and is not in the support of q must be at least

ri. Then, auctioneer optimality implies that for j in the support of q,

∑
{i:uj

i
=1}

ωi
ui · q

=
∑
i

p̂ji ≥
∑
i

p̂ki ≥
∑

{i:uk
i
=1}

ωi
ui · q

for all k. Thus, every PLE (p, q) must satisfy condition (7) above. For the reverse direction,

let q satisfy condition (7). Then, choose pji = 0 if uji = 0 and pji = ωi/(ui · q) if uji = 1.

It is straightforward to verify that q solves the agents’ and the auctioneer’s optimization

problems at these prices.

To complete the proof, we will show that there is a unique x with the following

property: there is q such that (i) x = (u1 · q, . . . , un · q) and (ii) equation (7) is satisfied

whenever qj > 0. That such an x exists follows from the fact that pseudo Lindahl equilibria

always exist and the necessity argument above.
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For uniqueness, note that the argument above implies that for any PLE allocation we

may choose the equilibrium price to be pji = ωi/(ui · q) for all j such that uji = 1 (and

zero otherwise). Thus, for any two pseudo Lindahl outcomes q, q′, revenue maximization

implies

1 =
∑
i

ωi
ui · q

(ui · q) ≥
∑
i

ωi
ui · q

(ui · q′) (8)

for all q′. Let βi = ui·q
ui·q′ and β =

∑
i βiωi. Then, we can rewrite equation (8) as follows:

1 =
∑
i

ωi ≥
∑
i

ωi
βi

Since f(t) = 1
t is a convex function, the inequality above implies 1 ≥ 1

β . Reversing the

roles of q and q′ and rewriting equation (8) yields 1 ≥
∑
i βi = β. Hence, β = 1. Since f

is strictly convex, we conclude that βi = 1 for all i.

7.5 Proof of Theorem 3

First we show that Nω satisfies the four axioms above for any ω such that ωi > 0 for

all i. Lemma A3(iii) implies that Nω satisfies Efficiency. Scale Invariance follows since the

Nash bargaining solution satisfies Scale Invariance. To prove Consistency, let x ∈ Nω(B).

Then, there is A ≥ B such that ηω(A) = x. Let B ≥ B′ and x ∈ B′. Since the weak set

order is transitive, A ≥ B ≥ B′ implies A ≥ B′ and x ∈ Nω(B′). To prove completeness,

consider any bargaining solution S ⊂ Nω, and let x ∈ Nω(B). Then, x = ηω(A) for some

A ≥ B. By Lemma A3(iii), there is a simplex A′ such that A′ ≥ A ≥ B and ηω(A′) = x.

Since S is non-empty, Lemma A3(iii) implies that S(A′) = {x}. Consistency then implies

x ∈ S(B).

For the converse, let S be a bargaining solution that satisfies the axioms and note that

Efficiency implies S(∆) = {ω} for some weights ω. By Lemma A3(i) and (iii), Nω(∆) =

{ω}. Then, Scale Invariance implies S(a �∆ + z) = a � Nω(∆) + z = {ηω(a �∆ + z)};

that is, S(A) = Nω(A) for any simplex A. Take any bargaining set B and x ∈ S(B).

By Lemma A3(ii), there is a simplex A such that B ≤ A and ηω(A) = ηω(B). We have

already shown that x = ηω(A) ∈ S(A). Then, by Consistency, x ∈ S(B), proving Nω ⊂ S.

Then, the first part of the theorem and completeness yield S = Nω.
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7.6 Proof of Theorems 4

Let (p, q) be a pseudo Walrasian equilibrium for the private pseudo market and define

p = (p1, . . . , pn) such that pji = p(aji ). We will verify that (p, q) is PLE. Let uji be as

defined in the text. First, we show that q is a least-cost optimal plan for every agent i.

The definition of pi implies that

pi · q̂ =
∑
j

p(aji )q̂
j =

∑
M

p(M)dq̂i (M)

for every allocation q̂. Therefore, pi ·q̂ ≤ ωi implies that dq̂i ∈ B(p, ωi). Thus, q̂ is affordable

in the collective pseudo market only if dq̂i is affordable in the private pseudo market. The

definition of ui implies that ui · q̂ =
∑
M vi(M)dq̂i (M). We conclude that q̂ and dq̂i yield

the same utility. Since dqi is least-cost optimal in the private pseudo market, q must be

least-cost optimal in the collective pseudo market.

