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This paper views hiring as a contextual bandit problem: to find the best workers over

time, firms must balance “exploitation” (selecting from groups with proven track records)

with “exploration” (selecting from under-represented groups to learn about quality). Yet

modern hiring algorithms, based on supervised learning approaches, are designed solely

for exploitation. Instead, we build a resume screening algorithm that values exploration

by evaluating candidates according to their statistical upside potential. Using data from

professional services recruiting within a Fortune 500 firm, we show that this approach improves

the quality (as measured by eventual hiring rates) of candidates selected for an interview,

while also increasing demographic diversity, relative to the firm’s existing practices. The same

is not true for traditional supervised learning based algorithms, which improve hiring rates but

select far fewer Black and Hispanic applicants. Together, our results highlight the importance

of incorporating exploration in developing decision-making algorithms that are potentially

both more efficient and equitable.

Keywords: Hiring, Machine Learning, Algorithmic Fairness, Contextual Bandits, Job Search
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1. INTRODUCTION

Increasing access to job opportunity for minorities and women is crucial for reducing well-

documented race, ethnicity, and gender gaps in the economy. While a proliferation of

initiatives related to diversity, equity, and inclusion speak to firms’ interest in these issues,

a persistent doubt remains: how can firms increase diversity without sacrificing quality?

Concerns about equity–efficiency tradeoffs in hiring are predicated on the assumption

that firms are able to perfectly predict the quality of the applicants they encounter. In

such a case, any deviation from the predicted ranking—whether to select more minority or

majority group members—would result in a decline in worker quality. In practice, however,

an extensive literature has documented that firms, and the recruiters that they employ,

are often inaccurate or biased in their predictions (Benson et al., 2021; Kline et al., 2022).

Given that firms appear to be far from perfect in their ability to forecast quality, there may

be significant scope for improved evaluation tools to expand opportunities for a broader

range of candidates while maintaining or even improving worker quality.

In this paper, we examine the role of algorithms in the hiring process. Resume screening

algorithms have become increasingly prevalent in recent years, and have been used to assess

job candidates across various industries and occupations.1 2 Amazon, for instance, was

widely criticized for using a resume screening algorithm that penalized the presence of the

term “women” (for example, “captain of women’s crew team”) on resumes.3

Our paper uses data from a large Fortune 500 firm to study the decision to grant

first-round interviews for high-skill positions in consulting, financial analysis, and data

science—sectors which offer lucrative jobs with opportunities for career advancement, but

which have also been criticized for their lack of diversity. We study the impact of two types

1. Accurate adoption rates are elusive, but a 2020 survey of human resource executives found that
39% reported using predictive analytics in their hiring processes, a significant increase from just 10% in

2016 (Mercer, 2020). Furthermore, a survey of technology companies indicates that 60% plan to invest
in AI-powered recruiting software in 2018, and over 75% of recruiters believe that artificial intelligence

will revolutionize hiring practices (Bogen and Rieke, 2018a). We discuss evidence on algorithmic adoption

further in Section 2.2 Throughout this paper, we use the terms “hiring algorithm,” “hiring ML,” and
“resume screening algorithm” interchangeably to refer to algorithms that assist in making initial interview

recommendations. It remains rare for algorithms to make final hiring decisions (Raghavan et al., 2020).
2. For example, see Yala et al. (2019); McKinney (2020); Mullainathan and Obermeyer (2021);

Schrittwieser et al. (2020); Russakovsky et al. (2015); Ajunwa (2019).
3. See https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-

secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G.
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of algorithmic approaches: a supervised learning model that selects the best candidates as

predicted based on its current training data and a contextual bandit model that seeks to

expand its training data in order to learn about the best candidates over time. Our findings

demonstrate that while both algorithmic approaches improve the quality of applicants

selected by the firm, they differ in their ability to select diverse candidates. The traditional

supervised learning approach leads to a significant reduction in the number of Black and

Hispanic workers receiving interviews compared to human hiring practices. In contrast, the

contextual bandit approach increases the representation of underrepresented minorities. To

our knowledge, this study provides the first empirical evidence that algorithmic design can

lead to Pareto improvements in both representation and worker quality.

Modern hiring algorithms typically model the relationship between applicant covariates

and outcomes in a given training dataset, and then apply this model to predict outcomes

for subsequent applicants. By systematically analyzing historical examples, this supervised

learning approach can unearth predictive relationships that may be overlooked by human

recruiters. Yet because this approach implicitly assumes that past examples extend to future

applicants, firms that rely on this approach may favor groups with proven track records, to

the detriment of non-traditional applicants. Indeed, because algorithms are most frequently

used at the very top of the hiring funnel, this may prevent such applicants from accessing

even initial interviews.

We develop and evaluate an alternative algorithm that explicitly values exploration.

Our approach begins with the idea that the hiring process can be thought of as a

contextual bandit problem: in looking for the best applicants over time, a firm must

balance exploitation with exploration as it seeks to learn the predictive relationship between

applicant covariates (the context) and applicant quality (the reward). Whereas the optimal

solution to bandit problems is widely known to incorporate some exploration, supervised

learning based algorithms engage only in exploitation because they are designed to solve

static prediction problems. By contrast, bandit models are designed to solve dynamic

prediction problems that involve learning from sequential actions: in the case of hiring,

these algorithms value exploration because learning improves future choices.

Our supervised learning model (hereafter, “SL”) is based on a logit LASSO that is

trained to predict an applicant’s underlying hiring potential, e.g. whether they would
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receive and accept and offer if interviewed.4 Our model is dynamic in the sense that we

update its training data throughout our analysis period with the offer and hiring outcomes

of the applicants it chooses to interview.5 This updating allows the SL model to learn about

the quality of the applicants it selects, but the model remains myopic in the sense that it

does not incorporate the value of this learning into its selection decisions ex-ante.

Our contextual bandit approach implements an Upper Confidence Bound (hereafter,

“UCB”) algorithm. In contrast to the SL model, which evaluates candidates based on their

point estimates of hiring potential, a UCB contextual bandit selects applicants based on

the most optimistic assessment of their hiring potential. That is, among applicants with

the same predicted hiring potential, the UCB model would prefer the one for whom its

estimate is most uncertain. Once candidates are selected, we incorporate their realized

offer and hiring outcomes into the training data and update the algorithm for the next

period.

In terms of demographics, we show that a traditional SL model would interview

substantially fewer Black and Hispanic applicants relative to the firm’s current hiring

practices: a reduction from 9.4 percent under the status quo to 4.2 percent with the SL

model. In contrast, implementing a UCB model would more than double the share of

interviewed applicants who are Black or Hispanic, from 9.4 percent to 24.3 percent. Both

models increase the share of women relative to human recruiters. These results suggest

that exploration in the bandit sense—selecting candidates with covariates for which there

is more uncertainty—can lead firms to give more opportunities to workers from groups that

are under-represented in their training data, even if diversity goals are not a distinct part

of the algorithm’s mandate.

A key question, however, is what would happen to worker quality. Bandit algorithms

may increase demographic representation by exploring, but this exploration could come at

the expense of worker quality. To assess this, we must overcome a missing data problem:

we only observe hiring outcomes for candidates who were interviewed in reality.6 We take

three complementary approaches, each based on different assumptions, all of which show

4. In Section 7.1, we consider models which maximize offer likelihood.
5. In practice, we can only update the model with hiring outcomes for applicants it selects who are

also actually interviewed in practice. See Section 5.2 for a more detailed discussion of how this impacts our

analysis.
6. This is also referred to as a “selective labels” problem. See, for instance, Lakkaraju et al. (2017);

Kleinberg et al. (2018); Arnold et al. (2021).
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that algorithms outperform human recruiters in terms of identifying applicants who are

more likely to be hired by the firm.

First, we focus on the sample of interviewed candidates for whom we directly observe

hiring outcomes. Within this sample, we ask whether applicants preferred by our ML models

have a higher likelihood of being hired than applicants preferred by a human recruiter. We

find that, for both ML models, applicants with high scores are much more likely to be

hired than those with low scores. In contrast, there is almost no relationship between an

applicant’s propensity to be selected by a human, and their eventual hiring outcome; if

anything, this relationship is negative.

Our second approach uses inverse propensity score weighting to recover an estimate

of mean hiring likelihood among applicants selected from our full applicant sample. This

approach infers hiring outcomes for applicants who are not interviewed using observed

outcomes among interviewed applicants with similar covariates. The propensity score

weighting approach is consistent as long as there is no selection on unobservables. In our

setting, this assumption is realistic because human recruiters have access to largely the

same resume information we do prior to making an interview decision and do not interact

with applicants. We continue to find that ML models improve hiring yield (that is, average

hire rates among interviewed applicants): 32 and 27 percent of applicants selected by the

SL and UCB models are eventually hired, respectively, compared with only 10 percent

among those selected by human recruiters.

Our third approach uses an instrumental variables strategy to address concerns about

the potential for selection on unobservables. In our setting, applicants are randomly

assigned to initial resume screeners, who vary in their leniency in granting an interview.

We show that applicants selected by stringent screeners (e.g. those subject to a higher

bar) have no better outcomes than those selected by more lax screeners: this suggests that

humans are not positively screening candidates based on their unobservables. We use this

same variation to identify the returns to following ML recommendations on the margin

by looking at instrument compliers. We find that marginal candidates with high UCB

scores have better hiring outcomes and are also more likely to be Black or Hispanic. Such

a finding suggests that following UCB recommendations on the margin would increase

both the hiring yield and the demographic diversity of selected interviewees. In contrast,

following SL recommendations on the margin would generate similar increases in hiring

yield but decrease minority representation.
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We also provide some evidence relating hiring yield to other measures of applicant

quality. We observe job performance ratings and promotion outcomes for a small subset

of workers hired in our sample. Among this selected group, we show that our ML models

(trained to maximize hiring likelihood) appear more positively correlated with on-the-

job performance ratings and future promotion outcomes than a model trained to mimic

the choices of human recruiters. This provides suggestive evidence that following ML

recommendations designed to maximize hiring yield does not come at the expense of

on-the-job performance, relative to following human recommendations.

Finally, we also show that our results are broadly robust to focusing on whether an

applicant receives an offer, rather than whether they are hired (e.g. receive and accept

an offer). We repeat much of our initial analysis using models designed to maximize offer

likelihood rather than hiring likelihood. Again, we find similar results: relative to human

practices, UCB models select a more diverse set of candidates who are also more likely

to receive offers. This same is not true for the SL-based offer model which improves offer

likelihood but selects fewer minority applicants.

Together, our main findings show that there need not be an equity-efficiency tradeoff

when it comes to expanding diversity in the workplace. Specifically, firms’ current recruiting

practices appear to be far from the Pareto frontier, leaving substantial scope for new

ML tools to improve both hiring rates and demographic representation. Incorporating

exploration in our setting would lead our firm to interview twice as many under-represented

minorities while more than doubling its predicted hiring yield. This logic is consistent with

a growing number of studies showing that firms may hold persistently inaccurate beliefs

about the quality of minority applicants, and may benefit from nudges (algorithmic or

otherwise) that generate additional signals of their quality.7

At the same time, our SL model leads to similar increases in hiring yield, but at

the cost of drastically reducing the number of Black and Hispanic applicants who are

interviewed. This divergence in demographic representation between our SL and UCB

results demonstrates the importance of algorithmic design for shaping access to labor

market opportunities.

In extensions, we consider several alternative screening policies. We show that blinding

our algorithms to race, ethnicity, and gender variables still generates increases in the share

7. For instance, see Miller (2017); Bohren et al. (2019, 2025); Lepage (2020a,b).
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of Black, Hispanic, and female applicants who are selected relative to human hiring. The

main difference between our blinded and unblinded UCB models is that the share of selected

Asian applicants increases while the share of selected White applicants decreases. We also

show that our UCB model performs better on quality when compared to a supervised

learning model in which we implement group-specific quotas. Our model further has the

advantage of achieving increases in diversity without requiring firms to explicitly specify

interview slots by sensitive categories such as race, ethnicity, and gender, a practice that

often faces legal challenges or requires information that firms may not always be able to

collect.

