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Abstract

We discuss how to estimate the interplay between genes (nature) and environments (nurture),
with an empirical illustration of the moderating effect of school-starting age on one’s genetic
predisposition towards educational attainment. We argue that gene–environment (G×E)
studies can be instrumental for (i) assessing treatment effect heterogeneity, (ii) testing
theoretical predictions, and (iii) uncovering mechanisms, thereby improving understanding
of how (policy) interventions affect population subgroups. Empirically, we find that being
old-for-grade and having a higher genetic propensity for education benefits children on
assessment tests as they progress through school. In this setting, families appear to increase
genetic inequalities while schools seem to reduce them.
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1 Introduction

The debate over the relative importance of nature versus nurture in the development of human
traits is amongst the oldest in the social sciences. Decades of twin studies have demonstrated
that genetic factors account for approximately 25-75% of the between-individual variation
in a wide range of behaviors, traits, and outcomes (Polderman et al., 2015). This finding is
summarized in the first law of behavioral genetics: “all human behavioral traits are heritable”
(Turkheimer, 2000). Of course, environmental factors are similarly important. Moreover, genes
and environments do not operate in isolation. Gene-by-environment (G× E) interaction occurs
when environmental factors influence the relationship between the genotype and the outcome
of interest, or vice versa.1 Most outcomes arise from a web of both genetic and environmental
influences that may interact in complex ways (Hunter, 2005; Heckman, 2007).

Rapid reductions in the cost of collecting and processing genetic material have expanded the
availability of genetic data, making it feasible to study complex G×E interplay in econometric
analyses. Single-nucleotide polymorphisms or SNPs (pronounced “snips”) represent the most
common type of genetic variation, and occur when individuals differ in the molecules they
possess at specific positions on the genome. With the ability to measure SNP-level variation,
researchers can study the influence of a single SNP, or the combined influence of millions
of SNPs aggregated into a polygenic index (PGI).2 PGIs have substantially greater predictive
power than do single SNPs, and are now available in many rich (longitudinal) datasets. Since
anyone can now explore the role of G× E in shaping individual outcomes, even without much
knowledge of genetics, economists need to be aware of the complexities of genetic data and the
interpretation of G× E results. We aim to provide this essential guidance here.

We build on previous surveys of the use of genetic data in economic analyses3, and focus
on the economics and econometrics of G × E interplay. Our contribution is twofold. In the
first part of the paper we introduce key concepts, discuss recent developments in the field, and
highlight the intricacies of understanding and interpreting G× E estimates. In the second part
we offer practical guidance on how to use genetic data to explore nature–nurture interplay. We
do this by testing for the presence of G×E interactions in the context of school entry policies in
the United Kingdom. Specifically, we examine interactions between the age of school entry and
a PGI for educational attainment (EA) in shaping performance on standardized tests throughout
childhood, from ages 4 to 16.

1Gene–environment interplay differs from the study of epigenetics, which focuses on the role of gene expression.
Whereas individuals’ genotype is fixed at conception, their gene expression may change over the life course
due to environmental influences. As such, epigenetic processes can provide one explanation for the existence of
gene–environment interplay, but they are not the only possible mechanism. See Appendix B.4 for more details.

2Different terms are used to refer to the genetic component, including genotype, genetic makeup, genetic
propensity, genetic endowments, genetic variants, polygenic scores (PGS), and PGI. The Glossary in Appendix A
provides definitions of the most important genetic terminology used in the paper.

3Examples include Benjamin et al. (2012a), Beauchamp et al. (2011), and Benjamin et al. (2024), and more
specifically the surveys on G×E interplay, as in Fletcher and Conley (2013) and Schmitz and Conley (2017a). See
Rutter (2006), Plomin (2014), Mills et al. (2020) and Domingue et al. (2020) for related work in other disciplines.
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There is a long-standing debate (Heath et al., 1985) on whether educational institutions
moderate inequalities induced by the “genetic lottery” (Harden, 2021a). Policies related to entry
into the formal schooling system – including the age of school entry – are of particular interest
since they determine the moment at which the bulk of skill development is transferred from
parents to schools. With current, state-of-the-art EA PGIs explaining 12-16% of the variation in
educational attainment, on par with some of the strongest environmental determinants such as
parental education and income (Lee et al., 2018; Okbay et al., 2022), molecular genetic data can
now be used to shed light on its role in shaping inequalities.