The auctioneer’s revenue from q̂ in the collective pseudo market is the same as the

revenue from dq̂T in the private pseudo market. This follows since

∑
i

pi · q̂ =
∑
j∈K

(∑
i

p(aji )

)
q̂j =

∑
j∈K

p

(⋃
i

a
j
i

)
q̂j =

∑
F∈F

p(F )dq̂T (F )

Since dqT maximizes revenue in the private pseudo market, q must maximize revenue in the

collective pseudo market.

7.7 Proof of Theorem 5

Let A = (H,F , v) and let q be PLE random allocation of the corresponding collective

pseudo market. We will show that q is pseudo Walrasian equilibrium random allocation

as well. For the (feasible) allocation j ∈ K, define F j = ∪iaji and note that F = {F j | j =

1, . . . , k}. Since agents have unit demand preferences, each a
j
i either contains an element

hji such that vi(a
j
i ) = vi(h

j
i ) > 0 or vi(a

j
i ) = 0. In the latter case, set hji = ∅.

We claim that there exists a PLE price p such that pji = pki whenever hji = hki . To

prove this assertion, let p̂ be a PLE price for the allocation q. Since q is a least-cost optimal

plan for i, hji = hki and qj > 0 implies that p̂ji ≤ p̂ki . Thus, if p̂ki > p̂ji , then qk = 0. If

we lower the price p̂ki so that it is equal to p̂ji , then the allocation q remains a least-cost
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optimal plan for consumer i and continues to maximize firm revenue. This proves the

assertion. Henceforth, we assume that the PLE price satisfies pji = pki whenever hji = hki .

Then, the function ri : H → IR, such that

ri(h) =

{
pji if hji = h for some j
0 otherwise.

is well defined.

We say that agent i is the highest bidder for good h if ri(h) ≥ rl(h) for all l ∈ N .

Single-mindedness implies that, for all F ∈ F , there is an allocation j(F ) that assigns every

good h ∈ F to its highest bidder. Hence, for each F ∈ F ,
∑
i p
j(F )
i =

∑
h∈F maxi ri(h).

We claim that qj > 0 implies j = j(F ) for some F . If not, then there exists an agent m

such that rm(hji ) > pji = ri(h
j
i ). Since rm(hji ) > 0, we have vm(hji ) > 0. Since m is single-

minded, pjm = 0. Let l denote the allocation that is identical to j except that i and m swap

their consumption bundles. Allocation l is feasible because F l = F j . Moreover, allocation l

yields greater revenue than allocation j since
∑n
i′=1 p

l
i′ =

∑n
i′=1 p

j
i′ − p

j
i + plm >

∑n
i′=1 p

j
i′ .

This contradicts revenue maximization in the collective pseudo market and, therefore,

proves the assertion.

Revenue maximization implies
∑n
i=1 p

j
i ≥

∑n
i=1 p

l
i for all l ∈ K if qj > 0. Combining

this inequality with the arguments in the previous two paragraphs, we conclude that qj > 0

implies ∑
h∈F j

max
i
ri(h) ≥

∑
h∈F

max
i
ri(h) (R)

for all F ∈ F .

Define p as follows: p(h) = maxi ri(h). We claim that (p, q) is a pseudo Walrasian

equilibrium. Inequality (R) implies that dqT maximizes the firm’s revenue. To prove con-

sumer optimality, first note that pji = p(hji ) if qj > 0 and pji ≤ p(hji ) otherwise. Thus, the

consumption lottery dqi is affordable at prices p.

To prove that dqi is optimal, first note that single-mindendess implies that there exists

at most one good h ∈ F such that vi(h) > 0. Let hFi = h denote that good if it exists and

let hFi be the empty set otherwise. Let d̂ be any consumption lottery and note that it yields

the same utility as any lottery d∗ such that d∗(hFi ) =
∑
{M :hF

i
∈M} d̂(M) for all hFi 6= ∅. For
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each F , it is feasible to assign hFi to agent i. Therefore, there exists a feasible allocation

q̂ such that hFi is allocated to agent i with probability d∗(hFi ). From the definition of p

it follows that
∑
M⊂H p(M)d̂(M) ≥

∑
pji q̂

j . Therefore, any consumption lottery that is

affordable in the private pseudo market yields the same utility as an affordable allocation

in the collective pseudo market. Since q is least-cost optimal at prices p (in the collective

pseudo market), dqi must be least-cost optimal at the prices p (in the private pseudo

market).
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