
Efficient Conservation of the Brazilian

Amazon: Estimates from a Dynamic Model∗

Rafael Araujo† Francisco Costa‡ Marcelo Sant’Anna§

April 15, 2025

Abstract

This paper estimates the Brazilian Amazon’s carbon-efficient forest cover – i.e.

when farmers internalize the social cost of carbon. We propose a dynamic discrete

choice land-use model and estimate it using a panel of land use and carbon stock of

5.7 billion pixels between 2008 and 2017. The business-as-usual scenario implies an

inefficient release of 42 billion tons of CO2 in the long run resulting from the deforesta-

tion of an area twice the size of France. A carbon tax that makes farmers internalize

the social cost of carbon would implement the efficient allocation and generate welfare

gains exceeding 1.6 trillion dollars. Responses from a carbon tax are highly convex: a

carbon tax of only $10/ton would preserve 95% of the efficient carbon stock. An excise

tax on cattle ranching, a second-best policy, achieves at most 87% of the first-best

welfare gains.
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1 Introduction

Limiting global warming hinges on drastically reducing greenhouse gas emissions over the

next decades. All but one of the mitigation pathways proposed in the last assessment of the

Intergovernmental Panel on Climate Change rely on agriculture and land use reaching net-

zero emissions by 2030 (Rogelj et al., 2018).1 Reducing deforestation in tropical ecosystems

is key to this endeavor because tropical forests hold an extraordinary amount of carbon.

Deforestation releases this carbon into the atmosphere, which makes forest clearing the

main source of CO2 emissions in tropical regions. For instance, the Brazilian Amazon alone

stored more than 200 billion tons of CO2 in 2000. Since then, deforestation in the region has

released over 17 billion tons of CO2 (De Azevedo et al., 2018), the equivalent to 3.5 times

the United States’ total fossil fuel emissions in 2020.

While preserving tropical forests has great global social value, expanding the agricultural

frontier may benefit the local population and contribute to regional development. The main

driver of forest loss in the Brazilian Amazon has been pasture expansion for extensive cattle

ranching. In our study period, between 2008 and 2017, 90% of the deforested area was

converted to pasture for extensive cattle ranching, while most of the remaining deforested

areas were converted to grow high-productivity cash crops, such as soy and maize. This

indicates sizable spatial heterogeneity in the disposition of the private benefits from exploiting

the land. Likewise, carbon is unevenly spread over the forest, representing a large spatial

dispersion in the social cost of deforestation. These spatial heterogeneities imply that the

trade-off between conservation and agriculture is essentially local and that policies blind to

these spatial heterogeneities will lead to inefficient allocations.

In this paper, we estimate the carbon-efficient forest cover in the Brazilian Amazon.

We then assess the effectiveness of environmental policies aimed at reducing emissions from

land use change and compare the welfare implications of first-best policies, which are based

on the carbon content of the forest, and second-best policies. To do so, we propose a dy-

namic discrete choice model where profit-maximizing farmers choose the land use considering

location-specific factors, such as conversion costs, flow returns, and the option value of future

land use. In our model, the carbon-efficient land use is the one in which farmers fully inter-

nalize the social value of the carbon stored in the forest when choosing whether to preserve

the vegetation or convert it into pasture or cropland. We restrict attention to this precise

definition of efficiency because we use high-resolution spatial measurements of aboveground

biomass stored in each plot of the forest.

1The only exception is the scenario in which carbon dioxide removal technologies are available at a massive
scale by 2050 (mitigation pathway S5 in Rogelj et al., 2018).
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Our model generates land use transition probabilities which depend on observed and un-

observed state variables and primitive parameters. We recover primitive parameters by using

the flow of observed land-use choices, following steps similar to Scott (2013). Specifically,

we derive an Euler equation that serves as a regression in which land-use transition proba-

bilities form the dependent variable. Furthermore, the panel structure of the data allows us

to account for fixed local unobservables during estimation. This model-based regression is

the cornerstone of our estimation for recovering the model’s structural parameters.

We estimate the model using a panel dataset that classifies the land use of more than

5.7 billion pixels – at 30 meters resolution – for each year from 2008 to 2017 in the Brazilian

Amazon (MapBiomas, 2019). We model the return of agriculture by combining potential

yield for each crop (FAO GAEZ, 2012) with price data of agricultural products at major

regional trade hubs, and newly computed transportation costs.2 The amount of aboveground

biomass stored in the vegetation of each 30-meter pixel (Zarin et al., 2016) is the key location-

specific variable that allows us to estimate the efficient forest cover and to study carbon-

based policies. We focus on forested pixels outside protected areas because protected areas

are subject to specific regulations.

We compute the carbon-efficient steady-state forest cover as the one in which agents fully

internalize the social cost of carbon of $50 per ton of CO2 (EPA, 2016). Our counterfactuals

show a gap in steady-state emissions under the business-as-usual (BAU) and the efficient

land use of 42 billion tons of CO2. This implies the Brazilian Amazon under BAU land use

would inefficiently release nine times the annual fossil fuel emissions of the United States.

In the long run, the Brazilian Amazon would be short 1,186,000 km2 of forest cover to its

efficient steady state – an area approximately twice the size of France. We calculate the

welfare loss between the BAU and efficient land use paths at approximately 1.66 trillion

dollars, mostly driven by over 2 trillion dollars in social damages from inefficient emissions.

Our framework also allows us to evaluate the evolution of land use under the efficient

and BAU long-run transitions, considering the role of forest regeneration. We find forest

regeneration has little impact on the efficient path. This implies that the efficient carbon

stock is mainly achieved by conserving native forests, especially those with high carbon

density. However, regeneration plays a substantial role in the BAU land use path, reflecting

current practices that lead to field exhaustion and abandonment. Neglecting regeneration

increases the efficient emission gap by 42% after 15 years of BAU land use.

We investigate two policy instruments to set land use closer to its carbon-efficient path.

2We estimate transportation costs for each crop from each pixel to international markets following Don-
aldson (2018). We build a complete transportation network in Brazil including roads, ports, and waterways.
We then fit a non-linear least squares model of freight cost to monetize transportation costs.
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We calculate how a tax based on the potential carbon stock of a given location could shape

farmers’ incentives to deforest. This policy can be interpreted as an implied carbon tax (or

subsidy) that changes the private forest return – e.g., increased enforcement or providing

payment for ecosystem services based on the carbon preserved in the forest. This carbon

tax is the first-best policy instrument and would implement the carbon-efficient steady-state

land use if it equates the private carbon return to the social cost of carbon. We find a convex

land-use response from a carbon tax – relatively small increases in the perceived value of

carbon substantially mitigate emissions. For example, a carbon tax of $2.5 per ton of CO2

stored in the forest would prevent 25 billion tons of CO2 from being released in the steady

state, implementing 60% of the socially efficient carbon emission reduction relative to BAU

land use. A carbon tax of $5 per ton would preserve 34 billion tons of CO2, mitigating 81%

of the inefficient emissions in the steady state. Intuitively, land is the main input for the

expansion of cattle ranching, so relatively small increases in the perceived cost of deforesting

the marginal plot represent a substantial increase in the cost structure of ranchers.

Alternatively, we consider excise taxes on cattle ranching and crops. These are second-

best policy instruments for carbon mitigation as they do not directly tie to the forest’s carbon

density. Our counterfactuals show that a 20% tax on cattle ranching returns would mitigate

15 billion tons of CO2 in emissions. Our welfare calculations indicate that a 100% tax on

cattle returns is the second-best policy, and it achieves 87% of the first-best welfare gains.

This is predominantly driven by the second-best policy implementing substantial emission

reductions (worth 1.8 trillion dollars in damages). Taxing crops has virtually no effect on

emissions, as crops account for a small share of the region’s land use.

It is worth emphasizing that our analysis pertains exclusively to the social costs imposed

by the aboveground forest carbon stock. However, forest conservation has additional so-

cial benefits as forests hold immeasurable biodiversity value, regulate regional precipitation

(Spracklen et al., 2012; Staal et al., 2018), preserve biomass in peatlands, and avoid ecosys-

tems reaching tipping points (Nobre et al., 1991; Flores et al., 2024). Considering these other

factors, we should read our estimates as lower bounds for the efficient gap. This limitation

stems from available data concerning these other externalities and not from our approach,

which can easily accommodate them once more reliable measurements become available.

This paper belongs to the emerging literature using discrete choice models to study forest

conservation policies (e.g., Heilmayr et al., 2020; Dominguez-Iino, 2021; Hsiao, 2021; Araujo,

2022). Most of these papers employ static models of land use estimated with cross-sectional

data. This is the case of Souza-Rodrigues (2019), which studies the demand for deforestation

in private properties in the Brazilian Amazon. As in our paper, the author uses the model to

investigate permanent policy changes and their long-run implications for the forest. Using
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2006 census data, Souza-Rodrigues (2019) finds that policies that are blind to the spatial

heterogeneity of the carbon stored in the forest, such as payments for preserved areas and

land taxes, can effectively reduce deforestation.

Our main contribution is to introduce a dynamic and spatially detailed framework to

study carbon conservation in the Amazon rainforest. By recognizing the inherently local

nature of forest conservation – and accounting for spatial heterogeneity in both land returns

and carbon storage –, we disentangle the loss of forest cover from CO2 emissions to assess

the cost-effectiveness of policies directly linked to the potential carbon content of the land.

This allows us to investigate the potential of carbon tax within a policy debate dominated

by quantity restrictions and direct regulation.3 Our approach based on a dynamic model

further allows us to decompose the effects of conservation and forest regeneration. We find

that the efficient land-use path is primarily driven by conservation, but regeneration plays an

important role in the BAU path. Our welfare analysis decomposes the social gains and private

losses under first- and second-best policy instruments, shedding light on the distributional

consequences of various policy options. Last, our analysis confirms that models based on

static approaches underestimate land use elasticities (Scott, 2013). This means preserving

carbon in the long run may be cheaper than previously thought.4

A related literature studies land-use decisions using static general equilibrium environ-

ments (e.g., Costinot et al., 2016; Donaldson and Hornbeck, 2016; Pellegrina, 2020). These

models abstract from forward-looking behavior and lumpy adjustments to study general

equilibrium effects in a tractable framework. A similar point can be made about the large

literature that estimates the treatment effects of different policies used to mitigate defor-

estation (e.g. Alix-Garcia et al., 2015; Jayachandran et al., 2017) and about discrete choice

approaches that capture dynamic incentives using reduced-form models (e.g., Lubowski et al.,

2006; Heilmayr et al., 2020). The literature focused on the Brazilian Amazon has shown that,

in fact, policies implemented during the 2000s were very effective in reducing deforestation

by 70% in a very short period (e.g., Nepstad et al., 2014; Assunção et al., 2015; Assunção

and Rocha, 2019; Burgess et al., 2019). Our results quantify the potential emission reduc-

tions and welfare implications of enhancing this set of policies, particularly through policies

attached to the carbon content of the forest.

Finally, we add to the literature discussing cropland responses to prices and the economic

3This can be relevant to mitigate the effect of policies known to put pressure on deforestation in designated
areas, such as infrastructure building, protected areas, or zoning (e.g. Asher et al., 2020; Soares-Filho et al.,
2010; Nolte et al., 2013; Alix-Garcia et al., 2018; Assunção et al., 2023b; Harding et al., 2021).

4We find a carbon tax of $10 per ton would preserve 95% of the carbon stored in forests outside protected
areas, while Souza-Rodrigues (2019) estimate that a carbon tax of $18.50 per ton would make farmers
indifferent between producing or preserving the forest inside their properties.
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environment (Chomitz and Gray, 1999; Lubowski et al., 2006; Fezzi and Bateman, 2011;

Scott, 2013; Harding et al., 2021; Sant’Anna, 2024). We estimate the effects of prices on

farmers’ long-run land-use choices. We find a strong substitution effect between pastureland

and cropland, and a long-run cropland elasticity with respect to crop prices higher than

what Scott (2013) estimates for the United States (also based on a dynamic model) and

what Dominguez-Iino (2021) estimate for private properties in Brazil and Argentina (based

on a static model). This highlights different land-use dynamics of a consolidated developed

agricultural region – such as the United States or within delimited private properties –

versus a developing agricultural frontier – such as in low- and middle-income countries or

areas with weak land rights. Our results are consistent with those Sant’Anna (2024) found

when studying sugarcane expansion in Brazil, using different data and estimation methods.