In this paper, we study whether and how school-starting age moderates the relationship
between genotype and academic achievement, and quantify the magnitude of such G × E

effects. In the United Kingdom, strict birth-date cutoffs dictate that individuals born just before
September 1 start formal schooling at age four (making them relatively young in their class),
while those born on September 1 or just after start around age five (making them relatively old
in their class). This quasi-randomly assigned treatment is multifaceted, as the children born just
after September 1 (i) enter school and take tests at an older age, (ii) are relatively older than their
classmates, and (iii) receive an extra year of exposure to their parental rearing environments
before starting formal schooling. The existing literature – discussed more extensively below –
has found that children who are older when they start schooling (and therefore also older relative
to their peers) perform substantially better on grade-level tests.

We estimate the treatment effect – i.e., being old-for-grade – on a series of five standardized
tests. The first test is taken upon entering primary school, i.e., before any exposure to formal
schooling. For this first test, we find a strong positive interaction between the genetic propensity
for educational attainment (as measured by the EA PGI) and being old-for-grade. That is, old-
for-grade children perform better on the entry assessment test, and high EA PGI children gain
more, on average, from entering school later. Since these tests are taken before children enter
school, the treatment reflects biological maturation and having spent more time at home (e.g.,
more parental investments). Interestingly, for standardized tests taken several years after the start
of formal schooling, we generally find a pattern of negative interactions between assignment to
old-for-grade and the EA PGI. That is, children with lower EA PGI values gain more from being
old-for-grade in the formal schooling system. In addition to reflecting biological maturation
and more time at home, the treatment now also includes effects that operate through the school
environment, suggesting that formal schooling reduces genetic inequality for EA. In Section 4.1,
we discuss how a simple economic model can help with the interpretation of these opposing
G× E estimates.

The study of G× E interplay may advance basic science by improving our understanding
of the role of nature and nurture in shaping human capabilities. Beyond this, we contend that
studying G× E interplay is of general interest, even for those with no inherent interest in the
biological origins of economic outcomes, for at least three reasons:

(1) Treatment effect heterogeneity and inequality: Researchers and policy-makers are often
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interested in characterizing the distribution of treatment effects associated with a particular
intervention or policy change. Their impact depends on which individuals are most affected,
and how they respond. G× E studies can reveal whether and how individuals with different
genetic endowments are differentially affected, extending our ability to describe treatment
effect heterogeneity beyond standard observables. A review of recent papers in this literature,
with a focus on educational attainment, suggests that G × E interactions are quantitatively
important and around 1.5 to 3 times smaller than the main effects (see Appendix D). In our
empirical analysis we find that old-for-grade children score 0.38 standard deviations higher on
the standardized test taken at age 10-11, and this effect is 25% higher for children with a PGI
one standard deviation below the mean.

Knowing whether a policy moderates differences arising from genes is of interest because
people exhibit very different moral intuitions for inequalities arising from genetics or from
early life socioeconomic conditions (e.g., Sandel, 2020; Harden, 2021a). Some consider genetic
gradients a signal of meritocracy (e.g., Rimfeld et al., 2018), whereas others view genetic
differences as yet another layer of inequality of opportunity since genes – like rearing environ-
ments – are unchosen and unearned (e.g., Harden, 2021a; Kweon et al., 2020). Understanding
treatment effect heterogeneity arising from genes also holds a special significance for studying
intergenerational mobility: since genes are inherited, policies that benefit one generation may be
propagated to the next and thereby affect long-run inequalities.

Results from G× E studies may also enable the targeting of scarce resources, or the devel-
opment of personalized interventions. In medicine, genetic data are already widely used for
diagnostic purposes and for the tailoring of treatments. G× E effects for complex economic
outcomes like educational attainment raise the possibility of similar applications in skill develop-
ment. In the short run, it seems unlikely that school systems or other institutions would incur the
substantial costs of creating personalized experiences informed by genetics. It is also debatable
whether the use of genetic data will ever be informative and beneficial enough to justify its
institutional use given the large ethical and privacy concerns (Meyer et al., 2023). However,
our empirical application highlights that G× E research might be more immediately useful at
the level of household decision-making. Well-identified G × E studies are a prerequisite for
assessing the viability of such applications. Even here, enthusiasm over such applications may be
premature since the current predictive power of PGIs may be too low for useful individual-level
recommendations (Morris et al., 2020b; Turley et al., 2021). Still, depending on preferences and
constraints, households on the margin could conceivably use genetic information as one input
among many when deciding the best environment for their child. For example, our empirical
results suggest that genetic information may help parents on the margin determine an appropriate
age-at-entry into formal schooling within educational systems that allow such choice.