2. BIAS IN HIRING PRACTICES

2.1. Human Hiring

To be successful, firms must identify and hire the right workers. In most firms, this

task falls to human workers, who screen initial applications for further consideration,

conduct interviews, and make final hiring decisions. Because resumes, interviews, and

other assessment tools are limited in their ability to reveal an applicant’s potential, firms

ultimately have to rely on the personal judgment of their recruiters.

A longstanding social sciences literature shows that human evaluators perform their

jobs imperfectly. Human decision-makers may be simultaneously cognitively limited in

their ability to process data (Treisman and Gelade, 1980; Gabaix, 2019; Benjamin, 2019),

overconfident in their assessments (Svenson, 1981; Fischhoff et al., 1977; Kausel et al.,

2016), and update both too little and too much in response to feedback (Möbius et al.,

2022). In addition to these behavioral biases, evaluators may have social preferences for

particular applicants. For example, in an ethnographic study, Rivera (2012) documents how

recruiters at elite professional services firms favor applicants who share the same hobbies

(“She plays squash. Anyone who plays squash I love”). Reviewers’ biases may further be

exacerbated by time pressure, which may lead them to lean more heavily on unreliable

heuristics. In a study of hiring for software engineering roles, Lerner and Bergman (2024)

found that recruiters spent a median of 31 seconds per resume.

Such behaviors may contribute to already well-documented race, ethnicity, and gender

gaps in the labor market (Bertrand and Duflo, 2017; Blau and Kahn, 2017; Pager and

Shepherd, 2008). For example, role congruity theory suggests that managers may find
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it more difficult to imagine women succeeding in high-level roles because of a mismatch

between the qualities stereotypically associated with effective leaders and with women

(Eagly and Karau, 2002). Benson et al. (2021) find, indeed, that managers incorrectly

assess women as having lower “potential” within the firm. In a large scale correspondence

study, Kline et al. (2022) find evidence that recruiters discriminate against Black applicants

across a range of firms and industries. In a study in Eastern Europe, Bartos et al. (2016)

shows that discrimination in outcomes may be presaged by discrimination in attention:

hiring managers pay less attention when evaluating resumes with Roma-sounding names.

Recent work by Bohren et al. (2019) suggests that some of these differences may be due to

managers having incorrect biased beliefs.

A variety of studies consider ways to mitigate these biases, with mixed results. For

example, a common suggestion is that women and minorities may benefit by being evaluated

by other women and minorities. This solution, however, is often not supported in the

data: Bagues and Esteve-Volart (2010), for example, finds that the presence of women

on recruiting committees can, in fact, hurt female applicants. Another suggestion is to

require decision-makers to undertake anti-bias trainings. Yet, while lab studies have shown

that de-biasing exercises (perspective taking, counter-stereotyping) can reduce biases,

there is less evidence about their efficacy in real organizations (Paluck and Green, 2009).

Rather, evidence on durable changes in attitudes seems to come from prolonged cross-group

exposure (e.g. shared living, schooling, or service) that is difficult for firms to implement

as a policy (Bagues and Roth, 2023; Rao, 2019). Finally, affirmative-action approaches to

redressing discrimination face increasing legal scrutiny (United States Court of Appeals for

the First Circuit, 2020).

Rather than mitigating the biases that evaluators may hold, another strand of research

considers the impact of limiting their ability to exercise unconstrained judgment. Hastie

and Dawes (2001) surveys studies examining the predictive accuracy of human evaluators

across a range of settings and concludes that “expert judgments are rarely impressively

accurate and virtually never better than a mechanical judgment rule.” Less is known

about how constraining human judgment may impact diversity outcomes. Proponents of

holistic review have argued that minority groups can benefit from an evaluator’s ability

to account for assessments of adversity. At the same time, allowing for discretion may

introduce opportunities for decisions to be clouded by an evaluator’s implicit biases or

personal preference (Prendergast and Topel, 1993; Bertrand et al., 2005).
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Rules-based assessments, in essence, suggest that decisions can be improved if humans

behaved more like machines. Our paper takes this idea to its conclusion and examines how

the growing adoption of algorithms may impact both the quality and equity of firms’ hiring

practices.

2.2. Algorithmic approaches

Firms are increasingly turning toward data-driven tools to improve their hiring practices.

The most ubiquitous hiring technology is an Applicant Tracking System (ATS). While the

baseline versions of these tools simply keep track of applicants, they often offer additional

functionality, such as allowing recruiters to filter applicants based on whether their resumes

meet the requirements listed on-the-job application. A 2021 survey of employers in the US,

UK, and Germany found that 94% of respondents used some automated tools to filter or

rank candidates (Fuller et al., 2021).

In recent years, a growing number of firms have begun offering more powerful ML-based

tools that predict a candidate’s suitability for a role based on historical data on hiring and

performance in that role.8 These types of algorithms are most commonly used at the

“top of the funnel,” to prioritize applicants for initial interviews. Recruiters at this stage

often face the task of sifting through thousands of applications for just a handful of open

positions.9 Organizations surveyed about their use of such algorithms frequently express

the hope that these tools will enable them to efficiently identify qualified candidates and fill

vacancies more quickly (Bogen and Rieke, 2018b). A 2020 industry survey found that 55%

of US firms use predictive analytics at some point in their human resource decision-making

process, while 41% use algorithms to make predictions about worker fit (Mercer, 2020).10

Algorithms are also commonly used in the public sector; Nawrat (2023) reports that eight

of the ten largest US federal agencies use algorithmic screening for some roles.

The use of algorithms, moreover, is not restricted to organizations who haven specifically

chosen to buy a customized algorithmic solution. Employers, including small employers,

8. Raghavan et al. (2020) provides an overview of such vendors.
9. Fuller et al. (2021) reports that the average job opening for a corporate position posted in 2020

receives 200 applications, up from 100 in 2010.
10. Many well-known companies, such as Intel, Johnson and Johnson, Dominos, JP Morgan, United

Parcel Service, Mastercard, LinkedIn, Unilever, and Accenture, have openly acknowledged using algorithmic
hiring tools for a variety of job roles (Todd, 2019). Indeed, a recent 2023 study found that 60% of Fortune

100 firms work with a single hiring analytics company, HireVue (Nawrat, 2023).
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often post their job openings on third party job search platforms such as LinkedIn or

ZipRecruiter, all of which use ML-based tools to decide which applicants to recommend

for an open position. As a result, algorithms play a role in screening applicants even for

organizations that do not actively choose to employ algorithmic tools. Further, as AI tools

become increasingly integrated with widely used ATS systems, the use of algorithms is

likely to grow.11

Algorithms may not suffer from some of the key limitations that human recruiters

face. Whereas individual recruiters are likely to base their judgments on their own

narrow experience, algorithms are trained on much larger datasets of applicants. For

any given applicant, algorithms are able to form predictions using many variables, while

human attention is more limited.12 Algorithms also assess applicants instantaneously,

consistently, and without fatigue, in contrast with research showing that human evaluators

are inconsistent and suffer from cognitive fatigue (Gabaix, 2019; Hirshleifer et al., 2019).

Consistent with these advantages, existing evidence suggests that algorithms may

improve the quality of hiring decisions (Hoffman et al., 2017; Cowgill, 2020). Crucially,

however, a growing literature has raised questions about how the increasing adoption of

algorithms may impact equity and access to job opportunities.13 A key concern is that

algorithms may be trained on data that reflects historical inequities and, in turn, replicate

these biases (Obermeyer et al., 2019; Lambrecht and Tucker, 2019) Anecdotal accounts of

algorithmic bias in hiring have also been widely reported in the popular press: an audit

of one resume screening model, for instance, found that the two variables it most strongly

favored were being named “Jared” and playing high school lacrosse.14

Much of this criticism has implicitly focused on algorithms based on supervised learning.

Supervised learning relies on the existence of labeled datasets to train models to predict

a given outcome. In the context of hiring, these datasets tend to be based on applicants

that a firm has seen and hired in the past. A supervised learning model may then favor

applicants who play lacrosse because socioeconomic status or cultural fit has historically

11. For example, the ATS vendor Workday recently acquired the hiring prediction firm HiredScore in
order to build more AI tools into their platform: acquisition announcement here.

12. Mullainathan and Obermeyer (2021), for instance, provides evidence that the optimal number of
variables that predict patient outcomes is greater than the number that doctors can attend to.

13. For surveys of algorithmic fairness, see Bakalar et al. (2021); Barocas and Selbst (Barocas and

Selbst); Corbett-Davies et al. (2023); Cowgill and Tucker (2019). For a discussion of broader notions of

algorithmic fairness, see Kasy and Abebe (2020); Kleinberg et al. (2017).
14. See https://qz.com/1427621/companies-are-on-the-hook-if-their-hiring-algorithms-are-biased.

https://investor.workday.com/2024-02-26-Workday-Announces-Intent-to-Acquire-HiredScore
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been predictive of success in the hiring process. To the best of our knowledge, most

commercially available hiring algorithms are based on this type of approach.15

In this paper, we highlight an alternative class of algorithms that have thus far not

been applied or studied in the context of hiring: contextual bandit algorithms. Whereas

supervised learning models focus solely on selecting applicants with high predicted quality,

bandit algorithms also seek out candidates in order to learn about their quality. A small

empirical literature has shown that firms can benefit from non-algorithmic policies that

push them to adopt more exploratory practices: Miller (2017) shows that temporary

affirmative action policies can generate persistent gains in minority representation, while

Whatley (1990) documents a similar finding by examining the racial integration of firms

following World War I. We take this idea and ask whether algorithms can implement

exploration in a more efficient way.

These ideas have broader implications for various settings in which decision-makers need

to assess the quality of applicants. While we focus on hiring, these same selection problems

arise in promotion, credit scoring, loan approval, university admissions, investing, and

allocating research funding. In all these cases, decision-makers strive to gain insights into

an applicant’s quality, often in situations where historical data records may be incomplete or

biased. In such scenarios, supervised learning algorithms designed to solve static prediction

problems may not be the most suitable tools.16 Instead, our paper proposes that these

problems could be reframed as dynamic learning problems, for which exploration-based

algorithms can be particularly useful. By embracing a more adaptive and exploratory

approach, decision-makers can potentially overcome the limitations of historical data and

make more informed, forward-looking assessments of applicant quality.

15. In general, most firms do not provide information on the specifics of their proprietary algorithms.

However, several industry sources have indicated that this is true of their own algorithms. Further, most
discussions of hiring ML implicitly assume that this is the case. For example, in a survey of firm approaches,

Raghavan et al. (2020) discuss many different ways in which firms may implement supervised learning
approaches (e.g. what outcomes to train on or what historical data to use), but there is no discussion of
any alternative algorithmic approaches that firms may take. We were also unable to find any reports of

firms using bandit approaches in our review of various industry surveys, e.g. Mercer (2020); Bogen and

Rieke (2018b).
16. In many settings, such as college admissions, there has been less algorithmic adoption compared

to hiring. However, we note that the absence of explicit algorithms does not necessarily mean the absence
of (potentially biased) algorithm-like thinking. For example, academics frequently rely on institutional

affiliation when assessing the quality of a piece of research.
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3. OUR SETTING

We focus on recruiting for high-skilled, professional services positions, a sector that has seen

substantial wage and employment growth in the past two decades (BLS, 2019). At the same

time, this sector has attracted criticism for its perceived lack of diversity: female, Black, and

Hispanic applicants are substantially under-represented relative to their overall shares of the

workforce (Pew Research Center, 2018). This concern is acute enough that companies such

as Microsoft, Oracle, Allstate, Dell, JP Morgan Chase, and Citigroup offer scholarships

and internship opportunities targeted toward increasing the recruiting, retention, and

promotion of those from low-income and historically under-represented groups.17 However,

despite these efforts, organizations routinely struggle to expand the demographic diversity

of their workforce—and to retain and promote those workers—particularly in technical

positions (Jackson, 2023; Castilla, 2008; Athey et al., 2000).

The hiring process at our firm works as follows. Applicants submit their resumes to

posted jobs using the firm’s online portal. On average, our firm receives approximately 200

applications per opening, which is in line with a 2021 industry study showing that corporate

job postings receive an average of 250 applications (Fuller et al., 2021). Applicants are

first screened by human recruiters, who are full-time HR professionals employed by the

firm. Recruiters do not meet or interact with applicants and their job is to decide which

applicants to interview based only on the information submitted via the online portal.