The paper proceeds as follows. Section 2 presents an overview of land use and defor-

estation in the Brazilian Amazon. Section 3 presents our model and derives the regression

used to recover the model’s parameters. Section 4 describes the data used to estimate the

model. Section 5 discusses the identification, estimation, and our estimates. We present the

counterfactual results and welfare analysis in Section 6. We discuss the main caveats of our

exercise and present extensions in Section 7. Section 8 concludes.

2 Background

We start with a brief background on the key elements of our empirical setting that guide our

model. We study land use in the Legal Amazon region in Brazil, the administrative region

that includes the Amazon biome and is subject to specific environmental and land use regula-

tions. In 2000, this region had 84% forest cover, amounting to five million km2 or 61% of the

Brazilian territory (Figure D.1). After years of peak deforestation, the Brazilian government

implemented the Action Plan for the Prevention and Control of Deforestation in the Legal

Amazon (PPCDAm) between 2004 and 2007, creating new environmental regulations and

strengthening enforcement. The government created new protected areas (indigenous land

and conservation units) and toughened the penalties for environmental crimes. These con-

servation policies reduced deforestation (e.g., Assunção et al., 2015; Burgess et al., 2019). We

focus on the period 2008-2017 under the new regulatory framework, studying unprotected

areas (which account for 44% of the Legal Amazon) where cash crops are allowed.

The most important agricultural activity in the region is cattle ranching, accounting

for 21% of the land use in our sample. Ranchers raise cattle in the region in extensive

operations. Cattle then moves up the supply chain for finishing in a concentrated downstream
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meatpacking industry (Dominguez-Iino, 2021). About 80% of the beef produced in Brazil is

consumed domestically. In our sample, crops accounted for only 3% of the land use in 2008

but have steadily expanded to 4% by 2017, with soybeans and maize being the main crops

(73% of cropland). Soybeans and maize production in Brazil is mainly export-oriented, with

prices determined in international markets.

Geographical determinants like soil, climate, transportation costs, and other fixed land

characteristics shape agricultural land-use choices (Bustos et al., 2016; Costinot et al., 2016;

Pellegrina, 2020). These factors will also be important in our context, especially transporta-

tion costs. Production in the Amazon relies on a sparse road network and river waterways,

with transportation costs being prohibitive in extensive areas deep in the rainforest (Souza-

Rodrigues, 2019). This is especially true for cattle and beef production which relies on road

networks and makes little use of waterways.

Table 1: Land Use Shares and Transitions in the Legal Amazon

Land use 106 km2 Land use share Land use transitions from
2008 2008 2017 2008 (row) to 2017 (column)

Forest Crop Pasture
(1) (2) (3) (4) (5) (6)

Forest 2.11 0.73 0.70 0.92 0.01 0.07
Crop 0.09 0.03 0.04 0.03 0.89 0.08
Pasture 0.62 0.21 0.22 0.13 0.05 0.81

Column (1) shows total land use, in million squared kilometers, for each land use classification in 2008.

Columns (2) and (3) report land use shares for each category in 2008 and 2017, respectively. In columns

(4) to (6), each cell indicates the share of fields transitioning from land-use row in 2008 to land-use column

in 2017. Rows do not add up to one because we omit the other category (i.e., non-classified pixels, urban

areas, and water).

Table 1 summarizes land use and land transitions in our sample of unprotected areas.

Each cell in columns (4) to (6) indicates the share of fields converting from their 2008 land

use in the ‘row’ to their 2017 land use in the ‘column.’ We can see that the main driver

of forest cover loss in the region has been the expansion of pasture for cattle ranching.

Only 1% of areas classified as forests in 2008 transitioned to crops in 2017, while an area

seven times larger transitioned from forest to pasture. Forest clearing is typically done using

fire, releasing the carbon stored in the vegetation with dire consequences that go beyond

climate change. After clearing, preparing the land for agriculture involves sunk costs, such

as removing stumps and leveling the terrain.

We leave the action of illegal loggers outside the scope of our modeling framework. Log-
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ging is typically associated with forest degradation rather than deforestation (Matricardi

et al., 2020) and evidence suggests that illegal logging in the Amazon region receded by the

end of the 2000’s (Chimeli and Soares, 2017). Unfortunately, the lack of precise data about

these activities prevents a thorough examination of those mechanisms in our context.

Forest regeneration. We also learn from transition rates that deforestation in our

setting is not a one-way street. Forest regeneration is relatively common: 13% of pasture

areas in 2008 were converted back to forests in 2017. The relatively high transition rates of

agricultural activities to forests, although understudied, constitute a relevant phenomenon

that cannot be ignored when thinking about the dynamics of land use in the Amazon.

Two exercises provide additional evidence on the extent of forest regeneration and the

reliability of this measurement. First, we use other data sources to document that between

3% and 5% of the total forest area in any given year in our sample is secondary vegetation

(i.e., areas where the forest is regrowing after being previously deforested). Second, we show

that regeneration is related to the unsustainable use of the land. Regeneration is more likely

to happen in areas with degraded pastures and, thus, less profitable for farming. That is,

the very nature of extensive cattle ranching leads farmers to cease agricultural operations

in some fields whenever agricultural activities become unprofitable (see, e.g., Pendrill et al.,

2022). Appendix C discusses these exercises in more detail.

3 Model

We formulate a dynamic discrete choice model in which profit-maximizing agents choose how

to use each plot of land every year. Agents can convert between different land uses subject

to conversion costs. In this section, we present model details and derive the structural

regression equation used to estimate model parameters.

3.1 Setup

The basic unit of decision in the model is a field, denoted by i. Fields are grouped in

locations, denoted by m.5 Each field i is run by a rational agent that chooses the profit-

maximizing land use. These agents may formally own, lease or just hold informal property

rights over the land. We only require they are residual claimants over the net discounted

cash flow of their farming operation. Agents can choose among three possible land uses

j ∈ J = {crop, pasture, forest}. That is, they can plant cash crops, use the land as pasture

5In our application, a field corresponds to 30m resolution pixel from satellite imagery, while a location
stands for a coarser 1km grid where individual fields are grouped.
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for cattle grazing, or leave it unused, typically, covered by native vegetation. This choice is

repeated every year t = 1, 2, . . . ,∞.

Each land use choice generates a profit flow πj(wmt, εimjt) in year t that depends on a

vector of location-specific state variables wmt ∈ RL – which include observable (e.g., prices,

land characteristics, transportation costs) and unobservable (to the econometrician) vari-

ables – and εimjt ∈ R which are field, choice and time specific shocks unobservable to the

econometrician. We assume a separable structure for the profit function:

πj(wmt, εimjt) = rj(wmt;α) + εimjt, (1)

where rj(·;α) is a known function up to a vector of parameters α.

Agents must pay a land conversion cost Φjk(wmt;φ), where j ∈ J denotes the current

land use and k ∈ J denotes the previous period land use. For instance, Φpasture,forest(wmt;φ)

denotes the cost (or benefit) from deforestation and conversion of the field to pasture.

Assumption 1 The evolution of location-specific state variables follows a Markov process

and it is conditionally independent from field-level information (decisions and characteristics)

– i.e., F (wm,t+1|wm,t, εimjt, j) = F (wm,t+1|wm,t).

Assumption 1 implies that field-level decisions and characteristics do not affect the evo-

lution of market-level variables. This is consistent with the idea that agents are price takers

in competitive final product markets.

Assumption 2 Field level shocks εimjt are independent over time and choices conditional

on field characteristics and location-specific state variables, with type-I extreme value distri-

bution.

Assumption 2 is standard in the dynamic discrete choice literature.6 Assumptions 1 and

2 allow us, under usual regularity conditions, to write the agent’s dynamic land use choice

problem with Bellman equations. The problem of an agent in period t, with land use k in

period t− 1 is:

V (k, wmt, εimt) = max
j∈J

{
Φjk(wmt;φ) + rj(wmt;α) + εimjt + ρE

[
V̄ (j, wm,t+1)|wmt

]}
, (2)

where V̄ (j, wmt) = Eε [V (j, wmt, εimt)], εimt ∈ R3 is the vector of shocks εimjt for each choice

j ∈ J , and ρ is the discount rate. Intuitively, in each period t, agents choose land use based

6This assumption implies that within a location m, we abstract from returns of scale or the effect of social
interactions that would imply dependence across fields within a location. However, we do not restrict the
dependence of location-specific state variables across space.
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on the expected net present value of each option, which includes the one-period flow return

in t and the continuation value in t+1. The continuation value explicitly includes the option

value of different future land uses given the current choice. For example, when deciding to

deforest and transition to pasture in period t, the agent accounts for the potentially lower

cost of transitioning from pasture to crop compared to forest to crop in t+1, as well as their

expectations about future returns. We denote the non-random component of equation (2)

as

v(j, k, wmt) = Φjk(wmt;φ) + rj(wmt;α) + ρE
[
V̄ (j, wm,t+1)|wmt

]
. (3)

We can then re-write the agent’s problem as

V (k, wmt, εimt) = max
j∈J

{v(j, k, wmt) + εimjt} . (4)

The distributional assumption on field level shocks (Assumption 2) implies the logit

conditional choice probability:

p(j|k, wmt) =
exp(v(j, k, wmt))∑

j′∈J exp(v(j
′, k, wmt))

, for k, j ∈ J. (5)

This is the probability a field transitions from land use k to land use j conditional on wmt.

The formulation above yields the Hotz and Miller (1993) inversion:

log

(
p(j|k, wmt)

p(j′|k, wmt)

)
= v(j, k, wmt)− v(j′, k, wmt), for k, j, j′ ∈ J. (6)

That is, the ratio of conditional choice probabilities of different alternatives is directly related

to the difference between the non-random components of returns from these alternatives.

Assumption 3 Φjj(wmt;φ) = 0 for all j ∈ J and wmt ∈ RL – i.e., there is no conversion

cost if the land is not converted.

From equations (3) and (6), using Assumption 3, we follow steps similar to Scott (2013)

and write an expression reminiscent of an Euler equation:

log

(
p(j|k, wmt)

p(k|k, wmt)

)
− ρ log

(
p(j|k, wm,t+1)

p(j|j, wm,t+1)

)
= Φjk(wmt;φ)− ρΦjk(wm,t+1;φ)+

rj(wmt;α)− rk(wmt;α) + ηVj (wmt)− ηVk (wmt), for j, k ∈ J, (7)

where ηVj (wmt) = ρ(E
[
V̄ (j, wm,t+1)|wmt

]
− V̄ (j, wm,t+1)) denotes the expectation error in

continuation values (see Appendix A.1 for details). This derivation relies on the one-period
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finite dependence property that holds for our model: if j is picked in t+1, it does not matter

for future choices (t + 2 onward) if either j or k were chosen in t. It allows us to eliminate

continuation values and write an optimality condition based on choices in two consecutive

periods, similar to a typical Euler equation.7

It will be useful now to separate the location-specific state vector wmt into its observable

and unobservable components. That is, wmt = (xmt, ξmt), where xmt ∈ RL−3 is a vector of

observed variables and ξmt ∈ R3 is a vector of choice specific unobserved state variables. We

require rj(·;α) to be linear in α with an additive location and choice specific unobservable:

rj(wmt;α) = ᾱj + α′
jRj(xmt) + ξjmt, for j ∈ J, (8)

where Rj(xmt) is a choice specific known function of observables, and ᾱj is an intercept. The

functional form for Rj(·) will be shaped by data availability.