(2) Testing theoretical predictions: Economic theory predicts that idiosyncratic characteris-
tics like preferences, health endowments, and abilities shape individual choices and generate
differences in how individuals respond to a common environmental change. For example, models
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of skill formation often assume that parents actively respond to the endowments of their children
(e.g., Becker and Tomes, 1976; Behrman, 1997; Currie and Almond, 2011), and that abilities
and endowments are productive complements with parental investments (e.g., Ben-Porath, 1967;
Becker and Tomes, 1986; Cunha and Heckman, 2007). Since primitive variables, such as endow-
ments and abilities, are typically hard to measure, testing such predictions can be challenging.
Observable genetic variation – especially random variation within families – offers a new and
powerful way to measure such characteristics, and test theoretical predictions. For example,
Breinholt and Conley (2023), Fletcher et al. (2023), Sanz-de-Galdeano and Terskaya (2023), and
Houmark et al. (2024) provide evidence that parental investments indeed respond to children’s
genotypes. The presence (or absence) of G× E interactions can similarly test assumptions or
theoretical predictions. For example, Muslimova et al. (2024) find that children with higher
EA PGI values relative to their siblings gain more from being the firstborn. Since parental
investments are a dominant channel driving birth order effects, these results are consistent with
complementarity between genetic endowments and parental inputs in the formation of human
capital.

In our application, G× E results for age-at-entry have implications for the role of formal
schooling and patterns of substitutability in the human capital production function. Although
high PGI students benefit the most from being older in terms of entry skills prior to the start

of formal schooling, low PGI students benefit the most in in-school standardized testing. This
combination of results suggests that being old-for-grade during the formal schooling years
brings about a series of environments or investments that together act as technical substitutes for
genetic endowments. These results place limits on how strongly past skills, genetic endowments,
and being old-for-grade complement one another in the context of the formal schooling system.

(3) Uncovering mechanisms: Evidence on G × E interplay can also provide clues about
the economic or behavioral mechanisms through which genetic factors operate. For example,
Barth et al. (2020) find that access to defined benefit pension plans substantially moderate the
relationship between the EA PGI and household wealth. This suggests that genetic endowments
related to schooling influence household wealth not only through earnings and consumption-
savings choices, but also through financial decision-making and portfolio choice. Researchers
developing and estimating quantitative life-cycle models of these outcomes have to choose how
to incorporate heterogeneity (e.g., which primitive parameters to make random, and what kinds
of covariance structures to allow). Since genetic factors may constitute a substantial portion
of “unobserved heterogeneity”, evidence on the mechanisms through which they operate may
help guide modeling choices (Benjamin et al., 2012b). For example, the results from Barth
et al. (2020) suggest that in life-cycle models of education and inequality, it may be important to
allow sources of heterogeneity that shift education choices to be correlated with heterogeneity in
primitive parameters relative to financial-decision making or rates of return on invested wealth.

Finally, just as the empirical analysis of G× E can provide novel insights for economists,
there is great potential to using the toolbox of economics to better design G× E studies and
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thus advance the field of genetics in general and social-science genetics in particular. Since
G×E interplay often stems from endogenous behavioral adjustments, economic theory can help
clarify why and when such interplay might occur and what it implies for policy. Empirically,
both genetic endowments and environmental factors are typically endogenous in the study of a
particular outcome. Ongoing advances in methods and data are creating opportunities for the
causal inference of genetic factors. Economists have substantial experience with exploiting
exogenous variation in environmental exposures and have developed a large toolbox to deal with
endogeneity. Given the importance of establishing which causal environmental exposures mod-
erate what genetic predispositions, economists are well-positioned to improve our understanding
of the complex interplay between nature and nurture in shaping life outcomes.