Once a candidate passes the initial resume screening, they are invited to participate in

an initial interview. This is often a case-style interview designed to assess job skills.18 In

our data, we will use the term “interviewed” to refer to candidates who reach this initial

interview stage. Candidates who do well in this initial interview are then invited for a visit

in which they complete additional interviews, this time conducted by employees whom the

candidate is likely to be working under if hired. These interviews include additional case

interviews, as well as assessments of job fit, problem solving, and leadership. Finally, after

the interviews, the hiring team meets to discuss each candidate’s strengths and weaknesses,

grading them on a pre-defined rubric that includes assessments of their technical skills,

17. For instance, see here for a list of internship opportunities focused on minority applicants. JP

Morgan Chase created Launching Leaders and Citigroup offers the HSF/Citigroup Fellows Award.
18. For example, if the applicant was applying for a business consultant role, the interviewer may

describe a hypothetical business problem and ask how the applicant would approach it. If the candidate

were applying for a data science role, the candidate may be asked to demonstrate knowledge of statistical
principles and describe the types of analyses they might run to answer a particular question.

https://www.Blacknews.com/news/top-internship-programs-for-minority-and-Black-students-for-2018/
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communication skills, and cultural fit. The group then ultimately votes on whether or not

to extend an offer.

We focus on the resume review stage. Due to the need to divert current employees from

other productive tasks to conduct interviews, firms are highly selective when choosing which

applicants to interview: our firm rejects 95% of applicants during its initial resume review.

Because of the volume of applicants, recruiters must eliminate many applications quickly,

based on limited information. For instance, Lerner (2024) found that the median time

recruiters spent reviewing a resume was only 31 seconds. Mistakes in screening not only

impact firm productivity but may also perpetuate inequalities if recruiters inadvertently

rely on heuristics that disadvantage qualified individuals who do not fit traditional models

of success (Friedman and Laurison, 2019; Rivera, 2012). In light of these issues, we believe

that it is particularly important to understand whether algorithmic tools can be used to

improve decisions at the critical initial screening stage.

3.1. Data

Our data come from a Fortune 500 company in the United States that hires workers in

several job families spanning business and data analytics (Anonymous Firm, 2019). All of

these positions require a bachelor’s degree, with a preference for candidates graduating with

a STEM major, a master’s degree, and, often, experience with programming in Python, R

or SQL. Like other firms in its sector, our data provider faces challenges in identifying and

hiring applicants from under-represented groups. We have data on 88,666 job applications

from January 2016 to April 2019, as described in Table 1. Most applicants in our data are

male (68%), Asian (58%), or White (29%). Black and Hispanic candidates comprise 13% of

all applications, but under 5% of hires. Women, meanwhile, make up 33% of applicants and

34% of hires. We describe our sample and variables in more detail in our Data Appendix,

Sections A.1 and A.2.

3.1.1. Applicant covariates. We have information on applicants’ educational

background, work experience, referral status, basic demographics, as well as the type of

position to which they applied. Appendix Table A.I provides a list of these raw variables,

as well as some summary statistics. We have self-reported race/ethnicity (White, Asian,

Hispanic, Black, not disclosed and other), gender, veteran status, community college

experience, associate, bachelor, PhD, JD or other advanced degree, number of unique
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Table 1: Applicant summary statistics

Variable Mean Training Mean Test Mean Overall
Black 0.087 0.087 0.087
Hispanic 0.040 0.043 0.042
Asian 0.573 0.591 0.581
White 0.300 0.279 0.290
Male 0.677 0.658 0.668
Female 0.323 0.342 0.332
Referred 0.140 0.114 0.129
B.A. Degree 0.232 0.242 0.237
Associate Degree 0.005 0.005 0.005
Master’s Degree 0.612 0.643 0.626
Ph.D. 0.065 0.074 0.069
Attended a U.S. College 0.747 0.804 0.772
Attended Elite U.S. College 0.128 0.143 0.134
Interviewed 0.054 0.053 0.054
Offered 0.012 0.010 0.011
Hired 0.006 0.005 0.006
Observations 48,719 39,947 88,666

Notes: This table shows applicants’ demographic characteristics, education histories, and work

experience. The sample in Column 1 consists of all applicants who applied to a position during our

training period (2016 and 2017). Column 2 consists of applicants who applied during the analysis period
(2018 to Q1 2019). Column 3 presents summary statistics for the full pooled sample.

Source: All data come from the firm’s application and hiring records.

degrees, quantitative background (defined as having a degree in a science/social science

field), business background, internship experience, service sector experience, work history

at a Fortune 500 company, and education at elite (Top 50 ranked) US or non-US educational

institution. We record the geographic location of education experience at an aggregated

level (e.g. India, China, Europe). We also track the job family each candidate applied to,

the number of applications submitted, and the time between the first and most recent

application.

3.1.2. Quality measures. A key challenge our firm faces is being able to hire

qualified workers to meet its labor demands; even after rejecting 95% of candidates in

deciding whom to interview, 90% of interviews do not result in a hire. These interviews are

costly because they divert high-skill current employees from other productive tasks (Kuhn

and Yu, 2021). In our paper, we therefore measure an applicant’s quality as their likelihood

of actually being hired by the firm. By this definition, a high quality applicant is one that

meets the firm’s own hiring criteria (whatever that may be) and who accepts the firm’s

offer of employment. In Section 7.1, we consider quality defined only by whether the firm

chooses to extend an offer.
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Of course, in deciding whom to interview, firms may also care about other objectives:

they may look for applicants who have the potential to become superstars—either as

individuals, or in their ability to manage and work in teams—or they may avoid applicants

who are more likely to become toxic employees (Benson et al., 2019; Deming, 2017;

Housman and Minor, 2015; Reagans and Zuckerman, 2001; Schumann et al., 2019).

Unfortunately, we observe little information on applicants’ post-hire performance. For the

small set of workers for which we observe this data, we provide noisy evidence that ML

models trained to maximize hiring rates are also positively related to performance ratings

and promotion rates (see Section 7.2).

4. EMPIRICAL STRATEGY

The goal of our paper is to understand how implementing an exploration-based resume

screening algorithm would impact firms’ interview outcomes, relative to it’s existing

practices, and relative to traditional supervised learning approaches. An ideal comparison

would involve randomizing screening technologies (human, supervised ML, or exploration

ML) through an experiment.

Our analysis, however, relies on archival data. While we observe demographics for all

applicants regardless of whether they are interviewed, we observe quality measures—hiring

and offer outcomes—when an applicant is interviewed. This means that we face a “selective

labels” problem: if an algorithm selects a candidate who is not interviewed in practice, we

will not observe that candidate’s interview outcome.

In this section, we describe our framework for addressing this inference challenge. For

this discussion, it is sufficient to consider a generic ML-based interview policy. In Section

5, we will describe the details of the specific algorithms we implement.

4.1. Baseline Framework

We consider a firm that makes interview decisions over time. In each period t, the firm

sees a set of job applicants indexed by i, and must choose which candidates to interview

Iit∈{0,1}. The firm would only like to interview candidates that meet its hiring criterion,

so a measure of an applicant’s quality is her “hiring likelihood”: Yit∈{0,1}. Yit should be

thought of as a potential outcome: would applicant i applying at time t be hired by the

firm if they were granted an interview? Empirically, Yit is an indicator for whether an
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applicant receives an offer from the firm or is actually hired (receives and accepts an offer).

Regardless of outcomes, the firm pays a cost, ct, per interview, which can vary exogenously

with time to reflect the number of interview slots or other constraints in a given period.

The firm’s payoff for interviewing worker i is given by:

Payoffit=

Yit−ct if Iit=1

0 if Iit=0

For each applicant i in period t, the firm also observes a vector of demographic, education,

and work history information, denoted by X ′
it. These variables provide “context” that can

inform the expected returns to interviewing a candidate. We write E[Yit|X ′
it]=µ(X ′

itθ
∗
t ),

where µ :R→R is a link function and θ∗t is an unobserved vector describing the true

predictive relationship between covariates X ′
it and hiring potential Yit.

19 We allow X ′
it

to include components that are observed and unobserved by the econometrician. After

each period t, the firm observes the payoffs associated with its chosen actions.

Given this information, we can think of a firm’s interview decision for applicant i at

time t as given by:

Iit=I(st(X ′
it)>ct) (4.1)

Here, st(X
′
it) can be thought of as a score measuring the value the firm places on a candidate

with covariates X ′
it at time t. This score is indexed by t to reflect the fact that the value

of a given applicant can change over time if the firm’s beliefs about their quality change

or if the firm’s priorities do. The firm’s goal is to identify a scoring function st(X
′
it) that

leads it to identify and interview applicants with Yit=1 as often as possible.

Our model mirrors a standard contextual multi-arm bandit (MAB) problem.20 Leaving

aside the optimal choice of scoring function (which we discuss later in Section 5), we

can think of any interview policy as being described by some scoring function st(·) and its

associated interview decision Iit. In particular, we write sHt and IHit to refer to the (H)uman

19. In practice, when estimating contextual bandit models, most algorithms make functional form

assumptions about the underlying true relationships. Of course, in practice firms do not know the true

relationship, preventing firms from implementing the ideal decision rule.
20. In a generic contextual MAB, an agent receives information on “context” before deciding which

bandit “arm” to pull in order to receive different “rewards”. In our case, the context information is an
applicant’s resume and demographics Xit; the arms are the decision of whether to interview or not Iit∈
{0,1}; and the rewards are the associated payoffs Yit−ct if Iit if interview or 0 if not.
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interview policy that is used by the firm and sML
t and IML

it to refer to any counterfactual

machine-learning (ML) based interview policy. For notational simplicity, we suppress the

subscripts for applicant i at time t for the remainder of the paper, unless we are discussing

specific regressions or details of algorithm construction.

4.2. Addressing sample selection

We are interested in understanding how the quality and demographics of the interviewed

candidates change under different interview policies. We see demographics for all applicants

and therefore do not face sample selection problems in comparing the demographics of

counterfactual interview policies. However, we would also like to examine quality by

comparing E[Y |IH=1] versus E[Y |IML=1] for traditional and exploration-based ML

approaches. E[Y |IH=1] is readily computable because we directly observe the hiring

potential Y for all workers chosen to be interviewed by human recruiters. E[Y |IML=

1], however, is only partially observable because we only see hiring outcomes for the

subset of ML-selected applicants who are actually interviewed (e.g. selected by human

recruiters): E[Y |IML=1∩IH=1]. In our analysis, we address potential biases in assessing

the counterfactuals associated with sample selection in three complementary ways. In

Section 6, we show that we obtain similar results under each approach.

4.2.1. Interviewed sample only. Our first approach examines the predictive

relationship between algorithm scores sML and applicant quality among the subset of

applicants who are actually interviewed, e.g. those for whom we observe realized hiring

potential. To compare our ML model’s preferences to that of human recruiters, we construct

a measure of sH , the implicit “score” that humans assign to applicants by training a model

to predict an applicant’s likelihood of being selected for an interview E[IH |X], as described

in Appendix A.3.4. We then compare the predictive power of ŝH with that of sML among

the interviewed sample. Our findings, discussed in Section 6.2.1, will show that the average

quality among candidates preferred by ML-based screening approaches is higher than that

of candidates preferred by human recruiters.

4.2.2. Full sample, assuming no selection on unobservables. A concern with

our above approach is that human recruiters may add value by screening out particularly

poor candidates so that they are never observed in the interview sample to begin with.
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In this case, there may be no correlation between human preferences and hiring potential

among those who are interviewed, even if human preferences are highly predictive of quality

in the full sample.

Our next approach addresses this by estimating the average quality of all ML-selected

applicants, E[Y |IML=1]. We infer hiring likelihoods for ML-selected applicants who were

not interviewed using observed hiring outcomes from applicants with similar covariates who

were interviewed, assuming no selection on unobservables: E[Y |IML=1,X]=E[Y |IML=

1,I=1,X].

In our setting, this is a plausible assumption because recruiters have very little additional

information relative to what we also observe. Screeners make interview decisions on the

basis of applicant resumes and never interact with applicants. Because the hiring software

used by our data firm further standardizes this information into a fixed set of variables,

they generally do not observe cover letters or even resume formatting. Given this, the types

of applicant information that are observable to recruiters but not to the econometrician

are predominately related to resume information that we do not code into our feature set.