We assume that land use transition costs are governed by a fixed, transition-specific

component. Additionally, to allow for extra flexibility in deforestation costs, we permit land

use transitions involving deforestation (from forest to crop or pasture) to depend on the

forest’s carbon stock at the location. The land use transition costs are then given by:

Φjk(wmt;φ) = φ̄jk + φ1{k = forest}hm, (9)

where 1{·} is the indicator function and hm is the time-invariant potential carbon stock at

location m.

Structural regression equation. Finally, we recover a regression equation by substitut-

ing (8) into (7):

log

(
p(j|k, wmt)

p(k|k, wmt)

)
− ρ log

(
p(j|k, wm,t+1)

p(j|j, wm,t+1)

)
= (1− ρ)φ̄jk + (1− ρ)φ1{k = forest}hm+

α′
jRj(xmt)− α′

kRk(xmt) + ᾱj − ᾱk + ξjmt − ξkmt + ηVj (wmt)− ηVk (wmt), for j, k ∈ J. (10)

The left-hand side depends only on conditional choice probabilities that can be observed

(estimated) directly from the data. On the right hand side, we have regressors Rj(xmt) and

Rk(xmt), aggregate shocks ξjmt and ξkmt, and an structural error ηVj (wmt)− ηVk (wmt). Given

our assumption that agents hold rational expectations, the structural error is the difference

between expected and realized continuation value. These are true error terms with mean

7Aguirregabiria and Magesan (2013) formalizes the connection between the continuous choice Euler equa-
tion and the dynamic discrete choice setting using the powerful abstraction that agents choose conditional
choice probabilities (which are continuous) ahead of idiosyncratic shock realizations.
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zero conditional on information at t and transition-specific intercept terms.

We let the ᾱj absorb choice-specific components that are constant across locations and

time. This implies ξjmt is mean zero across locations and time. Because ξjmt and ᾱj always

appear as a sum, this is a true normalization and innocuous to any counterfactual.

To disentangle conversion costs φ̄jk from ᾱj and ᾱk, we need to assume a grounding

condition. We assume that forest regeneration in our data set is driven by land left idle.

Therefore, there are no costs when transitioning from pasture or crop back to forest. This is

a natural assumption because the extent of active reforestation in the Amazon is minimal.

Assumption 4 The fixed conversion cost from crop or pasture to forest is zero – i.e.,

φ̄forest,k = 0 for k ∈ {crop, pasture}.

3.2 Flow of profits

We now discuss our specification of flow profits rj(·;α) in equation (1) for each choice of

land use. These specifications are mainly context and data-driven. Our presentation here

will anticipate many of the covariates we have gathered for our analysis.

Crop. In our setting, agriculture gives us a natural structure of flow profits for using

the land to grow crops. Products produced in each parcel of land could be transported to

destination markets and sold at market price. The net revenue from this operation is

(pct − zcm)ymc + ᾱcrop + ξcrop,m,t, (11)

where ymc is the expected yield of crop c in location m, pct is the output price in destination

markets, zmc is the transportation cost from location m to destination markets, and ᾱcrop +

ξcrop,m,t is a fixed cost associated with cropland that absorbs costs with inputs, wages, and

other unobserved factors that are allowed to vary across locations and time. Specifically, we

allow ξcrop,m,t to be correlated with potential yields and transportation costs. This may be

important in contexts in which transportation cost plays a major role in land use choices.

Although river placement may be considered exogenous, road placement may correlate with

unobserved factors affecting crop returns and land value.

We do not observe which crop is produced in each parcel. Instead, we use a weighted

average of crops produced in location m’s region:

r̃mt =
∑
c∈C

scm (pct − zmc) ymc, (12)
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where scm is the share of crop c in location m’s region. Thus, the net payoff for crop becomes:

rcrop(wmt;α) = αcropr̃mt + ᾱcrop + ξcrop,m,t, (13)

where r̃mt is the only regressor measured in monetary units (in our case, Brazilian reais).

We use its coefficient, αcrop, to give a monetary value to our counterfactuals.8

Pasture. A full structural model for pasture and livestock grazing is challenging given the

inherently dynamic nature of cattle raising, which features an important time-to-build com-

ponent. Ranchers fatten calves until they are ready for slaughter, but may adjust finishing

times depending on market conditions. Decisions about breeding or buying calves also need

to be made in anticipation of future market conditions. These cattle-raising dynamics may

have aggregate implications for beef markets, generating the cattle cycles studied by Rosen

et al. (1994). Unfortunately, there are no datasets that allow us to make clear links between

our observed pixels and the quantity or age of herds. Therefore, we choose to model the

return of pasture land as its capacity for cattle feeding, measured by the pasture suitability

index, and our measure of transportation costs:

rj(wmt;α) = α1
j,tym,j + α2

jdmym,j + ᾱj + ξj,m,t for j = pasture, (14)

where dm is road distance to port and ym,pasture is a measure of pasture suitability. We allow

for time-varying coefficients on the pasture suitability to accommodate time-varying factors

(including beef price formation) that may depend on unmodeled cattle-specific dynamics.9

Like agricultural products, livestock products must be transported to a destination market,

so we use a structure reminiscent of the one for crops in which distance interacts with

suitability. Overall, we impose less structure on pasture flow profits, being considerably

more flexible than for crops.

Forest. Finally, we model the return of leaving a field in location m unused to depend on

the carbon stock of native vegetation hm in that field. So, for j = forest, we have:

rforest(wmt;α) = αforesthm + ξforest,m,t. (15)

The coefficient αforest combines two elements. First, the effect of environmental protection

8An alternative observational equivalent presentation of our model would have αcrop = 1, as the regressor
is already measured in reais, but would allow for a free dispersion parameter in the distribution of the logit
shock.

9Allowing for time-varying coefficients is, as far as we know, new in the land use discrete choice literature.
This flexibility might be important in our context given the concentrated downstream meatpacking industry
and the domestic destination of the production (Dominguez-Iino, 2021).
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policies targeted at forest preservation that are linked to forest density. It measures how much

those policies help farmers internalize the value of the standing forest. Second, the private

costs and benefits associated with forest density. On the cost side, higher levels of carbon

stored indicate an area of dense forest that may be more susceptible to encroachment, since

the property delimitation may be blurred and more costly to enforce, resulting in potential

loss of property rights or other damages (see, e.g., Hornbeck, 2010). On the benefit side,

preserving an area with high carbon stock may correlate with benefits such as protecting

riparian forests and water springs, and avoiding soil erosion (Coad et al., 2008).

We normalize the intercept ᾱforest to zero. Therefore, other costs and benefits of keeping

forests that are not related to forest density will be captured by the intercepts of pasture

and crop returns and by the structural error ξforest,m,t.

4 Data

4.1 Land use in the Brazilian Amazon

We obtain information on land use in the Amazon biome from the MapBiomas project.10

MapBiomas uses Landsat images to classify the use of each 30-meter resolution pixel in Brazil

into several land use categories every year. We aggregate land use into four categories: crops,

pasture, forest, and other (i.e., non-classified pixels, urban areas, and water). We exclude

pixels in the other category and all protected areas from our sample.

The key element to build the dependent variable in our regression equation (10) is the

conditional choice probability p(j|k, wmt) – the probability of transitioning from land use

k to j conditional on location and time. We estimate this conditional probability non-

parametrically. Even in a large sample, the curse of dimensionality in field characteristics

implies that a full non-parametric estimation of these conditional probabilities would be

imprecise. We compute the conditional probability on the two geographical dimensions:

latitude and longitude. This reduces the number of field characteristic dimensions used. We

believe this is a good compromise for land use applications because all field characteristics

vary smoothly over space. For a given pair of years (e.g., 2008 and 2009) and a transition

(e.g., crop to pasture), we build a matrix of zeros and ones, where one indicates that a

30-meter pixel made this transition between those years. This transition matrix has many

zeros, as transition rates between some pairs of land uses are low.11 We then take the average

10Project MapBiomas - Collection 4.0 of Brazilian Land Cover & Use Map Series, accessed on 20/01/2020
through the link: http://mapbiomas.org.

11This is partially depicted in Table 1, where we highlight the low transition rates between forest to crop.
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of nearby pixels reducing our dataset resolution from 30 meters to 1 kilometer. Land-use

decisions are highly correlated across space, so working with a coarser resolution attenuates

efficiency issues arising from this spatial correlation and reduces computational costs.

We map this resolution coarsening directly into our model. A 30-meter pixel represents

a field – denoted by i in our model – and a 1-kilometer pixel represents a location – denoted

by m – where our suitability measures (ymc, ym,pasture), transportation variables (zmc, dm),

carbon stock (hm) and most importantly the aggregate shocks ξjmt are homogeneous. This

aggregation is natural in our setting, given the resolution of the remaining variables.

Even at a 1-kilometer resolution, many locations have close to zero transition rates.

Those extreme conditional choice probabilities make it impossible to compute the Hotz-

Miller inversion needed for model estimation. To deal with this, we smooth the probabilities

of each location m by applying a Gaussian filter to the grid of locations.12 This technique

is commonly used for image processing to blur the images and reduce noise. We provide

additional details on the estimation of conditional choice probabilities in Appendix B.2.

With the conditional choice probabilities in hand, we compute the dependent variable of

(10), taken as given the discount rate ρ.

Satellite-based data can contain measurement errors (Alix-Garcia and Millimet, 2022;

Torchiana et al., 2022). In particular, Torchiana et al. (2022) show that classification errors

in the cross-section may compose large transition errors and propose a methodology to correct

this type of measurement error. However, we are unable to apply this methodology. First,

we do not have access to the raw (uncorrected) MapBiomas data or ground data for the

whole Amazon in our period at our sample resolution. Second, it would be computationally

infeasible to implement the correction on the full sample. Most importantly, Mapbiomas

already applies algorithms to check and correct transitions using temporal consistency rules.

4.2 Field characteristics

We now detail the different land characteristics used to model the flow profits under different

uses in equations (13) to (15).

Carbon stock. We model the return of leaving the field i unused to depend on the carbon

stock of native vegetation in 2000 (equation 15). Our carbon stock data comes from the

Woodwell Climate Research Center, which provides values for 30-meter resolution of above-

There will be less persistence over longer periods than a year to year, so we need to deal with transitions
with much lower values than depicted in Table 1.

12We set the standard error of the Gaussian distribution to 150 kilometers to eliminate most zero transi-
tions. When applying this filter, we ignore the transition coming from pixels inside protected areas.
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ground live woody biomass that we convert to the potential of CO2 release (Zarin et al.,

2016).13 For exposition purposes, we will call this measure the carbon stock.14

The carbon stock data is key for our main counterfactual exercises as it gives us a measure

of the location-specific social cost of deforestation. We assume all carbon is released following

deforestation.15 This is motivated mostly because most of deforestation happens through

slash and burn (Cochrane, 2003). Even if not burnt, the wood from cut forest decomposes

fast due to forest humidity (Chambers et al., 2000). Figure 1a shows the amount of carbon

stored in the forest in 2000, the first year for which we have carbon stock data. For areas

deforested before 2000, our carbon stock measure will not indicate the full long-run carbon

stock potential. Therefore, we restrict our sample to pixels outside protected areas that

were not deforested before the year 2000, which amounts to 81% of the observations. For our

sample, we treat the measure of carbon stock in each pixel as the maximum attainable carbon

density that the pixel may accumulate. This implies that for our calculations, regeneration

benefits under efficient forestation do not extend to 2000s levels, likely underestimating the

regeneration potential in the Amazon.

Crop returns. We model the return for crops specified in equation (13). That is, the return

of crop in a field in location m in year t is the weighted average of the expected revenue from

different crops in location m’s region, net of transportation costs to the nearest port. We

consider soy and maize as possible crops, which constitute the bulk of cash crops produced

in the Amazon. The weighting of these different crops is taken by the share of each crop in

m’s mesoregion16 from the 2006 Census of Agriculture sourced by the Brazilian Institute of

Geography and Statistics (IBGE).