This paper is organized as follows. Section 2 discusses the measurement of G, distinctions
between environments that act as moderators or mediators of genetic effects, the interpretation of
genetic effects, and how the natural experiment of genetic inheritance can be exploited to analyze
causal genetic effects. In Section 3, we discuss the intricacies of interpreting an empirical G×E

model, providing a systematic categorization of G×E analyses and a discussion of the direction
and nature of the bias in G, E and G× E for each case relative to the ideal (unbiased) case, in
which both G and E are exogenous. Readers familiar with the (social science) genetics literature
may wish to skip directly to Section 4, where we uncover a novel G× E interaction between
being old-for-grade in school (E; exogenous due to sharp cut-offs in month of birth determining
eligibility for school entry) and the genetic propensity for educational attainment (G; exogenous
since the child’s genotype is random conditional on the parental genotypes) on test scores at
different ages throughout childhood. Section 5 concludes by providing a brief discussion of our
results.

2 Measuring and interpreting G

The following discussion assumes a minimum level of understanding of genetic concepts, with
the Glossary in Appendix A providing definitions of the genetic terminology used in the paper.
We suggest that those new to genetics start with Appendix B for a short primer.

More than 15 years of Genome-wide Association Studies (GWAS) show that virtually all
outcomes that social science researchers are interested in are highly “polygenic” (Visscher et al.,
2008; Loos, 2020; Abdellaoui et al., 2023). That is, there is no “gene for” a certain outcome, but
individuals rather fall somewhere on a scale of the genetic predisposition to a certain outcome
that reflects the aggregation of numerous small contributions of millions of genetic variants
(Single Nucleotide Polymorphisms; SNPs). Most studies therefore tend to use PGIs (Becker
et al., 2021) instead of individual SNPs, where a PGI is a weighted sum of individual SNPs.

While a PGI constitutes the best linear genetic predictor of an outcome (Mills et al., 2020;
Becker et al., 2021), it is important to emphasize that this holds within the environmental and
demographic context of the discovery sample (Mills et al., 2020; Domingue et al., 2020). Most

6



existing PGIs are derived from discovery samples based on European-ancestry populations, with
limited ‘portability’ to populations with different ancestries (Benjamin et al., 2024). Thus, the
association between a PGI and an outcome cannot be interpreted as an immutable biological
relationship (e.g., Mostafavi et al., 2020; Kweon et al., 2020): the effects depend on the context,
i.e., on the environment. For example, even though alcohol metabolism and dependence are
partially determined by genetic factors, in an environment where alcohol consumption is illegal
or low because of cultural reasons (Cho et al., 2015), the genetic effects would be (close to) zero.

Environmental factors may influence the relationship between the PGI and the outcome
of interest through at least three channels: as moderators, confounders, and mediators. As a
moderator, the environment could change the strength of the relationship between a PGI and the
outcome. This is precisely the topic of this paper, where environmental moderation would be
reflected by the G× E interaction term.

To understand the environment as a confounder and mediator of the PGI effect, we consider
educational attainment as the outcome variable. Figure 1 shows a schematic of the relationships
between the parental genotypes (Gfather and Gmother), the environment (Echild), the child’s
genotype (Gchild) and the child’s outcome (Ychild). The top part of the diagram shows how the
genotypes of mothers and fathers may be correlated through assortative mating.4 The arrow from
Gfather and Gmother to Gchild (genetic recombination) reflects the notion that a child inherits
her genotype from her parents through recombination of the parental genotypes. The child’s
genotype in turn has a direct effect on the outcome (arrow from Gchild to Ychild, “direct effect”),
while the parental genotypes may be associated with the environment (arrow from Gmother

and Gfather to Echild). That is, parents with genotypes conducive to education may provide an
environment more beneficial to their child’s learning (so-called genetic nurture; Bates et al., 2018;
Kong et al., 2018; Wertz et al., 2018), and/or genotypes of parents may simply be correlated
with environmental advantages that originate from older ancestries (so-called dynastic effects,
Nivard et al., 2024). This environment in turn may raise the child’s educational achievement
(arrow from Echild to Ychild). Here, the child’s environment acts as a confounder because Echild

not only influences the outcome Ychild but is also correlated with the child’s genotype Gchild

through the parental genotypes. Genetic nurture and dynastic effects are examples of a so-called
“passive gene–environment correlation” (rGE) (double thin arrow between Gchild and Echild),
which occurs when individuals’ genotypes relate to their environment, but that environment is
not a consequence of the child’s genotype Gchild.5

In general, gene–environment correlation (rGE) describes the phenomenon of certain
environments being more prevalent among carriers of certain genotypes (Plomin et al., 1977;

4Assortative mating based on educational attainment and correlated characteristics has been shown to induce a
non-negligible correlation in genotypes across mothers and fathers in the order of 0.10-0.20 (e.g., Robinson et al.,
2017; Morris et al., 2020a; Torvik et al., 2022; Collado et al., 2023).