For example, we convert education information into indicator variables for college major

designations, institutional ranks, and types of degrees. A recruiter, by contrast, will see

whether someone attended the University of Wisconsin or the University of Michigan.21

In addition to worker characteristics, our models also include characteristics of the job

search itself to account for factors that influence hiring demand independent of applicant

characteristics. For more details on the construction of our key variables, see Appendix A.

Following Hirano et al. (2003) and assuming no selection on unobservables, we can write

the inverse propensity weighted estimate of ML-selected workers’ hiring likelihood as:

E[Y |IML=1] =
p(I=1)

p(IML=1)
E

[
p(IML=1|X)

p(I=1|X)
Y |I=1

]
(4.2)

Equation (4.2) says that we can recover the mean quality of ML-selected applicants by

reweighting outcomes among the human-selected interview sample, using the ratio of ML

and human-interview propensity scores.22 The ML decision rule is a deterministic function

of covariates X, meaning that the term p(IML=1|X) is an indicator function equal to one

21. Adding additional granularity in terms of our existing variables into our model does not improve
its AUC.

22. See Appendix C.2 for the full derivation of Equation (4.2).
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Table 2: Instrument validity

Interviewed Black Hispanic Asian White Female Ref. MA
(1) (2) (3) (4) (5) (6) (7) (8)

JK interview rate 0.0898*** 0.000158 -0.000433 0.00899 -0.00716 -0.00448 -0.0113 0.00910
(0.00832) (0.00470) (0.00189) (0.0122) (0.00972) (0.00557) (0.0126) (0.00961)

Observations 37662 37662 37662 37662 37662 37662 37662 37662

Notes: This table shows the results of regressing applicant characteristics on interviewer leniency, defined
as the jack-knife mean-interview rate for the recruiter assigned to an applicant, controlling for fixed

effects for job family, management level, application year and location of the job opening. The leave-out

mean is defined as the share of interviews the assigned recruiter grants, excluding the focal applicant.
This leave-out mean is standardized to be mean zero and standard deviation one. The outcome in

Column 1 is an indicator variable for being interviewed. The outcomes in Columns (2)–(8) are indicators

for baseline characteristics of the applicant. The sample is restricted to recruiters who screened at least
50 applicants. Standard errors are clustered at the recruiter level.

Source: All data come from the firm’s application and hiring records.

if the ML rule would interview the applicant, and zero if not. The term p(IH=1|X) is just

the human selection propensity which we estimate as ŝH , described previously. Finally,

because we always select the same number of applicants as are actually interviewed in

practice, the term
p(I=1)

p(IML=1)
is equal to one by construction.

4.2.3. Marginally promoted sample, IV analysis. We continue to be

concerned about the possibility of selection on unobservables, particularly if human

recruiters screen out unobservably bad applicants. In that scenario, our previous approach

would overstate hiring outcomes for ML-selected applicants who do not receive an interview.

To address this, our next approach compares the quality of human and ML selected

candidates, using exogenous variation in interview propensity arising from the random

assignment of applicants to resume screeners, following the methodology pioneered by

Kling (2006). For each applicant, we form the jackknife mean interview rate of their assigned

screener and use the leniency of the screener as an instrument, Z, for whether the applicant

is interviewed.

Appendix Figure A.XII plots the distribution of jackknife interview pass rates in our

data, restricting to the 54 screeners (two thirds of the sample) who evaluate more than

50 applications (the mean in the sample overall is 156). After controlling for job family,

job level, and work location fixed effects, the 75th percentile screener has a 50% higher

pass rate than the 25th percentile screener. Table 2 shows that this variation is predictive

of whether a given applicant is interviewed (Column 1), but is not related to any of the

applicant’s covariates (Columns 2-8). In Appendix Figure A.XIII, we plot the relationship

between ML scores (both UCB and SL) and interview likelihood separately for applicants
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assigned to strict or lenient screeners. We show that those assigned to lenient screeners are

more likely to be interviewed across all ML scores, and that this advantage is essentially

constant. In Appendix D, we show that strict and lenient screeners appear to have similar

preference orderings of applicants, reducing concerns about violations of monotonicity.

Given this instrument, the goal of our analysis in this section is to ask whether firms

can improve both hiring yield by following ML recommendations “on the margin,” that

is, in cases when the human recruiter appears to be on-the-fence about whether or not to

interview a candidate. Specifically, consider the following counterfactual interview policy,

given our recruiter leniency instrument Z and algorithmic score sML:

Ĩ=

IZ=1 if sML≥τ,

IZ=0 if sML<τ.

Ĩ takes the firm’s existing interview policy, I, and modifies it at the margin. The new policy

Ĩ favors applicants with high ML scores by asking the firm to make interview decisions I as

if these applicants were randomly assigned to a generous initial screener (Z=1).23 That is,

IZ=1 refers to the counterfactual interview outcome that would be obtained, if an applicant

were evaluated by a lenient screener. Similarly, Ĩ penalizes applicants with low ML scores

by making interview decisions for them as though they were assigned to a stringent screener

(Z=0).

By construction, the interview policy Ĩ differs from the status quo policy I only in its

treatment of instrument compliers. Compliers with high ML scores will be selected under Ĩ

because they are treated as if they are assigned to lenient recruiters. Conversely, compliers

with low ML scores are rejected because they are treated as if they are assigned to strict

reviewers. As such, Ĩ provides a concrete example of an alternative policy that improves

hiring yield by following ML recommendations more if compliers with high ML scores have

greater hiring potential than compliers with low ML scores, E[Y |IZ=1>IZ=0,sML≥τ ] vs.

E[Y |IZ=1>IZ=0,sML<τ ].

23. For simplicity in exposition, we let Z be a binary instrument in this example (whether an applicant

is assigned to an above or below median stringency screener) although in practice we will use a continuous
variable.
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5. ALGORITHM DESIGN

Having discussed our general empirical strategy, we now provide an overview of the specific

algorithms we consider. In Appendix A, we provide additional information regarding our

sample and feature construction, as well as model training, fitting, and updating procedures.

5.1. Preliminaries

We begin by clarifying some relevant issues for all models we consider.

We divide our data into two periods, the first consisting of the 48,719 applicants arriving

before 2018 (2,617 of whom are interviewed), and the second consisting of the 39,947

applications that arrive in 2018-2019 (2,275 of whom are interviewed). We think of the

2016-2017 period as our “training” data and the 2018-2019 period as our “analysis” period.

This approach to defining a training dataset (rather than taking a random sample of our

entire data) most closely approximates a real world setting in which firms would likely use

historical data to train a model that is then applied prospectively. We also continue to

update our models during the 2018-2019 analysis sample by adding the outcomes of the

applicants it selects back into its training data.

Our goal is to predict applicants’ hiring potential, Y , as defined in Section 4.1. Because

hiring potential is only directly observed for applicants who are interviewed, we train

our models using data from interviewed applicants only. We note that not all screening

algorithms are trained in this way. One common approach is to predict the human

recruiter’s interview decision, I, rather than the applicant’s hiring potential Y . In this

case, vendors are able to train their data on all applicants. Another common approach is

to focus on predicting hiring likelihood Y , but to set Y =0 for all applicants who are not

interviewed. This essentially assumes that candidates who were not interviewed had low

hiring potential. We choose not to follow either of these approaches because they conflate

a recruiter’s decision I with the quality of that decision Y . Rambachan and Roth (2020),

in addition, show that such approaches tend to be more biased against racial minorities.

Next, we acknowledge that our measures of quality—hire and offer outcomes—are based

on the discretion of managers and potentially subject to various types of evaluation biases

(Quadlin, 2018; Castilla, 2011). Indeed, many on-the-job performance metrics, such as

performance evaluations, would also be subject to this concern. Without a truly “objective”
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measure of quality, we interpret our results as asking whether ML tools can improve firm

decisions, as measured by its own revealed preference metrics.

Finally, our models may generate inaccurate predictions if the relationship between

covariates X and hiring likelihood Y differs between the full applicant sample and the

interviewed subset. While there are a growing set of advanced ML tools that seek to correct

for training-sample selection,24 testing these approaches is outside of the scope of this paper

and we are not aware of any commercially available algorithms that employ sample selection

correction. We provide evidence that selection on unobservables does not appear to be a

large concern in Section 6.2.2.

In general, we emphasize that the ML models we build should not be thought of as

“optimal” in either their design or performance, but as an example of what could be feasibly

achieved by most firms that are able to organize their administrative records into a modest

training dataset, with a standard set of resume-level input features, using a technically

accessible ML toolkit.

5.1.1. Supervised Learning (“SL”). Our first model uses a standard supervised

learning approach to predict an applicant’s likelihood of being hired, conditional on being

interviewed. We begin with an initial training dataset, D0 and use it to form an estimate

of applicant quality Ê[Yit|X ′
it;D0] using a L1-regularized logistic regression (LASSO).

Appendix Figure A.I plots the receiver operating characteristic (ROC) curve and its

associated AUC, or area under the curve. This model has an AUC of 0.64, meaning that

it will rank an interviewed applicant who is hired ahead of an interviewed but not hired

applicant 64 percent of the time. We also plot the confusion matrix in Appendix Figure

A.II, which provides more information on the model’s classification performance.

Having trained this initial model on 2016-17 data, we use it to make interview decisions

for future applicants. It is common for firms to train once and then continue to use the

same static model. In our paper, however, we estimate a dynamic SL model that updates

the firm’s training data with the outcomes of applicants it selects later on. Specifically, we

divide our analysis sample (2018-2019) into “rounds” of 100 applicants. After each round,

we take the applicants the model has selected and update its training data. We then retrain

the model and use its updated predictions to make selection decisions in the next round.

24. See, for example, Dimakopoulou et al. (2019), Dimakopoulou et al. (2018) which discuss doubly
robust estimators to remove sample selection and Si et al. (2023).
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At any given point t, the SL model’s interview policy is as follows, based on Equation (4.1)

of our conceptual framework:

ISLit =I(sSLt (X ′
it)>ct), where sSLt (X ′

it)= Ê[Yit|X ′
it;D

SL
t ]. (5.3)

Here, DSL
t is the training data available to the algorithm at time t.

It is important to emphasize that we can only update the model’s training data with

observed outcomes for the set of applicants selected in the previous period: that is, DSL
t+1=

DSL
t ∪(ISLt ∩It). Because we cannot observe hiring outcomes for applicants who are not

interviewed in practice, we can only update our data with outcomes for applicants selected

by both the model and actual human recruiters. This may impact the degree to which the

SL model can learn about the quality of the applicants selected, relative to a world in which

hiring potential is fully observed for all applicants. We discuss this in more detail shortly,

in Section 5.2.

5.1.2. Upper Confidence Bound (“UCB”). While there is, in general, no

generic optimal strategy for the contextual bandit model described in Section 4.1, it is

widely known that exploitation-only approaches—such as the SL model described above—

are inefficient solutions because they do not factor the ex-post value of learning into

their ex-ante selection decisions (Dimakopoulou et al., 2018; Bastani et al., 2021). An

emerging literature in computer science has therefore focused on developing a range of

computationally tractable algorithms that incorporate exploration.25

The particular exploration-based implementation we use is an Upper Confidence Bound

Generalized Linear Model (UCB-GLM) described in Li et al. (2017). We choose this

approach because it best fits our setting. UCB-GLM works well when the relationship

between “context” variables (covariates Xit) and “reward” (hiring potential, Yit) follows a

generalized linear functional form (E[Yit|X ′
it]=µ(X ′θ∗t )): we measure Yit as a binary hiring

25. The best choice of algorithm for a given situation will depend on the number of possible actions
and contexts, as well as on assumptions regarding the parametric form relating context to reward. For

example, recently proposed contextual bandit algorithms include UCB (Auer (2002)), Thompson Sampling
(Agrawal and Goyal (2013)), and LinUCB (Li et al. (2010)). In addition, see Agrawal and Goyal (2013),

and Bastani and Bayati (2020). Furthermore, the existing literature has provided regret bounds—e.g., the

general bounds of ?, as well as the bounds of Rigollet and Zeevi (2010) and Slivkins (2014) in the case
of non-parametric function of arm rewards—and has demonstrated several successful applications areas of
application—e.g., news article recommendations (Li et al. (2010)) or mobile health (Lei et al. (2022)). For

more general scenarios with partially observed feedback, see Rejwan and Mansour (2020) and ?.
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outcome and estimate E[Yit|X ′
it] using a logistic regression. Under these circumstances,

Li et al. (2017) provides the algorithm implementation we follow and shows that it is

asymptotically regret-minimizing.26

Specifically, our UCB algorithm scores applicant i in period t as follows:

IUCB
it =I(sUCB

t (X ′
it)>ct), where sUCB

t (X ′
it)= Ê[Yit|X ′

it;D
UCB
t ]+αB(X ′

it;D
UCB
t ).