The potential yield for each crop is from the Food and Agriculture Organization’s (FAO)

Global-Agroecological Zones project, which provides crop-specific yield estimates at approx-

imately 10-kilometer resolution. Those potential yields are given for scenarios differing by

available inputs and water sources. We use the yields of high-input, market-oriented agricul-

13We only consider aboveground biomass because: (i) about 80% of the biomass of tropical forests are
aboveground (IPCC, 2019); (ii) current policy in Brazil only considers aboveground carbon, including the
Amazon Fund; (iii) we have no granular and reliable data for belowground biomass, including peatland; and
(iv) most types of forest clearing do not release belowground biomass (Malhi et al., 2008).

14This dataset builds on the methodology of Baccini et al. (2012). The unit in the original data is
megagram Biomass per hectare. To convert biomass to CO2 per hectare, this value must be divided by 2 –
giving a measure of carbon (C) – and then multiplied by 44/12 – giving a measure of carbon dioxide (CO2).
Accessed through Global Forest Watch Climate on 02/04/2020. https://data.globalforestwatch.org/

datasets/aboveground-live-woody-biomass-density.
15This follows the good practices from IPCC (2003) and the directives from the Brazilian Ministry of

Science and Technology (MCTI, 2020).
16A mesoregion is a classification from the Brazilian Institute of Geography and Statistics (IBGE) that

groups contiguous municipalities with common geographic and socioeconomic characteristics.
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Figure 1: Carbon Stock, Agricultural Potential Yield, and Transportation Costs

(a) Carbon Stock in 2000

(b) Potential Yield Maize (c) Potential Yield Soy

(d) Pasture Suitability Index (e) Transportation Costs for Soy

This figure plots carbon stock density (a), measured in 104 tons of CO2 per ha, the potential yield (tons per

hectare) of maize (b) and soy (c), the index for pasture suitability (d) from FAO-GAEZ, and the minimum

transportation costs of soybeans (e) from every pixel to the international market in Brazilian reais (R$) per
ton – the values were capped at 200 for better visualization. Values vary from blue (lower) to yellow (higher).

Figure D.4 shows a histogram with the distribution of the carbon stock data.

ture production, and rainfed cultivation, the predominant form of production in the Brazilian

Amazon. Figure 1b-c illustrate the potential yields for maize and soy. We see substantial
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variation in soy suitability and greater maize suitability in the East and Southwest regions.

To calculate the revenues of the potential yield, we use yearly maize and soy prices from the

economic research center at the College of Agriculture Luiz de Queiroz (ESALQ).

Pasture returns. We model the location-specific return for pasture grazing by interacting

potential pasture suitability with year dummies and the transportation costs to the nearest

port (equation 14). We use the potential suitability index for livestock grazing from FAO

illustrated in Figure 1d. Different from our potential yield measures for soy and maize, the

pasture suitability index is not a cardinal measure – it is not measured directly in units of

output per hectare. Given the flexible pasture returns specification, we believe this non-

cardinality is not a serious limitation.

Transportation costs. We estimate the cost of transporting agricultural products from

each pixel to the nearest export port. While the literature calibrates these parameters, we

use a state-of-the-art, data-driven approach. This requires several steps and data sources.

We provide details on the technical procedures in Appendix B.1.

We first estimate the monetary cost of transporting agricultural goods on roads. We

combine georeferenced data on roads from the National Bureau of Infrastructure DNIT with

internal freight costs of maize and soy collected by the Group of Research and Extension

in Agroindustrial Logistics at ESALQ. For each pair of locations in the freight cost data,

we compute road quality-adjusted distances for different relative transportation costs over

pixels with roads (paved and unpaved) and without roads. We then regress freight costs on

quality-adjusted distances using non-linear least squares, as in Donaldson (2018). This gives

us the monetary cost of crossing land pixels with various transport infrastructures.

Second, we collect georeferenced data on all ports and waterways from the Ministry of

Transportation to calculate transportation costs by waterways. We compute the minimum

cost to ship products from every location to the nearest final port, considering bi-modal

transportation using Dijkstra’s shortest path algorithm. This produces a map with the

monetary cost to transport each product from each location to an international port. Figure

1e plots the transportation cost of soy.

We compute the transportation cost for soybeans and maize – zm,soybeans and zm,maize

in the model. For the pasture variables, we use the quality-adjusted distance – before the

transformation to a monetary value via the freight cost regression – dm in the model.

4.3 Summary statistics

We close this section by presenting summary statistics for the main cross-section variables

used to estimate the model. Table 2 shows considerable cross-sectional variation in agri-

18



cultural suitability and transportation costs. This variation is important because we are

interested in counterfactuals with long-run shifts in agricultural returns. In our model, a

permanent increase in prices is equivalent to an increase in agricultural potential yields or

a decrease in transportation costs. Thus, the cross-sectional variation in the net returns of

crop and cattle grazing is key to calculating price elasticities based on the model.

Table 2: Descriptive Statistics

Variable: Potential yield Transportation cost Carbon Stock
Maize Soy Pasture Maize Soy

Model analog: ym,maize ym,soy ym,pasture zm,maize zm,soy hm

Unit: (t/ha) (t/ha) (index) (R$/t) (R$/t) (104t/ha)

(1) (2) (3) (4) (5) (6)

mean 5.63 3.33 5.11 103.42 102.31 0.03
std 1.43 0.58 2.25 61.21 62.08 0.02
25% 5.13 3.12 3.91 57.14 55.37 0.01
50% 5.33 3.53 5.61 92.88 91.62 0.03
75% 5.67 3.72 6.68 137.53 136.90 0.05

This table shows descriptive statistics for the field characteristics used in the model’s estimation. Trans-

portation costs are in Brazilian reais (R$) as of 2008, the first year we have data on transportation costs.

We show variation throughout the years of the potential yield multiplied by crop prices in Table D.1. Figure

D.4 shows a histogram with the distribution of the carbon stock data. Figure D.3 presents the evolution of

maize and soybeans prices, highlighting that prices were stationary over our study period.

5 Identification and Estimation

We estimate the structural equation (10) which relates the conditional choice probabilities

and returns of land uses in two steps. To allow for systematic differences across locations

in unobservables ξjmt, we first use standard panel techniques to estimate coefficients for

time-varying regressors related to crop and pasture returns. We then estimate the remaining

coefficients by Ordinary Least Squares using the equation in levels. We conduct inference

by block bootstrap with 1,000 iterations in a grid of 25km by 25km, explicitly allowing for

dependence in ξjmt across space.
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5.1 First step: Within location estimation

We take differences over time in equation (10) to eliminate the fixed location-specific com-

ponent of ξjmt:

∆Yj,k,m,t = αcropXj,k,m,t + (α1
pasture,t − α1

pasture,t−1)Wj,k,m,t +∆ζj,k,m,t, (16)

where the dependent variable ∆Yj,k,m,t is the first difference of the dependent variable in

equation (10):

∆Yj,k,m,t =

[
log

(
p(j|k, wmt)

p(k|k, wmt)

)
− ρ log

(
p(j|k, wm,t+1)

p(j|j, wm,t+1)

)]
−
[
log

(
p(j|k, wm,t−1)

p(k|k, wm,t−1)

)
− ρ log

(
p(j|k, wmt)

p(j|j, wmt)

)]
.

By estimating the model parameters accounting for location-specific fixed effects, we net out

market-level unobservables that do not change in our study period, such as distance to forest

core, agricultural technology, and access to electricity. The regressors Xj,k,m,t and Wj,k,m,t

are, respectively, the returns in difference for crop and pasture defined as:

Xj,k,m,t =


(r̃mt − r̃m,t−1) , if j = crop and k ̸= crop,

−(r̃mt − r̃m,t−1) , if k = crop and j ̸= crop,

0 , otherwise.

Wj,k,m,t =


ym,pasture , if j = pasture and k ̸= pasture,

−ym,pasture , if k = pasture and j ̸= pasture,

0 , otherwise.

Forest return is not in this equation because it does not vary across time. The error term is:

∆ζj,k,m,t =
[
ηVj (wmt)− ηVk (wmt)

]
−
[
ηVj (wm,t−1)− ηVk (wm,t−1)

]
+ [ξj,m,t − ξk,m,t]− [ξj,m,t−1 − ξk,m,t−1] .

This procedure, however, creates endogeneity in regression (16) because the error term

ηVj (wm,t−1) is a difference between expected and realized values, thus correlated with r̃mt.

To circumvent this identification issue, we follow Anderson and Hsiao (1981) and use lagged

values of returns (r̃m,t−2) as an instrument for Xj,k,m,t.
17 This is a valid instrument since

17We could, in principle, estimate the model using the Arellano and Bond (1991) estimator as Scott (2013).
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Table 3: Crop Flow Profit Coefficient

Regressor Model Parameter Estimate
(1) (2) (3)

Xj,k,i,t αcrop 0.392
(0.016)

Wj,k,i,2011 ∆α1
pasture,2011 0.034

(0.001)
Wj,k,i,2012 ∆α1

pasture,2012 -0.011
(0.001)

Wj,k,i,2013 ∆α1
pasture,2013 -0.039

(0.002)
Wj,k,i,2014 ∆α1

pasture,2014 0.030
(0.002)

Wj,k,i,2015 ∆α1
pasture,2015 -0.055

(0.001)
Wj,k,i,2016 ∆α1

pasture,2016 0.058
(0.001)

This table shows the estimates of αcrop obtained in the second stage regression (equation 16) using Anderson

and Hsiao (1981) estimator. Column 1 reports regressors, while Column 2 displays the corresponding model

parameters from Section 3.2, equations (14) and (15). Standard errors in parenthesis were computed with

block bootstrap with 1,000 iterations in a grid of 25km by 25km. Number of observations: 79,478,568.

r̃m,t−2 is information known at t−1, so uncorrelated with the expectational error ηVj (wm,t−1).

Prices are the only observed state variables that vary over time. So, since we take

differences in r̃mt, variation in prices over time helps identify this coefficient. However, this

is not the sole variation in r̃mt that allows the identification of the crop coefficient. In

our formulation for crop return, cross-sectional variation in potential yields and crop shares

magnify the price effect, generating substantial cross-sectional variation in Xj,k,m,t.
18

Table 3 presents estimates for equation (16). The third column displays our baseline

estimates. As expected, we estimate a positive αcrop coefficient, meaning that an increase in

crop returns increases the likelihood of land being converted to crop. Table D.2 presents the

results for the first stage, where we regress the returns variable in difference (Xj,k,m,t) on its

lagged value in level (r̃m,t−2).

The difference between the two estimators is the asymptotic efficiency. Due to our large data set – we have
79,478,568 observations in our main specification –, efficiency is not a practical problem. Moreover, the size
of our data set would make it difficult to implement Arellano and Bond (1991)’s estimator.

18From equation (12), r̃mt − r̃m,t−1 =
∑

c∈C scmymc (pct − pc,t−1), which will vary in the cross-section of
locations m. Figure D.2 displays the cross-sectional variation in crop return difference.
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5.2 Second step: Estimation in levels

We use the estimated α̂crop and ∆α̂1
pasture,t to estimate the remaining parameters in equation

(10) in levels by ordinary least squares. Table 4 shows the results. The variables composing

the pasture return do not have a direct structural interpretation, as those variables are used

to flexibly model the livestock grazing returns.

Carbon stock coefficient. The coefficient on the field’s carbon stock has an economic

interpretation. Its estimated positive value indicates that a higher carbon stock in a plot

decreases the likelihood of conversion to other uses. Monetizing the carbon stock coefficient

– i.e., dividing it by α̂crop – yields an estimated farmers’ perceived value of preserving carbon

in the forest of R$ 1.126 per ton of CO2 per year.19 This value rationalizes land use choices

in the data, reflecting the economic and regulatory incentives farmers face. It is substantially

smaller than the annualized value of most estimates of the social value of carbon, starting at

R$7.6 (Nordhaus, 2014) and centered around R$20.6 (EPA, 2016) per ton of CO2 per year.
20

Transition costs. We recover the fixed conversion costs, φ̄jk, and choice-specific constants,

ᾱj, from the transition-specific intercepts of the equation (7) in levels.21 Table 4 shows the

recovered parameters. We estimate that it is more costly to convert denser forest plots. Each

ton of CO2 in the forest increases the deforestation cost by R$10.67 per hectare. That is,

for the average forested field (carbon density of 300t/ha), about 20% of the conversion cost

from forest to pasture is due to forest density. The fixed conversion costs are all internally

consistent. The results show that the cost of clearing forests to grow crops exceeds the cost

of clearing for pasture. This aligns with the intuition that preparing land for agriculture

requires more investments than preparing land for pasture.

6 Counterfactuals

In this section, we use the estimated model to assess carbon-efficient forest cover and discuss

alternative policies to mitigate inefficient emissions. Our goal is to evaluate how policies

19Carbon stock, hm, is measured in 104t/ha, while crop return, r̃mt, in 103R$/ha. Thus, the ratio
αforest/αcrop is measured in 10t/R$. We then divide by 10 the corresponding 11.26 estimate in column 4 of
Table 4 for a measure in R$/t.

20We calculate the annuity equivalent to the social cost of carbon of US$ 18.50/ton (Nordhaus, 2014) and
US$ 50/ton (EPA, 2016) using a 10% annual interest rate and the December 2019 exchange rate of $0.243.

21We have six transition-specific intercepts τj,k for j ̸= k related to model parameters through the system
of equations:

τj,k = (1− ρ)φ̄jk + ᾱj − ᾱk, for j ̸= k.

Normalizing ᾱforest = 0 and using Assumption 4 leaves four φ̄jk and two ᾱj free, which the system justly
identifies.
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Table 4: Forest and Pasture Flow Profits Coefficients

Regressor Model Parameter Estimate /αcrop

(1) (2) (3) (4)

hm αforest 4.41 11.26
(0.32) (1.24)

hm1{k = forest} (1− ρ)φ -4.18 -10.67
(0.09) (0.50)

Wj,k,m α1
pasture,2011 0.06 -

(0.01)
Wj,k,mdm α2

pasture -0.001 -
(0.01)

Intercepts
(1− ρ)Φ(past, forest) -0.46 -1.18

(0.01) (0.05)
(1− ρ)Φ(crop, forest) -0.81 -2.06

(0.01) (0.08)
(1− ρ)Φ(crop, past) -0.60 -1.52

(0.01) (0.06)
(1− ρ)Φ(past, crop) -0.20 -0.51

(0.01) (0.02)
ᾱpasture 0.13 0.32

(0.01) (0.02)
ᾱcrop -0.66 -1.68

(0.04) (0.04)

This table presents the OLS estimates of equation (10), using α̂crop and ∆α1
pasture,t estimated in equation (16)

using Anderson and Hsiao (1981). Column 1 reports regressors, while Column 2 displays the corresponding
model parameters from Section 3.2, equations (14) and (15). Standard errors in parenthesis were computed
with block bootstrap with 1,000 iterations in a grid of 25km by 25km. Number of observations: 79,478,568.

can shape long-run land use under current market conditions. To that end, we use the

business-as-usual land use path as the benchmark to compare all policy counterfactuals.

Technically, the value function for each scenario is the key ingredient for computing the

counterfactual conditional choice probabilities (CCPs) using equation (5). Numerical com-

putation of the value function is slowed down by the size of the state space and requires

knowledge of unspecified transitions for state variables.22 We make a simplification when

computing the counterfactuals: we remove all uncertainty about location-specific state vari-

ables (wmt) by setting wm = 1
T

∑
twmt.

23 The logit errors assumption implies that the

22Estimation is performed without solving for the value function, a convenient feature shared by commonly
used dynamic discrete choice methods (Hotz and Miller, 1993; Aguirregabiria and Mira, 2007; Scott, 2013;
Kalouptsidi et al., 2021).

23Underlying market conditions can and most likely will evolve over the decades. We did not pursue the
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integrated Bellman equation has a convenient expression:

V̄ (k, wm) = log

(∑
j∈J

exp
(
Φjk(wm;φ) + rj(wm;α) + ρV̄ (j, wm)

))
+ γ, (17)

where γ is the Euler constant.

After computing V̄ (j, wm) by iteration, we use equations (3) and (5) to compute the

CCPs. We then compute the invariant distribution for each location m, giving the steady-

state probability of a pixel in m being in a specific state: Am(j, wm). Aggregating across

locations, we obtain the total steady-state land use, which we call A(j, w), where w = {wm}m.
This object is the basis for our counterfactual exercises.

6.1 Long-run effects of higher agricultural prices

In our first counterfactual exercise, we assess how agricultural price variations affect land use

and carbon release. Although indirectly linked to our main research questions, this exercise

helps situate our results in the broader literature. We compare the steady-state land use

with (w̃) and without (w) a 100 ·∆% price change and compute a long-run elasticity of land

use with respect to agricultural prices:

∂j,∆ =
A(j, w̃)− A(j, w)

A(j, w)

1

∆
. (18)

Table 5 Panel A reports land use elasticities with respect to crop prices. We estimate

an own land-use price elasticity of 6.6 for cropland (column 2). This is high compared

to the evidence for the US (Scott, 2013), but in line with similar estimates for Brazilian

agriculture (Sant’Anna, 2024). Although the pasture cross-elasticity with respect to crop

price is relatively high (-0.25), most cropland increase comes from forests. We find a forest

cover elasticity with respect to crop prices of -0.42. These results align with literature

arguing market conditions increase agriculture’s pressure on forest land in areas with non-

consolidated agriculture frontiers, as common in countries with tropical forests.

In Table 5 column 4, we compute the price increase effect on carbon release, assuming all

aboveground biomass carbon stock is released by deforestation. We sum the carbon stock

of plots weighted by their probability of converting from forest to other uses. We estimate a

carbon-released elasticity with respect to crop prices of 0.13. This means a 10% crop price

alternative assumption of explicitly modeling the future trajectory of prices (including their volatility) from
2017 onwards because forecasting the evolution of prices over the next century would be highly speculative.
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Table 5: Long-run Land Use Elasticities with Respect to Crop and Cattle Prices

Forest Cover Crop Area Pasture Area Carbon Released
(1) (2) (3) (4)

Panel A. Crop price elasticities
-0.42 6.60 -0.25 0.13
(0.03) (0.15) (0.01) (0.01)

Panel B. Cattle price elasticities
-1.66 -0.44 1.43 1.82
(0.05) (0.01) (0.05) (0.08)

This table presents the long-run elasticity of forest cover, crop area, pasture area, and carbon released with
respect to crop price (Panel A) and with respect to cattle price (Panel B). Elasticities calculated with
∆ = 10% (eq. 18) price increase. Standard errors in parenthesis were computed with block bootstrap with
1,000 iterations in a grid of 25km by 25km.

increase results in an additional 0.5 gigaton of CO2 released in the steady state, amounting

to $25 billion of costs at a $50/ton social cost of carbon (EPA, 2016).

Table 5 Panel B reports land use elasticities with respect to cattle prices. We estimate a

positive own land-use price elasticity (column 3), but smaller than the cropland own price

elasticity. Although some cropland converts to pastureland (cross elasticity -0.44), the main

change in land use is forest conversion to pasture, with cross elasticities of -1.66 for forest

cover and 1.82 for carbon release. These elasticities are substantially larger than crop price

cross-elasticities, suggesting cattle market changes impact forests more than crop markets.

To illustrate the importance of considering a dynamic model featuring forward-looking

agents, we re-estimate the model and elasticities assuming myopic agents (discount factor ρ =

0). Intuitively, static models capture only the short-run relation between returns and land

use, which understates long-run responses to permanent changes in returns once forward-

looking behavior is considered. As expected, own-price land use elasticities are reduced

without forward-looking behavior: the forest cover elasticities with respect to crop and

pasture prices drop to -0.14 and -0.47, respectively. These results suggest ignoring forward-

looking behavior would understate agricultural prices’ effect on deforestation. These myopic

estimates are remarkably similar to Harding et al. (2021), which estimate a deforestation

elasticity with respect to an agricultural price index of 0.47 over 2004–2013.24

24The elasticities reported in Table 5, calculated from aggregate land-use outcomes, represent a weighted
average of millions of location-specific acreage elasticities. However, elasticities will differ for each location
because they depend directly on agricultural potential yields, transportation costs, and pasture suitability,
which all vary across locations. Figure D.5 presents histograms of elasticities by location, highlighting the
substantial heterogeneity.
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6.2 Efficient land use

In our model, the socially efficient forest cover is the one in which agents fully internalize

the externalities associated with deforestation when making land-use choices. In our main

counterfactual exercise, we quantify Amazon’s carbon-efficient conservation in the steady

state when agents internalize the social cost of carbon stored in each forest plot. We do so

by equating agents’ private perceived value of the carbon stored in the forest to the social

cost of carbon of $50 per ton of CO2.

We calculate that the steady-state efficient land use under a social cost of carbon of

$50 per ton would preserve 99.7% of the carbon stock and 97% of the forest cover in our

sample (i.e., pixels outside protected areas that were not deforested by 2000). With 99.7%

of the carbon stock already preserved when the perceived value is $50 per ton, any higher

value for the social cost of carbon would not yield meaningful additional conservation. In

comparison, in the business-as-usual (BAU) steady state, only 51% of the carbon stock would

be preserved. The efficient land use would result in 42 billion fewer tons of CO2 released

into the atmosphere relative to the BAU steady state (95% confidence interval: 39 to 45).25

This corresponds to an additional 1,186,216 km2 of forest cover relative to the BAU (95%

confidence interval: 1,130,542 to 1,241,889).

We can benchmark the magnitudes of our estimates relative to the deforestation dynamics

over the last twenty years. Hansen et al. (2013) forest loss data shows that around 565,343

km2 was deforested in the Brazilian Amazon between 2001 and 2019. De Azevedo et al.

(2018) calculates that land-use change in the Brazilian Amazon in this period released 20

billion tons of CO2. Thus, achieving the additional 1.1 million km2 of forest cover and

preserving 42 billion tons of CO2 in the efficient steady state would require ceasing the current

deforestation pattern for the next four decades. Alternatively, it would entail regenerating

most of the deforestation over the last twenty years and stopping deforestation for the next

twenty years. In sum, implementing the first-best land use is a Herculean task.

We use the spatial granularity of the data to map the pixels in which the inefficient loss of

carbon would be more severe. Figure 2 displays the excess of emissions in the BAU relative

to efficiency in each location. The difference between efficient and BAU carbon holdings

reaches up to 40,000 tons of CO2 per km2 in some locations, a social loss of $2 million per

25For each locationm, we compute the steady-state ‘forest’ land use probabilities in both BAU and efficient
scenarios and assess excess emissions:

∆CO2m = (Am(forest, w⋆
m)−Am(forest, wm))hm,

where Am(forest, w⋆
m) and Am(forest, wm) denote the steady-state probability of forest, respectively, in the

efficient and BAU scenarios. Total emissions are the sum of ∆CO2m across all locations.
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Figure 2: Geographical Distribution of Inefficient Emissions in Steady State

This map displays emissions in the BAU scenario in excess of emissions in the efficient scenario (perceived

carbon value of $50) for each pixel measured in 103t CO2/km
2.

km2. Those areas are especially around the main waterways and roads in the state of Pará.

This large gap is due to a combination of high carbon density – which drives up efficient

forest cover – and high agricultural profitability, especially because of low transportation

costs – which drives forest cover down in BAU. Meanwhile, darker regions represent places

in which the BAU is closer to efficiency. Those are areas with small carbon stock (on the

Amazonian fringe) in the states of Mato Grosso and Tocantins, where agriculture is also

more profitable. There are also low gap areas in the far west, where even though carbon

stock is high, transportation costs are prohibitive. This heat map can be a useful tool for

the design of cost-effective targeted conservation policies.