(5.4)

In Equation (5.4), the scoring function sUCB
t (X ′

it) is a combination of the algorithm’s

expectations of an applicant’s quality based on its training data and an “exploration bonus”

given by:

B(X ′
it;D

UCB
t )=

√
(Xit−X̄t)′V

−1
t (Xit−X̄t), where Vt=

∑
j∈DUCB

t

(Xjt−X̄t)(Xjt−X̄t)
′.

(5.5)

Intuitively, Equation (5.4) breaks down the value of an action into an exploitation

component and an exploration component. In any given period, a strategy that purely

focuses on exploitation would choose to interview a candidate on the basis of her expected

hiring potential: this is encapsulated in the first term, Ê[Yit|X ′
it;D

UCB
t ]. Indeed, this is

essentially the scoring function for the SL model, described in Equation (5.3). Meanwhile,

a strategy that purely focuses on exploration would choose to interview a candidate on

the basis of the distinctiveness of her covariates: this is encapsulated in the second term,

B(X ′
it;D

UCB
t ), which shows that applicants receive higher bonuses if their covariates

deviate from the mean in the population (Xit−X̄t), especially for variables X ′
it that

generally have little variance in the training data (e.g. weighted by the precision matrix

V −1
t ). To balance exploitation and exploration, Equation (5.4) combines these two terms.

As a result, candidates are judged on their mean expected quality plus their distinctiveness

from the existing training data. The term α captures the weight that we put on the

exploration component relative to the exploitation component. Taken together, Li et al.

(2017) shows that this provides an upper bound on the confidence interval associated with

an applicant’s true quality, given the training data DUCB
t , hence the term UCB. In our

model, we follow the approach described in Li et al. (2017) and choose an α of 1.96 so that

we are, in fact, using the upper 95th percentile bound. In essence, UCB approaches are

26. See Equation 6 and Theorem 2 of their paper.
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based on the principle of “optimism in the face of uncertainty,” favoring candidates with

the highest statistical upside potential.27

At time t=0 of our analysis sample, our UCB and SL models share the same predicted

quality estimate, which is based on the baseline model trained on the 2016-2017 sample.

As with the SL model, we update the UCB model’s training data with the outcomes of

applicants it has selected during the 2018-2019 analysis period. Based on these new training

data, the UCB algorithm updates both its beliefs about hiring potential and the bonuses

it assigns. As was the case with the SL model, we can only add applicants who are selected

by the model and also interviewed in practice.

5.1.3. Model comparisons. A large theoretical literature shows that exploration-

based model such as UCB will outperform exploitation-only based approaches in the long

run (Dimakopoulou et al., 2018). Li et al. (2017) proves that the specific model we adopt,

UCB-GLM will asymptotically minimize regret via more efficient learning: that is, it will

select applicants with greater hiring potential. Yet while a UCB based approach is expected

to out-perform SL models in the long run, the quality differences we would observe in

practice capture both the long term benefits of learning and the short term costs of

exploration. This tradeoff will also depend on the specifics of our empirical setting. In

particular, if quality is not evolving and there is relatively rich initial training data, SL

models may perform as well as, if not better than, UCB models because the value of

exploration will be limited. If, however, the training data were sparse or if the predictive

relation between context and rewards evolves over time, then the value of exploration is

likely to be greater.

In terms of diversity, our UCB algorithm favors candidates with distinctive covariates

because this helps the algorithm learn more about the relationship between applicant

covariates and hiring outcomes. This suggests that a UCB model would, at least in the

short run, select more applicants from demographic groups that are under-represented in

its training data, relative to an SL model.28 Over time, however, exploration bonuses will

27. The basic UCB approach for non-contextual bandits was introduced by Lai and Robbins (1985)

and, since then, various versions of this approach have been developed for different types of contextual
bandit settings, and shown to be regret minimizing.

28. We note, however, that we calculate bonuses over all covariates. If White and Asian applicants are

more heterogeneous along other dimensions such as education and work history, then they may nonetheless
receive high exploration bonuses.
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decline as the model receives more information about applicants of all types. As a result,

long run differences between SL and UCB models will be primarily driven by differences in

their beliefs about applicant quality. Gains in diversity driven by exploration bonuses will

not be sustainable if minority applicants are actually weaker.

Our main results will come from a 16 month period from January 2018 to April 2019.

Because most organizations cannot afford to care only about the long run impacts of

new hiring policies, it becomes important to empirically examine how exploration-based

algorithms behave over medium-run time scales.

5.2. Feasible versus Live Model Implementation

In a live implementation, each algorithm would select which applicants to interview,

and the model would be updated with the outcomes of all selected candidates. In our

retrospective analysis, we are only able to update our models with outcomes for ML selected

candidates who were actually interviewed in practice. Here, we discuss how the actual

implementation of our models—which we term “feasible” SL or UCB—may differ from a

live implementation.

For concreteness, suppose that the UCB model wants to select 50 theater majors but, in

practice, only 5 such applicants were actually interviewed. In our feasible implementation,

we would only be able to update the UCB’s training data with the outcomes of these five

applicants, whereas in a live implementation, we would be able to update with outcomes

for all 50 UCB-selected candidates.

If humans are not selecting on unobservables, the feasible UCB’s estimate of the quality

of theater majors would be the same as the live UCB’s estimate but, because it observes

five rather than 50 instances, its estimates would be less precise. This would impact the

exploration in the next period: even though it has the same beliefs about quality, the

feasible UCB would select more theater majors in the next period because its uncertainty

about these applicants is higher. This would slow down the learning of the feasible UCB

model relative to the live model but, with a large enough sample, both should converge to

the same beliefs and actions.29

29. Formally, the distinction between the feasible and live versions of our ML models is related to
regression in which outcomes are missing at random conditional on unobservables. Under the assumption

of no selection on unobservables, common support, and well-specification of the regression function (in our

case, the logit), the feasible and live versions of our models should both be consistent estimators of the
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This analysis changes if human screeners select based on unobservables. Suppose the 5

theater majors who are interviewed are unobservably better than the 45 theater majors who

are not interviewed. A feasible UCB model would then be too optimistic about the quality

of this population relative to a live UCB model that correctly learns the quality of all 50

applicants. In the next period, the feasible UCB model would select more theater majors

both because uncertainty remains higher and because positive selection on unobservables

induces upwardly biased beliefs. This latter bias can lead our approach to select too many

applicants from groups whose weaker members are screened out of the model’s training

data by human recruiters. In Section 6.2.2 we provide IV-based evidence that human

recruiters do not appear to be selecting on unobservables. In addition, Section 9.2 shows

simulation results that more closely approximate a live implementation in which we can

update outcomes for all selected candidates.

6. MAIN RESULTS

6.1. UCB and SL versus Human Recruiters: Diversity of Selected Applicants

We begin by assessing the impact of each policy on the diversity of candidates selected for

an interview in our analysis sample. This is done by comparing E[X|I=1], E[X|ISL=1],

and E[X|IUCB=1], for various demographic measures X, where we choose to interview

the same number of people as the actual recruiters in a given year-month. We observe

demographic covariates such as race or ethnicity and gender for all applicants, regardless

of their interview status, and do not face a selective labels problem for comparisons of

demographics.

We focus on the racial and ethnic composition of selected applicants. Panel A of Figure

1 shows that, at baseline, 58% of applicants in our analysis sample are Asian, 29% are

White, 9% are Black, and 4% are Hispanic. Panel B shows that human recruiters select

a similar proportion of Asian and Hispanic applicants (57% and 5%, respectively), but

relatively more White and fewer Black applicants (34% and 5%, respectively). In Panel C,

we show that the SL model reduces the share of Black and Hispanic applicants from 10%

to under 5%, White representation increases more modestly from 34% to 40%, and Asian

underlying parameter θ∗ linking covariates with hiring outcomes: E[Yit|X′
it]=µ(X′

itθ
∗
t ) (Wang et al., 2010;

Robins et al., 1995). In a finite sample, of course, the point estimates of the feasible and live models may
differ.
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representation stays largely constant. In contrast, Panel D shows that the UCB model

increases the Black share of selected applicants from 5% to 16%, and the Hispanic share

from 4% to 9%. The White share stays constant, while the Asian share falls from 57% to

43%.

Appendix Figure A.VII plots the same set of results for gender. Panel B shows that 66%

of interviewed applicants are men and 34% are women; this is largely similar to the gender

composition of the overall applicant pool. Unlike the case of race or ethnicity, both our

ML models are aligned in selecting more women than human recruiters, increasing their

representation to 41% (SL) or 38% (UCB).

Next, we explore why our UCB model selects more Black and Hispanic applicants.

Appendix Figure A.VIII shows that Black and Hispanic applicants receive slightly larger

exploration bonuses on average. This reflects both direct differences in population size by

race or ethnicity, as well as indirect differences arising from the correlation between race

or ethnicity and other variables that also factor into bonus calculations.

A crucial question raised by this analysis is whether these differences in diversity are

associated with differences in applicant quality. We will discuss this extensively in the next

section and provide evidence that, despite their demographic differences, hiring outcomes

for applicants selected by our SL and UCB models are comparable to each other, and much

better than those selected by human recruiters.

6.2. UCB and SL versus Human Recruiters: Quality of Selected Applicants

While we observe demographics for all applicants, we only observe hiring potential H

for applicants who are actually interviewed. We therefore cannot directly observe hiring

potential for applicants selected by an algorithm, but not by the human reviewer. To

address this, we take three complementary approaches, described previously in Section 4.

Across all three approaches, we find evidence that both SL and UCB models would select

applicants with greater hiring potential, relative to human screening.

6.2.1. Interviewed sample. Our first approach restricts to the sample of

applicants who are interviewed, for whom we directly observe hiring outcomes. Among this

set, we directly observe ML scores sSL and sUCB . We do not, however, directly observe the

implicit score that human recruiters give each candidate. Before continuing, we therefore

need to generate an estimate of “sH ,” an applicant’s propensity to be selected for an
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A. Applicant Pool B. Actual Interview

58.2%
28.5%

8.9%
4.4%

White Black Hispanic Asian

56.8%
33.8%

4.9%4.5%

White Black Hispanic Asian

C. SL Model D. UCB Model

55.5%
40.2%

1.5%

2.7%

White Black Hispanic Asian

42.6%

33.0%

15.6%

8.7%

White Black Hispanic Asian

Figure 1: Racial composition

Notes: Panel A shows the race/ethnicity composition of applicants in our data. Panel B shows the

composition of applicants actually selected for an interview by the firm. Panel C shows the racial

composition of applicants who would be selected if chosen by the supervised learning algorithm described
in Equation (5.3) predicting hiring potential. Finally, Panel D shows the composition of applicants who

would be selected for an interview by the UCB algorithm described in Equation (5.4) predicting hiring

potential. By construction, all methods are constrained to match the number of applicants interviewed by
human recruiters. Applicants’ demographic information is collected by our firm during the application

process.

Source: All data come from the firm’s application and hiring records.

interview by a human recruiter. To do this, we simply generate a model of E[I|X] where

I∈{0,1} are realized human interview outcomes, using same logistic LASSO approach

described in Section 5.1.1.30 We describe this model construction and the training and

procedure in Appendix Section A.3.4. Appendix Figure A.III plots the ROC associated

with this model. Our model ranks a randomly chosen interviewed applicant ahead of a

randomly chosen applicant who is not interviewed 77% of the time.31

30. The only methodological difference between this model and our SL model is that, because we are

trying to predict interview outcomes as opposed to hiring outcomes conditional on interview, our training
sample consists of all applicants in the training period, rather than only those who are interviewed.