Because our model allows for land use transitions from pasture or crops back to forest,

these long-run gaps stem from differences in deforestation and regeneration dynamics. How-

ever, primary and secondary forests provide distinct environmental services, particularly

for biodiversity (Liang et al., 2022). We then investigate forest regeneration’s role in the

steady-state paths.

Figure 3 plots the forest cover and carbon stock dynamics for the efficient and BAU

scenarios considering models with and without forest regeneration. We start in year 0 with

observed 2017 land use in each location (the last year in the sample). We then track land

use evolution implied by steady-state transitions for the efficient and BAU scenarios. We

assess regeneration’s role by tracking forest cover and carbon stock with regeneration (our
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baseline) and without (i.e., only accounting for 2017 primary forests).

Figure 3 shows that forest regeneration has little impact on the forest dynamics in efficient

scenarios (solid lines). When we compare the black lines (model with regeneration) with the

red lines (model without regeneration), we see that most of the primary forests are preserved

in the efficient scenario, especially those with high carbon density.

However, we see that forest regeneration plays a substantial role in the BAU land use

path (dashed lines). For instance, excluding forest regeneration increases the gap between

efficient and BAU by 42% for forest and carbon in 15 years from 2017. This likely reflects

the region’s inherent land use dynamics, with fields used until exhausted and abandoned.

As we saw in Table 1, about 13% of pasture land in 2007 reverted back to secondary forest

ten years later. Thus, not accounting for regeneration in our model has implications for the

size and speed of divergence between the BAU and the efficient scenarios. Figure 3b shows

that the emissions gaps (the difference between the solid and dashed lines) grow faster in

the model without regeneration.

Figure 3: Evolution of forest cover and carbon stock

(a) Forest Cover (b) Carbon Stock

These figures show the paths of aggregate forest cover and carbon stock starting from 2017, the last year in

our sample, under BAU and efficient steady-state transitions. In each figure, we plot the paths accounting

for forest regeneration (our baseline exercise) and without forest regeneration, in which case we only track

forest cover and carbon from forests standing in 2017.

6.3 Preserving the forest through carbon tax

We now consider how a carbon tax based on the carbon content of the land could shape

farmers’ incentives and promote forest conservation. Abstracting from other externalities, a
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Figure 4: Forest Cover and Carbon Emissions by Carbon Taxes

This figure shows the steady state forest cover (a) and carbon emissions (b) for different values of a carbon
tax. Our baseline perceived carbon value implied by the model estimates is $2.74 /t CO2. Here, we consider
carbon taxes added to the baseline perceived value of carbon. The gray shaded area shows the 95% confidence
interval computed using block bootstrap with 1,000 iterations for a grid of 25km by 25km.

carbon tax is the first-best policy instrument and implements efficient long-run land use if

it equates the perceived carbon return to its social value. In our discrete choice setting, a

carbon tax on non-forest land use generates the same incentives as a flow of Payments for

Ecosystem Services (PES) for preserving the carbon in the forest, instead of payment for

forest area preserved (as in Alix-Garcia et al., 2015; Jayachandran et al., 2017; Wong et al.,

2019). Thus, in this set of counterfactuals, we increase the perceived return of preserving

carbon in the forest αforest. We interpret the present value of this flow as a carbon tax that

can be compared to current measures of the social cost of carbon. We can also interpret the

increase in the perceived value of carbon as driven by stronger enforcement of environmental

policies – such as using remote sensing data (Assunção et al., 2023a) or rural registries to

increase compliance (Alix-Garcia et al., 2018) – as a carbon tax in our model.

We calculate steady-state land use in different scenarios considering the inclusion of

carbon taxes ranging from $0/ton to $47.26/ton, the tax that implements the efficient land

use.26 Figure 4 (and Table D.3) reports the results. The figure on the left shows the amount

of forest cover (on the horizontal axis) under different carbon taxes (on the vertical axis),

26Our estimates imply a flow carbon return of R$1.126/tCO2. Converting to present value (dividing
by 1 − ρ = 0.1) and converting to USD (exchange rate of $0.243 from Dec 2019) yields a present value of
$2.74/tCO2. Thus, a $47.26 tax plus $2.74 equates the carbon value to the social cost of carbon of $50/tCO2.
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and the figure on the right shows the amount of carbon released for different values of a

carbon tax. The main lesson from this figure is that there is a strong non-linearity in the

amount of carbon release implied by carbon taxes, with relatively small carbon taxes closing

a substantial share of the gap between the BAU and efficient forestation. For example,

a carbon tax of $2.5/ton would preserve 25 billion tons of CO2 (and 526 thousand km2),

which amounts to 60% [=25/42] of the efficient scenario carbon savings. A carbon tax of only

$10/ton would already preserve 95% [=40/42] of the efficient carbon stock. This convexity

is intuitive: preserving carbon is cheaper deeper in the forest, where carbon stock and

transportation costs are higher. As the marginal preserved land gets closer to the agricultural

frontier (with lower transportation costs), preserving carbon becomes increasingly costly.

A second intuition for this convexity is that land is the main input for expanding cattle

ranching, so relatively small increases in the perceived cost of deforestation represent a

substantial increase in the cost structure of expanding pastureland.

Figure 4b also shows that virtually all conservation gains are achieved with carbon taxes

under $10/ton, which is cheaper than most mitigation strategies based on deforestation

reduction with the potential of reducing emissions over 2 billion tons of CO2 and cheaper

than almost all other mitigation strategies based on agriculture, forestry, and other land uses

as estimated by the IPCC (Rogelj et al., 2018, Figure TS.23).27 This value is smaller than

previous estimates from Souza-Rodrigues (2019) that find that a carbon tax of $18.50/ton
would make farmers in the Amazon indifferent between producing or preserving the forest.

Two main reasons may reconcile the difference between the two estimates. First, Souza-

Rodrigues (2019) studies deforestation inside private properties using census data collected

around 2005/2006, before the complete roll-out of environmental policies introduced in the

Amazon under PPCDAm. We study deforestation in the whole unprotected Amazon after

all PPCDAm policies were in place. The stronger policies likely made deforestation more

costly, reducing the additional incentives needed for farmers to preserve forests on their land.

Second, Souza-Rodrigues (2019) estimates a static model, which tends to underestimate land

use elasticities compared to dynamic models like ours (see our discussion in Section 6.1).

Although the value of $10/ton is small compared with the previous literature, it is greater

than the current value used for the Amazon Fund, a REDD+ mechanism that compensates

Brazil for deforestation reductions at the price of $5/ton.
27While comparing our estimates with the IPCC’s is useful, we are comparing results from fundamentally

different methods and scopes. Rogelj et al. (2018) compiles mitigation costs across various sectors of the
economy for the whole world using diverse methodologies, from general computable models to expert surveys.
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6.4 Preserving the forest through taxes on cattle ranching

We now assess the potential of excise taxes on cattle ranching and crops to promote for-

est conservation. Market interventions, such as international tariffs (Abman and Lundberg,

2020; Hsiao, 2021) or bans on goods produced in areas under deforestation pressure (e.g.,

Nepstad et al., 2014; Harding et al., 2021), could potentially be used to de-incentivize de-

forestation. Such taxes are second-best policy instruments to address inefficient carbon

emissions from deforestation. We, therefore, compute the steady-state land use under sce-

narios where agents are subject to taxes on cattle or crop goods – i.e. an ad valorem tax on

the return of cattle ranching or crops.

Figure 5 displays the results of different tax levels on the return of cattle ranching (vertical

axis) on forest cover (a) and carbon emissions (b). We find that the relationship between

cattle taxes and carbon emissions is also convex, but not as much as carbon taxes. Figure

5b shows that relatively smaller taxes, such as a 20% rate, can save about 15.8 billion tons

of CO2. A 60% tax on cattle is necessary to save the 34 billion tons of CO2 saved under

a $5/ton carbon tax – marked with a vertical dashed line in the figure. We see a similar

pattern in Figure 5a that displays the amount of forest cover for each level of a cattle tax.

It shows that a 50% tax on cattle induces the same extent of forest cover in the steady state

as that implied by the $5/ton carbon tax. We also experimented with a tax on crops, but

we found that it produced only marginal changes in carbon emissions.

In sum, the low productivity economic activities currently in place in the region and the

large amounts of carbon stored in the forest make even small increases in the stringency of

environmental policies (i.e. small carbon taxes) highly effective in moving the Amazon closer

to the efficient forest cover. On the other hand, current small opportunity costs of preserving

the forest make small returns from deforestation, such as converting to extensive cattle

ranching, privately economically attractive. Thus, only large excise taxes can sufficiently

disincentivize forest conversion to mitigate inefficient carbon emissions from deforestation.

6.5 Welfare

So far we have studied the implications of first- and second-best policy instruments – the

carbon and cattle taxes – for carbon emissions and forest cover. While these policies are

effective in preserving carbon in the forest, they also impose losses on farmers’ private profits.

Next, we perform a complete welfare examination, analyzing the trade-off between private

profits and the social cost of deforestation emissions under different policy instruments.

We address two related challenges to conduct this welfare analysis in our setting. First,
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Figure 5: Effects of a Cattle Tax on Forest Cover and Carbon Released

This figure shows forest cover (a) and carbon emissions from deforestation (b) for different levels of excise
taxes on cattle ranching. Dashed lines highlight forest cover (a) and carbon emissions (b) that would follow
from a $5/ton carbon tax for comparison across policy exercises. The gray shaded area shows the 95%
confidence interval computed by using block bootstrap with 1,000 iterations for a grid of 25km by 25km.

our model is derived and estimated from the perspective of private farmers. Thus, we must

first extend the dynamic model to incorporate the social benefit of carbon holdings. Second,

in our dynamic environment, a policy will affect the immediate flow returns of different

land-use choices and their continuation values. Although these challenges could make the

evaluation of social welfare computationally cumbersome, we show in Appendix A.2 that we

can analytically decompose the social welfare in location m as

W τ (wm) = V̄ τ (wm) +
1

1− ρ
ETAXm − SCC × E∆CO2m, (19)

where W τ (wm) is the social welfare, V̄ τ (wm) is the private integrated steady-state value

function (expression (17) integrated over initial land-uses), ETAXm is the steady-state ex-

pected tax payment, SCC is the non-internalized social cost of carbon, and E∆CO2m is the

steady-state expected carbon emissions. The social welfare is thus the sum of the present

value of private profits before tax payments discounted by the social cost of expected defor-

estation.28 This decomposition is both informative and convenient as it decomposes welfare

28Expressing the present value of private profits before tax payments is interesting because this measure
is invariant to choice-equivalent policy implementations. For instance, we have discussed how a carbon tax
is equivalent to a carbon-based forest PES scheme in our model, but they have different implications for
private profits net of taxes. Using a gross measure of profits avoids this ambiguity.
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in terms that we have either already calculated or can easily compute.

Figure 6: Welfare from carbon and cattle taxes

Social welfare from (a) the carbon tax policy instrument and (b) the cattle tax ad-valorem tax. The welfare
on the y-axis is scaled to represent the fraction of the welfare gap between the efficient and BAU scenarios
captured by each policy design. The welfare notation in the legends follows the equation (19).

Figure 6a displays social welfare and its decomposition into gross private profits and

externality cost for different carbon tax levels. We identify a few key takeaways from our

welfare analysis. First, we compute that the welfare loss between the BAU (carbon tax

= 0) and the efficient (carbon tax = 47.26) land use paths is approximately 1.66 trillion

dollars. We use this welfare analysis to decompose the welfare gains into the cost of inefficient

emissions rebated (2.02 trillion dollars) minus the loss in foregone private profits (356 billion

dollars). That is, for each dollar lost in private profits, there are corrective gains over fivefold,

underscoring the sizable welfare benefits of addressing the externality.

Second, Figure 6a shows the welfare decomposition for the entire carbon tax schedule. It

indicates a strong non-linearity in the welfare gains from the carbon tax, with small carbon

taxes already capturing most of the welfare gains from this first-best policy. These gains are

predominantly driven by the substantial reduction of the externality for carbon tax values

under $15/ton of CO2, as discussed previously.