31. Although a “good” AUC number is heavily context specific, a general rule of thumb is that models

with an AUC in the range of 0.75−0.85 have acceptable discriminative properties, depending on the specific

context and shape of the curve (Fischer et al., 2013).
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Figure 2 plots a binned scatterplot depicting the relationship between algorithm scores

and hiring outcomes among the set of interviewed applicants; each dot represents the

average hiring outcome for applicants in a given scoring bucket. Among those who are

interviewed, applicants’ human scores are uninformative about their hiring likelihood; if

anything this relationship is slightly negative.32

In contrast, all ML scores have a statistically significant, positive relation between

algorithmic priority selection scores and an applicant’s (out of sample) likelihood of being

hired.33

Table 3 examines how these differences in scores translate into differences in interview

policies. To do so, we consider “interview” strategies that select the top 25, 50, or 75% of

applicants as ranked by each model; we then examine how often these policies agree on

whom to select, and which policy performs better when they disagree. Panel A compares

the SL model to the human interview model and shows that the human model performs

substantially worse in terms of predicting hiring likelihood when the models disagree: only

5-8% of candidates favored by the human model are eventually hired, compared with 17-

20% of candidates favored by the SL model. Panel B finds similar results when comparing

the human model to the UCBmodel. Finally, Panel C shows that, despite their demographic

differences, the SL and UCB models agree on a greater share of candidates relative to

the human model, and there do not appear to be significant differences in overall hiring

likelihoods when they disagree: if anything, the UCB model performs slightly better.

For consistency, Appendix Figure A.IX revisits our analysis of diversity using the same

type of selection rule described in this section: specifically, picking the top 50% of candidates

among the set of interviewed. Again, we find that UCB selects a substantially more diverse

set of candidates than the SL model.

6.2.2. Full sample. A concern with our analysis of the I=1 sample is that human

recruiters may add value by screening out particularly poor candidates so that they are

32. This weak relation between human preferences and outcomes is consistent with existing work
documenting that humans often have incorrect perceptions of worker quality. For instance, Hoffman et al.
(2017) find that firms see worse hiring outcomes when humans make exceptions to algorithmic suggestions.
In a study of personnel assessment, Yu and Kuncel (2020) finds that the scores of expert human resource

managers were weakly related to on-the-job performance. Similarly, in a study of recruiters for software
engineering positions, Lerner (2024) found a weak correlation between recruiter ranking and eventual hiring

likelihood.
33. Appendix Table A.II shows these results as regressions to test whether the relationships are

statistically significant.
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Figure 2: Correlations between algorithm scores and hiring likelihood

Notes: Each panel of this figure plots algorithm selection scores on the x-axis and the likelihood of an
applicant being hired if interviewed on the y-axis. Panel A shows the selection scores from an algorithm

that predicts human recruiters interview selection choices. Panel B shows the selection scores from the

supervised learning algorithm described by Equation (5.3). Panel C shows the selection scores from the
UCB algorithm described in Equation (5.4).

Source: All data come from the firm’s application and hiring records.

never observed in the interview sample to begin with. In this case, then we may see little

relation between human preferences and hiring potential among those who are interviewed,

even though human preferences are highly predictive of quality in the full sample.

To address this, we compute estimates of the hiring likelihood of all ML selected

applicants, using the inverse propensity weighting (IPW) approach described earlier in

Section 4.2.2. Our results are presented in Figure 3. Among those selected by human



i
i

“output” — 2025/5/11 — 22:31 — page 33 — #33 i
i

i
i

i
i

LI, RAYMOND & BERGMAN HIRING AS EXPLORATION 33

Table 3: Predictive accuracy of Human vs. ML models, among Interviewed Applicants

Selectivity 
(Top X%)

Overlap % Both Human Only SL Only

(1) (2) (3) (4)
25 13.33 18.52 6.83 17.78
50 37.22 10.99 7.47 16.67
75 64.93 10.31 4.67 18.68

Selectivity 
(Top X%)

Overlap % Both Human Only UCB Only

(1) (2) (3) (4)
25 15.72 17.95 6.46 20.33
50 36.00 12.09 6.33 16.57
75 61.28 10.76 3.89 16.30

Selectivity 
(Top X%)

Overlap % Both SL Only UCB Only

(1) (2) (3) (4)
25 42.43 23.39 9.91 14.22
50 60.59 15.33 8.21 10.71
75 74.43 13.14 5.98 5.98

A.  Human vs. Updating SL

B. Human vs. UCB

C. Updating SL vs. UCB

Notes: This table shows the hiring rates of each algorithm when they make the same recommendation or

differing recommendations. The top panel compares the human versus SL algorithm, the middle panel
compares the human versus the UCB algorithm, and the lower panel compares the SL versus the UCB

algorithm. “Human” refers to our model of human recruiter interview propensity introduced in Section

4.2.1. Each row of a given panel conditions on selecting either the top 25%, 50%, 75% of applicants
according to each of the models. For the two algorithms being compared in a given panel, Column 1

shows the percent of selected applicants that both algorithms agree on. Column 2 shows the share of

applicants hired when both algorithms recommend an applicant, and Columns 3 and 4 show the share
hired when applicants are selected by only one of two algorithms being compared.

Source: All data come from the firm’s application and hiring records.

recruiters, the average observed hiring likelihood is 10 percent. In contrast, our calculations

show that ML models select applicants with almost 3 times higher predicted hiring

potential. In particular, the average expected hiring likelihood for applicants selected by the

UCB model is 27 percent and 32 percent for the SL model. The slightly weaker performance

of the UCB model may be explained by the fact that an emphasis on exploration means that

the UCB algorithm may select weaker candidates, particularly in earlier periods. Together,

this set of results is consistent with our findings from the interviewed-only subsample: the

hiring yield of ML algorithms are similar to each other and, in all cases, better than the

human decision-maker. We find no evidence that the gains in diversity that we document
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Figure 3: Average hiring likelihood

Notes: This figure shows our inverse propensity weighting estimates of E[Y |IML=1] for each algorithmic
selection strategy (SL or UCB), alongside actual hiring yields from human recruiter decisions. Our inverse

propensity weighting estimation method is described in Section 4.2.2. We also plot the 95% confidence

intervals around each estimate of hiring yield.
Source: All data come from the firm’s application and hiring records.

in Section 6.1 come at the cost of substantially reducing hiring rates among selected

applicants.

6.2.3. Testing IPW assumptions. This analysis relies on two assumptions—no

selection on unobservables and a common support between ML and human preferences.

First, we test for the presence of selection on unobservables using variation from random

assignment to lenient and strict reviewers, as described in Section 4.2.3. The logic is as

follows: if humans are, on average, positively selecting candidates on observables, then it

should be the case that applicants selected by more stringent reviewers—e.g. those who

are subjected to a higher human threshold—should be more likely to be hired conditional

on being interviewed than those selected by more lenient reviewers. That is, if there is a

positive (negative) relationship between human selection propensities and hiring outcomes,

then going further down the distribution by selecting more candidates should decrease

(increase) average quality.

Figure 4 plots the relationship between screener leniency and hiring outcomes. Panel A

of Figure 4 does not control for applicant observables while Panel B does. In both cases,

there appears to be little relationship between leniency and hiring outcomes, suggesting

that strict reviewers do not appear to select a stronger set of candidates. If anything, there

appears to be a slightly positive relation, suggesting that lenient reviewers may weakly

select a stronger group of stronger candidates. The possibility that human recruiters are
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actively bad at selecting candidates is consistent with our results in Panel A of Figure 2,

which shows that workers preferred by humans have somewhat lower hiring rates among

those who were interviewed. We note that both these figures include fixed effects for job

family, job level, work location, and application year so that this slightly positive association

is not being driven by confounding differences in hiring demand across positions or times.

Interestingly, we also note that the pattern is similar regardless of whether we control for

applicant covariates: this suggests that strict screeners are not better at selecting applicants

based on either observed or unobserved covariates.

Next, we test for common support among human and ML preferences. Intuitively, the

IPW approach infers the quality of ML-selected candidates using actual hiring outcomes

from candidates with similar covariates who were actually selected to be interviewed by a

human recruiter. We therefore require that candidates selected by the ML algorithm have

some non-zero probability of also being selected by human recruiters.

Appendix Figure A.X plots the distribution of a candidate’s estimated propensity to be

selected by a human recruiter for the set of applicants chosen by our SL and UCB models.

In both cases, we find that all ML-selected applicants have a human selection propensity

strictly between 0 and 1; we see no mass at or near zero.

6.2.4. Marginally interviewed sample. Our final approach asks the firm to

modify its current human interview decisions by following ML recommendations when

evaluating “marginal” candidates. Section 4.2.3 shows that we can assess the impact of

this alternative interview policy Ĩ by comparing the characteristics of instrument compliers

with high and low ML scores. Compliers can be thought of as “marginal” in that they are

interviewed only because they were randomly assigned to a lenient recruiter.

Figure 5 presents our results. Panels A, C, and E focus on applicants who are marginally

selected based on SL model scores while Panels B, D, and F focus on marginal applicants as

defined by UCB scores. In Panels A and B, we see that compliers with high SL and UCB

scores are both more likely to be hired than those with low scores. This indicates that,

on the margin, nudging human interview decisions toward either UCB or SL preferences

would increase the expected hiring yield.

In the remaining panels, we consider how following ML recommendations on the margin

would change the demographics of selected candidates. In Panel C, we see that marginally

selected applicants with high SL scores are substantially less likely to identify as Black or
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A. Full Sample, No Controls

.05

.1

.15

.2

H
ir
in

g
 R

a
te

 |
 I

n
te

rv
ie

w
e

d

0 .1 .2 .3

Leniency (Leave out Pass Rate)

B. Full Sample, Controls

0

.05

.1

.15

H
ir
in

g
 R

a
te

 |
 I

n
te

rv
ie

w
e

d

0 .1 .2 .3

Leniency (Leave out Pass Rate)

Figure 4: Testing for positive selection

Notes: These binned scatterplots show the relationship between the leniency of randomly assigned

screeners and the hiring outcomes of the applicants they select to be interviewed. Panel A plots this

relationship, controlling for job level characteristics: type of job, seniority level, work location, and
application year. Panel B plots this relationship after adding additional controls for applicant

characteristics: education, work history, and demographics.

Source: All data come from the firm’s application and hiring records.

Hispanic. As such, nudging toward SL scores would tend to decrease the racial and ethnic

diversity of selected applicants, relative to existing human decisions. In contrast, Panel D

shows the opposite for the UCB model. Here, we find that compliers with high UCB scores

are more likely to be Black or Hispanic. As such, the interview policy defined by Ĩ would

increase quality and diversity on the margin, relative to the firm’s current practices. In

Panels E and F, we show that both the SL and UCB models would tend to increase the

representation of women. Panels A, C and D of Table 4 show the corresponding regression

results.

These results are again consistent with our earlier results. In both cases, following

UCB recommendations can increase hiring yield and diversity relative to the firm’s present

policies, while following traditional SL recommendations increases quality but decreases

racial and ethnic diversity.
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A. Hiring Likelihood, SL B. Hiring Likelihood, UCB
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Figure 5: Characteristics of marginal interviewees

Notes: Each panel in this figure shows the results of estimating the characteristics of applicants
interviewed on the margin. In each panel, these characteristics are estimated separately for applicants in

the top and bottom half of the UCB algorithm’s score. Panels A, C, and E consider marginal applicants
as defined by SL model scores. Panels B, D, and F consider marginal applicants as defined by UCB model

scores. In Panels A and B, the y-axis is the average hiring likelihood of marginally interviewed

candidates; Panels C and D focus on the share of selected applicants who are Black or Hispanic; Panels E
and F focus on the share of selected applicants who are female. The confidence intervals shown in each

panel are derived from robust standard errors clustered at the recruiter level.

Source: All data come from the firm’s application and hiring records.

7. ALTERNATIVE MEASURES OF QUALITY

7.1. Maximizing Offer Rates

In our main analyses, we focus on screening models that are designed to maximize hiring

yield. This is our preferred specification as it captures the key reason why firms turn to

algorithms in the first place: the desire to fill vacancies with qualified workers.

Hiring requires that a worker both receive and accept a job offer. To isolate an

algorithm’s ability to identify applicants a firm would like to hire, we build an alternative

set of UCB and SL models that maximize the likelihood that an applicant is extended an

offer, regardless of whether they accept. These models are trained in the same way as our
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Table 4: Impacts of following ML recommendations, IV analysis

A. Hire Rates

Low UCB High UCB Low SL High SL
(1) (2) (3) (4)

Marginally Selected 0.0629*** 0.0849*** 0.0564*** 0.0854***
(0.0123) (0.0260) (0.0130) (0.0226)

Observations 18710 18956 18862 18804

B. Offer Rates

Low UCB High UCB Low SL High SL
(1) (2) (3) (4)

interviewed 0.108*** 0.168*** 0.111*** 0.183***
(0.0220) (0.0341) (0.0248) (0.0326)

Observations 18538 19128 18417 19249

C. Share Black or Hispanic

Low UCB High UCB Low SL High SL
(1) (2) (3) (4)

Marginally Selected 0.0689*** 0.0982*** 0.139*** 0.0447***
(0.0145) (0.0264) (0.0190) (0.0157)

Observations 18710 18956 18862 18804

D. Share Female

Low UCB High UCB Low SL High SL
(1) (2) (3) (4)

Marginally Selected 0.309*** 0.413*** 0.343*** 0.377***
(0.0181) (0.0431) (0.0442) (0.0252)

Observations 18710 18956 18862 18804

Notes: This table examines the characteristics of marginally interviewed applicants according to our IV
strategy described in the text. Specifically, each number represents the result of the regressions outlined

in Equation (3). The reported coefficients are the IV estimates of the coefficient on whether an applicant

is interviewed and can be interpreted as the average outcome variable among treatment compliers. For
example, the coefficients in Panel A Columns 1 and 2 represent the estimated average hiring rates of IV

compliers with low and high UCB scores, respectively. Applicants receiving high or low scores are those

who are above or below the median, respectively.
Source: All data come from the firm’s application and hiring records.

main models, except using receiving an offer as the outcome variable of interest. Appendix

Figure A.V shows that we correctly predict offer outcomes in our baseline training data

approximately 68 percent of the time. Appendix Sections A.3.3 and A.3.2 provide additional

details on the training and out-of-sample accuracy of our offer model.

In Figure 6, we show that offer-based SL and UCB models behave similarly to our

hire-based models. Panels A and B compare the demographics of applicants selected under

SL and UCB models. Similar to our main results in Figure 1, we find that the SL model

dramatically reduces the share of Black and Hispanic applicants who are selected for an

interview (to less than 2% from a human recruiter baseline of just under 10%) while the

UCB model increases this share to approximately 15%). In Panel C, we compare the average
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offer rate of UCB, SL and human selected applicants, using our inverse propensity weighting

estimates discussed in Section 6.2.2.34 Consistent with Figure 3, we find that both UCB

and SL models outperform human recruiters, with the SL model somewhat outperforming

UCB over the 18 months of our analysis period. Panels B of Table 4 show the corresponding

regression results.

Appendix Figure A.XV plots the correlation between UCB and SL scores and offer rates,

among the set of applicants who are interviewed, analogous to the results presented for the

hire model in Figure 2. Similarly, Appendix Figure A.XVI repeats our marginal sample

IV analysis for the offered models. Our results are very similar. Appendix Figure A.XV

shows that candidates with higher UCB or SL scores are more likely to receive an offer,

whereas applicants preferred by human recruiters tend to have, if anything, worse offer

outcomes. Appendix Figure A.XVI shows that firms can improve offer rates by following

the recommendations of either ML model on the margin, but that SL recommendations

decrease the share of under-represented minorities while UCB recommendations increase

representation.

7.2. On-the-job Performance

A concern with our analysis is that both hiring and offer outcomes may not be the measure

of quality that firms are seeking to maximize. If firms ultimately care about on-the-job

performance metrics, then they may prefer that it’s recruiters pass up candidates who are

likely to be hired in order to look for candidates that have a better chance of performing

well, if hired.

Our ability to assess this possibility is limited by a lack of data: of the nearly 49,000

applicants in our training data, only 296 have data on job performance ratings, making it

difficult to accurately build such a model. As a result, we take an alternative approach and

correlate measures of on-the-job performance with ML and human preferences. If humans

were trading off hiring likelihood for job performance, then our human SL score, sH , should

be positively predictive of job performance relative to sSL and sUCB .

Table 5 presents results using two measures: mid-year performance ratings and whether

a worker was promoted. Performance ratings are given on a scale of 1 (below), 2 (at),

34. Appendix Figure A.XI shows that all offer model selected applicants have a human selection
propensity strictly between 0 and 1 with no mass at or near zero.



i
i

“output” — 2025/5/11 — 22:31 — page 40 — #40 i
i

i
i

i
i

40 REVIEW OF ECONOMIC STUDIES

A. SL Offer Model B. UCB Offer Model
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Figure 6: Racial composition—offer model

Notes: Panel A shows the race/ethnicity composition of an interview pool selected by a supervised

learning algorithm described in Equation (5.3) predicting offer potential. Panel B shows the composition
of applicants who would be selected for an interview by the UCB algorithm described in Equation (5.4)

predicting offer. By construction, all methods are constrained to match the number of applicants
interviewed by human recruiters. Applicants’ demographic information is collected by our firm during the

application process. Panel C compares the quality (measured as the percentage of selected applicants who

receive an offer using inverse propensity reweighting method described in Section 4.2.2) for the two ML
models, as well as the true offer yield from human interview decisions.

Source: All data come from the firm’s application and hiring records.

or 3 (above) average performance and 13% of workers receive an above average rating.

Eight percent of hires in our sample are promoted during the analysis period. Panel A

examines the correlation between an applicant’s likelihood of being selected by a human

recruiter and their likelihood of receiving a top performance rating (Column 1) and or

a promotion (Column 2). In both cases, we observe a negatively signed and sometimes

statistically significant relationship: if anything, human recruiters are less likely to interview

candidates who turn out to do well on-the-job. In contrast, Panels B and C conduct the

same exercise for each of our ML models. For our SL hired model, these correlations are

positively signed but statistically insignificant. For the SL offered model, we see a positive

and statistically significant correlation between scores and top performance ratings, and
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Table 5: Correlations between human scores and on-the-job performance

A. Human Scores

Top Rating Promoted
(1) (2)

Human SL score -0.282** -0.0961
(0.116) (0.0782)

Observations 180 233

B. SL Scores

Top Rating Promoted
(1) (2) (3) (4)

SL Hired 0.0791 0.0816
(0.103) (0.0641)

SL Offered 0.168** -0.0170
(0.0800) (0.0537)

Observations 180 180 233 233

C. UCB Scores

Top Rating Promoted
(1) (2) (3) (4)

UCB Hired 0.0377 0.161***
(0.106) (0.0619)

UCB Offered 0.163* -0.0245
(0.0850) (0.0576)

Observations 180 180 233 233

Notes: This table presents the results of regressing measures of on-the-job performance on algorithm
scores, for the sample of applicants who are hired and for which we have available performance data.

“Top Rating” refers to receiving a 3 on a scale of 1-3 in a mid-year evaluation. “Promoted” indicates an
applicant receives a promotion. Robust standard errors are shown in parentheses.

Source: All data come from the firm’s application and hiring records.

a zero correlation for promotions. We find a similar pattern for the UCB scores: we see a

positive and sometimes statistically significant relationships between the UCB hired model

score and on-the-job performance. For the offered model, we again see a positive and

statistically significant correlation between scores and top performance ratings, and no

correlation with promotions.

We caution that these data are potentially subject to strong sample selection due to

the small proportion of workers for whom we have data. That said, our results provide

no evidence to support the hypothesis that human recruiters are successfully trading off

hiring likelihood in order to improve expected on-the-job performance among the set of

applicants they choose to interview.
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8. ALTERNATIVE POLICIES

So far, we have given our algorithms access to applicant’s demographics and have made no

restrictions on which applicants it can select. Here, we consider two alternative approaches

that treat demographic information differently. The first regulates algorithmic inputs: it

restricts the model’s ability to access information on race, gender, and ethnicity. The second

approach regulates algorithmic outputs: it maintains access to demographic information,

but imposes a quota on which applicants the model can select.

These policies correspond to principles of discrimination law. In the US, the Equal

Opportunity Employment Commission (EEOC) looks for “disparate treatment” (treating

applicants differently on the basis of their demographics) or “disparate outcomes” (success

rates that are substantially different by demographic group). This is similar to the European

Union’s Equal Treatment Directive, which prohibits “direct discrimination” and “indirect

discrimination.” Blinding algorithms are a way of preventing disparate treatment by

regulating algorithmic inputs while quotas are a way of preventing disparate outcomes

by regulating algorithmic outputs.

8.1. Demographics Blinding

Our main algorithms are trained on a variety of applicant characteristics, including explicit

information on race, ethnicity, and gender. As a result, these models can treat applicants

differently on the basis of protected categories, a legal area (Kleinberg et al., 2019). It

therefore natural to ask how our results would change if we eliminated the use of race,

ethnicity, and gender as model inputs.35 Demographics-blind algorithms can also be useful

in settings where firms do not have access to these data, either because applicants choose

not to provide it or where collecting data on demographics is restricted.

The impact of blinding is difficult to predict because demographic information enters

the UCB model in two ways: as features of the model that are used to predict quality and

as inputs in calculating exploration bonuses. Eliminating this information can therefore

shifts the model’s predictive abilities as well as its exploration behavior. To examine what

occurs in our setting, we re-estimate the UCB model without applicants’ race, gender, and

35. A number of recent papers have considered the impacts of anonymizing applicant information on

employment outcomes (Goldin and Rouse, 2000; Åslund and Skans, 2012; Behaghel et al., 2015; Agan and
Starr, 2018; Alston, 2019; Doleac and Hansen, 2020; Craigie, 2020; Kolev et al., 2019).
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ethnicity in either prediction or bonus provision. As a practical matter, we continue to

allow the inclusion of other variables, such as geography, which may be correlated with

race and ethnicity.

Figure 7 shows how this blinding impacts diversity. Panel A reproduces the composition

of applicants selected by the unblinded UCB model and Panel B displays the blinded

results. Blinding reduces the share of selected applicants who are Black or Hispanic, from

24% to 14%, although there is still greater representation relative to human hiring (10%).

The most stark differences come in the treatment of White and Asian applicants. In the

non-blinded model, White and Asian applicants make up a similar share of interviewed

applicants (33% and 43%, respectively), even though there are substantially more Asian

applicants in the overall pool. When the algorithm is blinded, however, many more Asian

applicants are selected relative to White applicants (63% vs. 23%, recalling that Asian and

White applicants make up 57% and 30% of the applicant pool at large, respectively).

Appendix Figure A.XVII provides additional analysis of how blinding impacts UCB

model scores. Panel A shows that blinding decreases exploration bonuses for Black and

Hispanic applicants while increasing bonuses for Asian applicants.

In the demographics-aware model, Asian applicants received smaller bonuses because

they share a covariate—being Asian—that is very common in the sample. When the

algorithm is no longer able to observe this common trait, Asian applicants appear more

distinctive because of their less common work and educational backgrounds. Panel B

of Appendix Figure A.XVII plots the correlation between an important covariate—

attending a highly-ranked school—and UCB beliefs about an applicant’s quality. Under

the demographics-aware model, there is substantial heterogeneity in the “returns” to school

rank across demographic groups, with Asian applicants being the least rewarded for having

attended a top school. Blinding, however, prevents the model from assigning race-specific

returns; in our data, this increases the relative returns to elite education among Asian

applicants. Taken together, these findings provide intuition for the large increase in Asian

representation under blinding.

Panel C of Figure 7 examines the accuracy of blinded vs. unblinded UCB, using the

reweighting approach described in Section 4.2.2. We find that blinding leads to a small,

modest decline in in the quality of algorithmically selected candidates; both models continue

to substantially outperform human evaluators. In our setting, the small difference in

outcomes between the blinded and unblinded UCB models likely combines two distinct
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A. Race/Ethnicity, UCB B. Race/Ethnicity, Blinded UCB
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Figure 7: Demographics blinding

Notes: Panel A shows the race/ethnicity and gender composition of applicants recommended for

interviews by the UCB algorithm when this algorithm explicitly incorporates race/ethnicity and gender
in estimation (“UCB”). Panel B shows the composition of applicants recommended for interviews when

the UCB is blinded to race/ethnicity and gender (“Blinded UCB”). Panel C shows our inverse propensity

weighting estimates of E[Y |IML=1] for the demographically aware UCB, blinded UCB, and actual
hiring yields from human selection decisions.