Third, we compare the welfare gains of using first- and second-best policies. Figure 6b

shows the welfare decomposition for different tax levels on the return of cattle. It shows

that the second best policy in this case – i.e, the cattle tax that maximizes welfare – is a

100% tax on the returns of cattle. Our analysis shows that the second-best policy achieves
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87% of the first-best welfare gains. Again, this is predominantly driven by the second-best

policy implementing substantial reductions in emissions (about 1.8 trillion dollars). The loss

in private profits is smaller in the second-best policy (273 billion dollars), as a cattle tax

distorts land-use decisions in favor of forests but also in favor of crops. Moreover, the cattle

tax shifts land-use returns away from pasture even in areas with low carbon density and

high pasture profitability. Additionally, the excise tax on pasture still implements more crop

planting in the Amazon than is socially optimal.

7 Caveats and extensions

Our analysis relied on assumptions and simplifications that may impact our conclusions. In

this section, we discuss the main caveats when interpreting our results and present extensions.

7.1 Tipping points

When computing the social cost of deforestation, we only look at carbon emissions from

land-use changes. This approach does not account for other externalities associated with

deforestation. The Amazon forest is part of an ecosystem of potential tipping points with

global consequences (McKay et al., 2022). As the forest generates a significant portion of its

own rainfall (Spracklen et al., 2012; Staal et al., 2018), researchers have hypothesized that

there exists a point of no return in deforestation, in which the rainforest cannot produce

the humidity the ecosystem requires. Once deforestation crosses an estimated threshold of

40%, the forest could enter a dieback path, releasing hundreds of billions of tons of CO2

into the atmosphere (Nobre et al., 1991; Sampaio et al., 2007; Franklin Jr and Pindyck,

2018). Recent literature has evolved to discuss the existence of local tipping points, where

significant portions of the forest could cross the tipping point independently, even if the entire

ecosystem does not (Gatti et al., 2021; Flores et al., 2024). This possibility underscores

the importance of understanding forest dynamics at a high spatial resolution to develop

environmental policies, especially given the considerable heterogeneity in the importance of

different regions for the forest’s stability (Araujo et al., 2023). Furthermore, a framework

for forest regeneration is essential to address any tipping points that may have been crossed.

In our long-run BAU steady state, we have deforestation of 57% of our sample, which

does not include protected areas. Assuming that in the long run all existing protected areas

remain intact and there is no regeneration of fields deforested before 2000, total deforestation

of the Amazon in the BAU steady state would be 31%, still short of the 40% tipping point.
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However, this result depends on the preservation of protected areas, which is crucial to avoid

long-term permanent changes to the biome (Soares-Filho et al., 2006, 2010).29

All these unmodeled effects are potentially big, but we know of no study explicitly com-

puting social costs arising from these effects that we could directly apply to our setting.

Therefore, we decided to take a conservative approach of only factoring in social costs related

to the release of carbon stored in the forest. However, we conjecture that these unaccounted-

for externalities are all negative, which would make the optimal forest gap even larger if we

explicitly factored them in.

7.2 Equilibrium effects and trade

In our analysis so far, we assume there are no equilibrium price effects when switching from

BAU land use to efficient land use. This is valid, for instance, if the agricultural commodities

are traded internationally and this region represents a small share of the supply,30 being

insufficient to affect world prices. Alternatively, if 100% of the beef production that used to

be in the Amazon moves elsewhere in the world without affecting prices. However, if these

conditions are not valid, an efficient carbon tax on deforestation or a tax on beef would

decrease the supply of these commodities and push world prices up, decreasing the expected

policy effects on deforestation in the Amazon but also mitigating potential “leakage” effects

elsewhere.

We consider a simple world beef market supply and demand model and investigate the

equilibrium consequences of setting land use in the Amazon to the efficient level.31 This

model suggests a small 4.16% world beef price increase from implementing our efficient land

use in the Amazon. This price increase could partially offset the decrease in deforestation by

increasing acreage as we move to a new market equilibrium, as well as harming consumers

worldwide. Given our estimated cattle supply elasticity of 1.43, this acreage offset would be

limited to 5.9% of the cattle grazing area. Because only 2% of the region is cropland and a

small share of Brazilian soybeans are harvested in the Amazon, the equilibrium effects for

crops would be even smaller.

29Our model is not designed to project land use in these areas. While we acknowledge that the assumption
that protected areas will be preserved is quite strong, any other assumption on the long-run trends of land
use in these areas would be outside the model and, therefore, similarly strong.

30In 2018, Brazil accounted for 10% of global cattle production, 7% of global maize, and 34% of global
soybeans (FAOSTAT).

31The Brazilian Amazon accounts for 4.1% of the beef world supply (FAO and IBGE) and our efficient
land use implies a reduction of 95% in the area devoted to cattle grazing, implying a 4% reduction in world
supply. Assuming the supply elasticity across the globe is the same as the one we compute for the Brazilian
Amazon (1.43) and demand elasticity of -0.45 (Brester and Wohlgenant, 1993), we find a small world price
equilibrium effect of 4.16% = 4%/(0.45 + 1.43).
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Trade. There is growing concern about the extent to which international trade may affect

deforestation (Harstad, 2024b), be it through trade agreements (Abman and Lundberg, 2020;

Farrokhi et al., 2023; Abman et al., 2024) or international demand for commodities (Harding

et al., 2021; Carreira et al., 2024). Although not our main focus, here we exploit the same

partial equilibrium setting to study the decrease of trade barriers for Brazilian beef. As

an illustrative example, we consider the potential deforestation effects of a trade agreement

between the European Union (EU) and Mercosur. We build a partial equilibrium model in

which Brazilian beef is bought by the EU and the Rest of the World (ROW), including the

domestic market. We show in Appendix A.3 how to approximate the domestic price effect

of a change in EU tariff by

dp

p
≈ s

ϵD

ϵS − ϵD
dt = −0.06

0.45

1.43 + 0.45
dt = −0.014dt, (20)

where s is the share of exports to the EU out of the Brazilian beef supply, ϵS is the Brazilian

beef supply, and ϵD is beef demand, assumed equal across EU and the ROW. We use the

same numbers for the supply and demand elasticities used in the previous exercise and the

share of exports to EU of 6%.32

We consider the extreme case in which the EU-Mercosur agreement eliminates the 20%

EU tariff on Brazilian beef33 and all non-tariff barriers, also estimated to be about 20% for

agricultural commodities (Cadot et al., 2018). Equation (20) then implies that a potential

EU-Mercosur trade agreement would increase domestic beef prices by 0.014× 0.40 = 0.6%.

The estimated elasticity of forest cover with respect to cattle prices (-1.66) implies a 0.6 ×
1.66 = 1.00% decrease in forest cover, which amounts to a total additional deforestation of

9,500 sq km (equivalent to one year of deforestation). This forest loss would release 0.46

Gt CO2 (equivalent to $23 billion of damage considering the social cost of carbon of $50
per ton of CO2). This exercise highlights the importance of conditionality clauses for trade

agreements, which can prevent the environmental damages implied by standard free trade

agreements (Harstad, 2024a).

32As in any back-of-the-envelope analysis, the exercise presented here has limitations. First, this is a
partial equilibrium model that does not incorporate other sources for beef demand. In reality, the demand
for beef faced by Brazilian producers should be more elastic. However, any elasticity value in the inelastic
range would produce similar results. Second, this approximates well the effect of marginal tariff changes,
holding fixed the share s, which may not be reasonable for all trade agreements.

33https://trade.ec.europa.eu/access-to-markets/en/results?product=0201300031&origin=BR&destination=DE.
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7.3 Carbon stock accounting

Forest regeneration. Our baseline model features a direct transition between crop and

pasture to the forest state. When calculating carbon emissions, we assumed the aggregate

steady-state forest cover holds its full carbon stock potential. However, fields that return to

the forest state may take decades to recoup their carbon potential by natural regeneration.34

This will not matter for land use in the carbon tax counterfactual, since we assume the

tax is implemented over the potential carbon stock, but it may be important for long-run

emissions.

To assess how sensitive our results are to this simplification, we consider an extreme

opposite scenario in which a field converted to forest holds zero carbon in the first 30 years.35

Table D.7 shows that in this scenario, the difference between the BAU and the efficient carbon

pricing would imply fewer 58 billion tons of CO2 emitted, compared to 42 billion tons in

our baseline. However, the amount of avoided emissions from small values of carbon tax is

similar to our baseline. E.g., a $10/ton carbon tax saves 40 billion tons relative to BAU in

our baseline (Table D.3) and 49 billion tons in this extreme exercise. These results suggest

that, while our baseline specification underestimates the size of the BAU-efficient carbon

gap, a more complete forestry modeling should not be a game-changer in evaluating small

policy changes.

A second concern about the model specification is the possibility that agents transitioning

from secondary vegetation to other land uses may have significantly different behavior than

those transitioning from native vegetation. To alleviate this concern, we estimate our model

using a smaller sample that includes only pixels that had been already deforested before 2008,

effectively estimating the parameters governing land use decisions in places with secondary

vegetation. Column 4 of Tables D.2, D.4, and D.5 show the estimates of the model with this

subsample. Table D.6 Panel C shows that, using estimates from the restricted sample, the

gap between BAU and the efficient scenarios amounts to 1,408,000 km2 and 58 billion tons

of CO2, compared to 1,186,000 km2 and 42 billion tons of CO2 in our main specification.

Peatland. In our main specification, we only consider aboveground carbon stock. This

ignores the potential relevance of belowground carbon released by deforestation, especially

carbon stored in peatlands. We address two concerns related to this point.

First, our current counterfactuals may underestimate the long-run BAU carbon emis-

sions by not considering carbon released from the ground. The main challenge to directly

address this point is that estimates of peatland area in South America are very imprecise

34Forest biomass regeneration is faster at the beginning of the regeneration process and slows down over
time. After 25 years, it recoups 70% of its original biomass (Houghton et al., 2000).

35We provide details for this exercise in Appendix B.3.

37



and vary from 100,000 to 900,000 sq. km (Xu et al., 2018), and there are no reliable data

on the carbon density of peatlands in the region (Ribeiro et al., 2021). There is also further

uncertainty about how much belowground carbon is released by deforestation (Baccini et al.,

2012). Given the difficulty of measuring belowground carbon stock, current Brazilian policy

instruments, including the Amazon Fund, do not account for belowground carbon emissions

and only consider aboveground carbon emissions. Therefore, while our counterfactuals likely

underestimate BAU carbon emissions, our counterfactuals are policy-relevant.

Second, peatlands might be a source of unobserved heterogeneity which could affect

our estimates. To assess the sensitivity of our estimates to the presence of peatlands, we

estimate our model only in a subsample excluding pixels within peatlands using the location

of peatlands from the Global Forest Watch. Tables D.4 and D.5 column 5 show that the

model estimates are nearly unchanged by the exclusion of peatlands. Panel D in Table D.6

shows that the forest and carbon gaps computed with these estimates are similar to the gaps

computed using our main specification. Thus, this exercise suggests that peatlands do not

imply considerable uncertainty about model estimates.

7.4 Technical assumptions

Discount rate. As in most applications, we do not estimate the discount factor as it

is poorly identified (Rust, 1994). We re-estimated the model and counterfactuals with a

discount factor of 0.95. In our application, this sensitivity analysis is particularly relevant

since different degrees in property rights imply different eviction risks, which would manifest

in the model as heterogeneity in discount rates.36 Most changes to model estimates refer

to conversion cost parameters (Table D.5, column 3), which are generally lower than in our

baseline. Results for main counterfactuals of interest are reported in Table D.6 Panel B.

This exercise suggests a larger carbon gap of 53Gt of CO2. Qualitatively, the effects of the

efficient policy instrument are similar and a $10 carbon tax would close 92% of the gap in

carbon emissions.

Technology. We study the equilibrium choices under technologies currently in use in the

Amazon, but farmers in the region could slowly adopt more productive technologies over

time. As a robustness check, we estimate an extension of the model where we model the

return of agriculture using the most productive technology available in nearby regions in

Brazil, the soy-maize double cropping system. Column 2 in Tables D.4 and D.5 shows that,

36An additional complexity arises if the discount rate becomes endogenous to land-use decisions, for
instance, if converting forest to pasture increases property claims. We lack the tools and good land tenure
data to explore further this mechanism, which remains a topic for future research.
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with double cropping, the carbon value that rationalizes land use is R$2.86/ton per year.

Table D.6 Panel A shows that the efficient steady state would prevent 37 billion tons of CO2

from being released into the atmosphere relative to the BAU steady state.

8 Conclusion

In this paper, we estimate the efficient level of carbon storage in the Brazilian Amazon using

an original dynamic discrete choice land-use model. We use the estimated model to compute

the long-run carbon emission gap between the optimal forest cover and the one we would have

under business-as-usual practices. We estimate this gap amounts to 42 billion tons of CO2,

with 92% from forest conversion to pasture. These results show cattle ranching will remain

a significant driver of deforestation in the Amazon in the long run. We also use the model to

quantify the effectiveness and welfare implications of a land-use carbon tax (or PES) based

on the potential carbon content of the land and excise taxes on cattle ranching and crops.

The carbon tax, by acting directly in the externality, is the first-best policy instrument since

it can implement the carbon-efficient land use. We find a very convex response of carbon

emissions from deforestation to carbon taxes, such that relatively small carbon taxes can

mitigate a substantial part of inefficient emissions. We find that the second-best policy, a

100% tax on cattle ranching, achieves 87% of the welfare gains of a carbon tax.

While the logistics of implementing a carbon tax or PES are not simple, we understand

that a practical implementation would require four key elements. First, effective technology

to identify deforestation on a large scale. Brazil has demonstrated that it can use technology

to enforce environmental compliance (Assunção et al., 2023a). Second, a reliable registry to

identify landowners. Although land tenure in the Amazon is complex, Brazil has invested in

a national land registry, which can pinpoint the exact boundaries of rural properties and their

owners. This land registry has been used to reduce deforestation (Alix-Garcia et al., 2018).

Third, a mechanism to either reward landowners for preserving the forest or penalize those

who deforest. Brazil’s new instant payment system facilitates direct payments to landowners

with smartphone and internet access. Alternatively, the regulatory framework established

by the New Forest Code of 2012 provides a basis for enforcing fines. Fourth, data on the

potential carbon stock of the land, which is publicly available from different sources. Thus,

we understand that Brazil has the main tools needed to implement the policies we study.

As with any research paper, ours has some limitations imposed by model assumptions

and the data. Perhaps the most important limitation is that we cannot account for the

value of lost biodiversity or other non-carbon externalities associated with deforestation,
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such as tipping points. Therefore, the optimal forest gap we estimate should be seen as a

lower bound. Nevertheless, we believe the numbers provided in this paper make a sensible

contribution by quantifying how the current land use pattern in the Amazon is driving the

region very far away from its long-run efficient forest cover, and by informing the policy

debate surrounding the mitigation of carbon emissions from land-use change in the Amazon.

9 Data Availability Statement

The data and code underlying this research are available on Zenodo at https://dx.doi.

org/10.5281/zenodo.14549059.
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Alix-Garcia, J. M., Sims, K. R., and Yañez-Pagans, P. (2015). Only One Tree from Each
Seed? Environmental Effectiveness and Poverty Alleviation in Mexico’s Payments for
Ecosystem Services Program. American Economic Journal: Economic Policy, 7(4):1–40.

Anderson, T. W. and Hsiao, C. (1981). Estimation of Dynamic Models with Error Compo-
nents. Journal of the American Statistical Association, 76(375):598–606.

Araujo, R. (2022). When Clouds Go Dry: An Integrated Model of Deforestation, Rainfall,
and Agriculture. Working paper.

40

https://dx.doi.org/10.5281/zenodo.14549059
https://dx.doi.org/10.5281/zenodo.14549059


Araujo, R., Assunção, J., Hirota, M., and Scheinkman, J. A. (2023). Estimating the spatial
amplification of damage caused by degradation in the amazon. Proceedings of the National
Academy of Sciences, 120(46):e2312451120.

Arellano, M. and Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo
Evidence and an Application to Employment Equations. Review of Economic Studies,
58(2):277–297.

Asher, S., Garg, T., and Novosad, P. (2020). The Ecological Impact Of Transportation
Infrastructure. Economic Journal. ueaa013.

Assunção, J., Gandour, C., and Rocha, R. (2023a). DETER-ing Deforestation in the Ama-
zon: Environmental Monitoring and Law Enforcement. American Economic Journal:
Applied Economics, 15(2):125–156.

Assunção, J., McMillan, R., Murphy, J., and Souza-Rodrigues, E. (2023b). Optimal Environ-
mental Targeting in the Amazon Rainforest. The Review of Economic Studies, 90(4):1608–
1641.

Assunção, J., Gandour, C., and Rocha, R. (2015). Deforestation Slowdown in the Brazilian
Amazon: Prices or Policies? Environment and Development Economics, 20(6):697–722.

Assunção, J. and Rocha, R. (2019). Getting Greener by Going Black: the Effect of Blacklist-
ing Municipalities on Amazon Deforestation. Environment and Development Economics,
24(2):115–137.

Baccini, A., Goetz, S. J., Walker, W., Laporte, N. T., Sun, M., Sulla-Menashe, D., et al.
(2012). Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by
Carbon-Density Maps. Nature Climate Change, 2(3):182–185.

Brester, G. W. and Wohlgenant, M. K. (1993). Correcting for Measurement Error in Food
Demand Estimation. The Review of Economics and Statistics, 75(2):352–356.

Burgess, R., Costa, F., and Olken, B. (2019). The Brazilian Amazon’s Double Reversal of
Fortune. Technical report.

Bustos, P., Caprettini, B., and Ponticelli, J. (2016). Agricultural Productivity and Structural
Transformation: Evidence from Brazil. American Economic Review, 106(6):1320–65.

Cadot, O., Gourdon, J., and Van Tongeren, F. (2018). Estimating ad valorem equivalents
of non-tariff measures: Combining price-based and quantity-based approaches.

Carreira, I., Costa, F., and Pessoa, J. P. (2024). The deforestation effects of trade and
agricultural productivity in brazil. Journal of Development Economics, 167:103217.

Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V., and Melack, J. M. (2000).
Decomposition and carbon cycling of dead trees in tropical forests of the central amazon.
Oecologia, 122:380–388.

41



Chimeli, A. B. and Soares, R. R. (2017). The Use of Violence in Illegal Markets: Evidence
from Mahogany Trade in the Brazilian Amazon. American Economic Journal: Applied
Economics, 9(4):30–57.

Chomitz, K. and Gray, D. A. (1999). Roads, Lands, Markets, and Deforestation: A Spatial
Model of Land Use in Belize. The World Bank.

Coad, L., Campbell, A., Miles, L., and Humphries, K. (2008). The Costs and Benefits of
Protected Areas for Local Livelihoods: A Review of the Current Literature. UNEP World
Conservation Monitoring Centre, Cambridge, UK.

Cochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926):913–919.

Costinot, A., Donaldson, D., and Smith, C. (2016). Evolving Comparative Advantage and
the Impact of Climate Change in Agricultural Markets: Evidence from 1.7 Million Fields
Around the World. Journal of Political Economy, 124(1):205–248.

De Azevedo, T. R., Junior, C. C., Junior, A. B., dos Santos Cremer, M., Piatto, M., Tsai,
D. S., Barreto, P., Martins, H., et al. (2018). SEEG Initiative Estimates of Brazilian
Greenhouse Gas Emissions from 1970 to 2015. Scientific Data, 5:180045.

Dominguez-Iino, T. (2021). Efficiency and Redistribution in Environmental Policy: An
Equilibrium Analysis of Agricultural Supply Chains. Technical report, working paper.

Donaldson, D. (2018). Railroads to Raj. American Economic Review, 108(4-5):899–934.

Donaldson, D. and Hornbeck, R. (2016). Railroads and American Economic Growth: A
“Market Access” Approach. Quarterly Journal of Economics, 131(2):799–858.

EPA (2016). Social Cost of Carbon. Environmental Protection Agency (EPA): Washington,
DC, USA.

Farrokhi, F., Kang, E., Pellegrina, H. S., and Sotelo, S. (2023). Deforestation: A global and
dynamic perspective. Cited on, page 6.

Fezzi, C. and Bateman, I. J. (2011). Structural Agricultural Land Use Modeling for Spa-
tial Agro-Environmental Policy Analysis. American Journal of Agricultural Economics,
93(4):1168–1188.

Flores, B. M., Montoya, E., Sakschewski, B., Nascimento, N., Staal, A., Betts, R. A., Levis,
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Heilmayr, R., Echeverŕıa, C., and Lambin, E. F. (2020). Impacts of Chilean Forest Subsidies
on Forest Cover, Carbon and Biodiversity. Nature Sustainability, 3(9):701–709.

Hornbeck, R. (2010). Barbed Wire: Property Rights and Agricultural Development. Quar-
terly Journal of Economics, 125(2):767–810.

Hotz, V. J. and Miller, R. A. (1993). Conditional Choice Probabilities and the Estimation
of Dynamic Models. Review of Economic Studies, 60(3):497–529.

Houghton, R., Skole, D., Nobre, C. A., Hackler, J., Lawrence, K., and Chomentowski,
W. H. (2000). Annual Fluxes of Carbon from Deforestation and Regrowth in the Brazilian
Amazon. Nature, 403(6767):301–304.

Hsiao, A. (2021). Coordination and Commitment in International Climate Action: Evidence
from Palm Oil. Technical report, working paper.

IPCC (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. Pen-
man, J., Gytarsky, M., Hiraishi, T., et al.

IPCC (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas
Inventories. Volume 4 Agriculture, Forestry and Other Land Use. Calvo Buendia, E.,
Tanabe, K., Kranjc, A., Baasansuren, J., et al. (eds). Published: IPCC, Switzerland.

Jayachandran, S., De Laat, J., Lambin, E. F., Stanton, C. Y., Audy, R., and Thomas, N. E.
(2017). Cash for Carbon: A Randomized Trial of Payments for Ecosystem Services to
Reduce Deforestation. Science, 357(6348):267–273.

Kalouptsidi, M., Scott, P. T., and Souza-Rodrigues, E. (2021). Linear IV Regression Estima-
tors for Structural Dynamic Discrete Choice Models. Journal of Econometrics, 222(1):778–
804.

43



Liang, J., Gamarra, J. G., Picard, N., Zhou, M., Pijanowski, B., Jacobs, D. F., Reich, P. B.,
Crowther, T. W., Nabuurs, G.-J., De-Miguel, S., et al. (2022). Co-limitation towards lower
latitudes shapes global forest diversity gradients. Nature ecology & evolution, 6(10):1423–
1437.

Lubowski, R. N., Plantinga, A. J., and Stavins, R. N. (2006). Land-use Change and Carbon
Sinks: Econometric Estimation of the Carbon Sequestration Supply Function. Journal of
Environmental Economics and Management, 51(2):135–152.

Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., and Nobre, C. A. (2008).
Climate Change, Deforestation, and the Fate of the Amazon. Science, 319(5860):169–172.

MapBiomas, P. (2019). Collection 4.0.

Matricardi, E. A. T., Skole, D. L., Costa, O. B., Pedlowski, M. A., Samek, J. H., and Miguel,
E. P. (2020). Long-term Forest Degradation Surpasses Deforestation in the Brazilian
Amazon. Science, 369(6509):1378–1382.

McKay, A., I, D., Staal, A., et al. (2022). Exceeding 1.5 c global warming could trigger
multiple climate tipping points. Science, 377(6611):eabn7950.

MCTI (2020). Quarta Comunicação Nacional do Brasil à Convenção-Quadro das Nações
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