Source: All data come from the firm’s application and hiring records.

impacts. First, blinding reduces the predictive ability of our models. At the same time,

Asian applicants tend to have relatively higher hire rates in our data so that, in our case,

blinding shifts exploration toward a higher yield group.

8.2. Supervised Learning with Quota

An alternative approach to achieving greater representation is to introduce diversity as

an explicit constraint. In this section, we consider a policy in which applicants are scored

by a supervised learning model with access to demographic information, but where the

composition of selected applicants must reflect that of the applicant pool.

Panels A and B of Figure 8 compare the demographics of candidates selected under

our baseline UCB model to those selected with our SL with quota policy. By construction,
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the composition of applicants selected under our quota model is similar to that of the

overall applicant pool (Panel A of Figure 1). We note that our percentages are not exact

because we are working with small discrete numbers so it is not always possible for the

share of selected applicants to equal the population share. In Panel C, we show that the

quality of workers hired under the quota model is substantially worse: about 10 percent

of selected applicants are predicted to be hired, compared with close to 30 percent for the

unconstrained SL and UCB models.

We believe that this is due to the fact that a quota model substantially constrains the

firm in terms of when it must select minority candidates. In settings where applicants are

selected as part of a defined cohort (say, college admissions), it is straightforward to define

the applicant pool over which the quota must be enforced. In most hiring settings, however,

applicants are selected on a rolling basis, making it conceptually challenging to specify how

many members of each group to select over a given period. Any ex-ante constraint could

reduce quality by selecting too many minority candidates when their quality is low, and

too few when their quality is high.

Appendix Figure A.XVIII shows that this is a real constraint in our setting. Specifically,

we compare the average number of Black or Hispanic applicants who are selected by our

UCB model (dotted blue line) and the SL with quota over our analysis period (solid red

line). The UCB model selects more Black or Hispanic applicants on average but varies

significantly in the number it selects each period. By contrast, the quota model is restricted

to selecting, on average, one such applicant each period—no more, no less. These results

come from using a window of 100 applicants over which to define our quota, but the nature

of this challenge is general.

9. ADDITIONAL RESULTS: TIME DYNAMICS AND LEARNING

Our main results show that our UCB algorithm increases the hiring yield of selected

applicants, while also increasing demographic diversity. A key question relates to how these

patterns evolve over time: are gains in diversity transient, and does exploration generate

greater losses in efficiency in the short run? In this section, we explore how the hiring yield

and demographics associated with selected candidates evolve over time.
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A. Race/Ethnicity, UCB B. Race/Ethnicity, SL with Quota
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Figure 8: Supervised learning with quota

Notes: Panel A shows the race/ethnicity and gender composition of applicants recommended for

interviews by the UCB algorithm predicting hiring likelihood. Panel B considers the alternative of using

an SL model that is constrained to select applicants in proportion to their representation in the applicant
pool. Panel C shows our inverse propensity weighting estimates of E[Y |IML=1] for the UCB versus the

SL with quota, alongside actual hiring yields from human selection decisions.

Source: All data come from the firm’s application and hiring records.

9.1. Time dynamics in analysis data

Figure 9 shows how the quality (Panel A) and race/ethnicity (Panel B) of selected

applicants evolve over our analysis sample. In Panel A, we compute the expected quality

of ML-selected applicants using the inverse propensity weighting approach discussed in

Section 4.2.2. Our estimates are in general somewhat noisy and we are unable to observe

any statistically significant differences in estimated hiring yield between applicants selected

by the SL and UCB models, though both ML models select applicants who are more likely

to be hired than those selected by human recruiters. However, taking the point estimates

seriously, the quality of the SL model appears to decline over time, while the quality of

UCB choices is more stable. At the end of our sample, the quality of applicants selected

by both models is essentially identical.
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A. Hiring Yield (IPW estimates)

B. Race/Ethnicity

Figure 9: Hiring yield over time

Notes: Panel A shows the average hiring yield of each interview screening method calculated cumulatively

over time. The “SL Algorithm” line plots E[H|ISL=1], the “UCB Algorithm” line plots E[H|IUCB=1]

and the “Human Recruiters” line plots E[H|IH =1]. Each estimate of quality is calculated using the
inverse propensity weighting described in section 4.2.2. Panel B shows the composition of applicants

selected to be interviewed by the UCB model at each point during the analysis period. We plot a rolling
average across a ten-round window and the 95% confidence intervals around each mean.

Source: All data come from the firm’s application and hiring records.

In Panel B, we find no discernible downward trend in the proportion of Black and

Hispanic candidates selected by our UCB model over time. This suggests that, in our

sample, hiring outcomes for minority applicants are high enough that our models do not

update downward upon selecting them. As discussed in Section 5.2, one may be concerned

that the stability of our demographic results represents a failure to learn due to biases

arising from sample selection. Our tests for selection on unobservables, described in Section

6.2.2 suggests that this possibility is not driving our results here.
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9.2. Learning in simulated applicant data

We do not see evidence of either the UCB or SL model learning during our analysis sample.

This may be because our analysis above is unfortunately limited by sample size and timing:

our analysis period spans just under 1.5 years, and we only observe hiring outcomes among

candidates interviewed during this period. Combined, this gives us limited opportunities

to observe how our models may evolve over longer periods, or respond to more substantial

changes in applicant quality.

To further explore how our UCB and SL models behave, we conduct simulations in

which we change the quality of applicants who enter our analysis sample, starting in 2018.

We provide details of how we implement this in Appendix G.2 but, essentially, we imagine

that the quality of one demographic group begins to increase during the analysis period so

that, by the end of the period, all applicants from that group having a hiring yield of 1. In

the meantime, we hold the quality of applicants from all other groups constant at their true

2018 mean. Given this stark set up, an efficient model is one that can detect this change

in applicant quality and begin interviewing only applicants from that group. To evaluate

this, we consider how each of our ML scoring approaches would evaluate the same cohort

of candidates at different points in time. Specifically, we take the actual set of candidates

who applied between January 2019 and April 2019 (hereafter, the “evaluation cohort”),

and estimate their ML model scores at different points in 2018. This allows us to isolate

changes in the algorithm’s scores that arise from differences in learning and exploration

over time, rather than from differences in the applicant pool.

For intuition, consider the scores of candidates on January 1, 2018, the first day of the

analysis period. In this case, both the SL and UCB algorithms would have the same beliefs

about the hiring potential of candidates in the evaluation cohort, because they share the

same estimate of E[Yit|X ′
it;D0] trained on the initial data D0. The UCB model, however,

may have a different score, because it also factors in its exploration bonus. On December

31, 2018, however, the SL and UCB algorithms would have both different beliefs (based

on their potentially different history of selected applicants) and different scores (because

the UCB factors in its exploration bonus in addition to expectations of quality). To better

understand how the UCB model differs from the SL, we also consider a third variant, which

tracks who the UCB model would have selected based on its estimates of E[Yit|X ′
it;D

UCB
t ]

alone; this model allows us to track the evolution of the UCB model’s beliefs separately

from its exploration behavior.
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Figure 10 displays the results of this exercise for the simulation in which we increase the

quality of Black applicants. In Appendix G.2, we discuss the results of simulations in which

we increase the quality of other demographic groups, as well as the analogous simulations in

which we decrease the quality of applicants by demographic group. Panel A focuses on the

share of Black applicants who are selected. We report the results of three different selection

criteria. The blue dashed line reports the selection decisions of the UCB model. The UCB

model rapidly increases the share of Black candidates it selects. To better understand why

this happens, we plot a green dash-dot-dot line, which tracks the UCB model’s beliefs:

that is, the share of Black applicants it would select if its decisions were driven by the

Ê[Yit|X ′
it;D

UCB
t ] component of Equation (5.4) only, leaving out the exploration bonus.

Initially, the blue dashed line is above the green dash-dot-dot line; this means that the

UCB model begins by selecting more Black applicants not because it necessarily believes

that they have strong hiring potential, but because it is looking to explore. Over time, the

green dash-dot-dot line increases as the models see more successful Black candidates and

positively updates it’s beliefs. Eventually, the two lines cross: at this point, the UCB model

has strong positive beliefs about the hiring potential of Black applicants, but it holds back

from selecting more Black candidates because it would still like to explore the quality of

other candidates. By the end of the simulation period, however, exploration bonuses have

declined enough so that the UCB model’s decisions are driven by its beliefs, and it selects

almost exclusively Black candidates.

The solid blue line shows this same process using the SL model. While it is eventually

able to learn about the simulated increase in the hiring prospects of Black applicants, it does

so at a significantly slower rate relative to UCB. Because supervised learning algorithms

focus on maximizing current predicted hiring rates, the SL model does not go out of its way

to select Black candidates. As such, it has a harder time learning that these candidates are

now higher quality. This is unsurprising considering Figure 1, which shows that SL models

are very unlikely to select Black applicants.

Panel B of Figure 10 plots the analogous change in the quality of selected applicants

over time. While the SL model eventually catches up in terms of quality, we see that the

UCB model outperforms earlier because it is able to more quickly identify the group with

improved quality. In Figure A.XX of Appendix G.2, we show that the gap in performance

between the UCB and SL models is highest in simulations where the group whose quality is
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improving is less likely to be selected at baseline. This is because the UCB model proactively

looks for applicants with rare covariates.

In Appendix G.2 we also discuss simulations in which applicant quality decreases. We

find that the UCB model will drastically reduce the number of minority applicants it selects

once it begins to learn that their quality has fallen. This differs from a quota-based system

that sets minimum levels of representation.

10. CONCLUSION

This paper advances our understanding of how algorithmic design affects access to

job opportunities. While previous work has highlighted potential gains from following

algorithmic recommendations, we highlight how algorithm design can shape the impact

of these decision tools. We show that exploration-based algorithms can help firms more

effectively identify candidates that meet their hiring criteria while simultaneously increasing

the representation of minority applicants. This occurs even though our algorithm is not

explicitly charged with increasing diversity, and even when it is blinded to demographic

inputs.

Our findings shed light on the relationship between efficiency and equity in hiring. In our

data, supervised learning algorithms increase hiring yield but decrease diversity, relative to

the firm’s current practices. A natural interpretation of this finding is that algorithms and

human recruiters make different tradeoffs at the Pareto frontier, with humans prioritizing

equity over efficiency. Our UCB results, however, show that such explanations may be

misleading. By demonstrating that an algorithmic approach can improve hiring outcomes

while expanding representation, we provide evidence that human recruiters operate inside

the Pareto frontier: in seeking diversity, they select weaker candidates over stronger

ones from the same demographic groups. This leaves room to design more data-driven

approaches that better identify strong candidates from under-represented backgrounds.

Finally, our findings raise important directions for future research. As firms increasingly

adopt algorithmic screening tools, it becomes crucial to understand the organizational

and general equilibrium effects of such changes in HR practice. For example, there is

considerable debate about the impact of diversity on team performance and how changes
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A. Share of Selected Applicants who are Black

B. Average Hiring Yield

Figure 10: Simulations increasing the quality of black applicants

Notes: This figure shows the results of a simulation in which the quality of Black applicants increases

over time, as described in Section 9.2 and Appendix G.2. In Panel A, the y-axis graphs the share of Black

applicants in the evaluation cohort who are selected to be interviewed by each ML policy. Panel B plots
the overall quality of interview decisions, as measured by hiring yield among interviewed applicants.

Source: All data come from the firm’s application and hiring records.
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in the types of employees may impact organizational dynamics.36 Such changes may also

impact the validity of the predictive relation between applicant covariates and outcomes.

In addition, when adopted by a single firm, an exploration-focused algorithm may identify

strong candidates who are overlooked by other firms using more traditional screening

techniques; yet if all firms adopt similar exploration-based algorithms, the ability to hire

such workers may be blunted by supply-side constraints or competition from other firms.

These equilibrium effects may reduce the potential benefits of algorithmic selection. While

there is limited empirical evidence on the equilibrium effects of algorithms, Raymond

(2023) shows that the adoption of algorithmic prediction impacts equilibrium prices and

investment in the housing market. Such shifts in the aggregate demand for skills may also

have long run impacts on the supply of skills in the applicant pool and on the returns

to those skills. Both the magnitude and direction of these potentially conflicting effects

deserve future scrutiny.
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