5Passive rGE also occurs when siblings’ genotypes partially shape the environment that individuals are exposed
to (e.g., Cawley et al., 2019). Since siblings share, on average, 50% of their DNA, this introduces a correlation
between sibling genotypes and sibling environments. However, conditional on parental genotypes, the child’s
genotype is as good as random, fully eliminating any confounding due to passive rGE (as we discuss later).
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.

Figure 1: The relationships between parental genes (Gfather and Gmother), the child’s genes (Gchild),
environmental factors (Echild), and the outcome (Ychild). The grey area represents the “causal” region of
the diagram (explained further in the text).

Fletcher and Conley, 2013). In addition to passive rGE, there are two other types of rGE: active
and evocative rGE (Plomin et al., 1977). Active gene–environment correlation occurs when
individuals with certain genotypes self-select into certain environments Echild (“mediation”).
For example, someone with a high genetic predisposition for education may find it easier to
apply for and be accepted into a selective, high-quality university. Evocative gene–environment
correlation occurs when someone’s genetic predisposition Gchild invokes a certain environmental
response; Echild (“mediation”). For example, a child with a high genetic predisposition for
calmness may be treated differently by her parents and teachers, creating an environment that
may be more conducive to learning. Hence, both active and evocative rGE imply that the
environment Echild is a consequence of the child’s genotype Gchild. These environments, in turn,
may influence the child’s educational attainment Ychild. Hence, through active and evocative
rGE, the environment may act as a mediator, a variable that is influenced by the child’s genotype
Gchild and that in turn influences the outcome Ychild.

Genotypes have the useful property of being fixed at conception. Thus, the outcome cannot
affect the genotype (i.e., there is no reverse causality). We adopt the view that the causal effect
of genotype can be thought of as a variant substitution effect (Lee and Chow, 2013; Morris
et al., 2020a). That is, the causal effect of a genetic variant is the counterfactual change in an
individual’s outcome that would occur had that genetic variant been different at conception, with
all else held constant.6 In the diagram, the mechanisms through which the child’s genotype Gchild

6Other definitions, e.g. Young et al. (2022), also include indirect genetic effects stemming from passive rGE as
part of the causal effect of G. From a dynastic point of view, these definitions are similar—hypothetically, a change
in one’s genotype at conception will have implications for individuals and their offspring (i.e., may lead to passive
rGE for the next generation). We here take an individual’s genotype as the relevant unit of analysis and therefore
treat passive rGE arising from relatives’ genotypes as a source of bias rather than a causal effect.

8



operate can be through direct pathways (e.g., gene expression) but can also be environmentally
driven (e.g., through active or evocative rGE). Both direct and indirect genetic pathways fall
within the causal part of the diagram (shown in gray).

The existence of (passive) rGE implies that the offspring’s genotype Gchild and outcome
Ychild are simultaneously influenced by the parental genotypes. This implies that the offspring
genotype Gchild is endogenous. As we discuss in Section 3.1, controlling for the parental
genotype can fully address confounding due to passive rGE, allowing for causal inference. This
is because, conditional on the parental genotypes, the child’s genotype is as good as random
(“Mendel’s Law”), breaking the link between child genotype Gchild and the confounding child
environment Echild.7 Controlling for parental genotypes can also solve biases arising from
assortative mating, which typically inflates the association between Gchild and the outcome
Ychild (Young, 2023).8 Controlling for the parental genotypes therefore isolates a clearly defined
causal effect, namely, the change in the expected value of the outcome variable that results from
a hypothetical change of the allele count of a given SNP at conception (Benjamin et al., 2012a).
These effects will be aggregated over all SNPs in a PGI and averaged over all individuals in the
data.

In the next section, we discuss approaches to addressing the endogeneity of the PGI and the
environment in analyses of G× E interplay and the more general question of how to estimate
the moderating effect of an environment on a genotype.

3 Empirical approaches to estimating G× E interplay

The core idea behind gene–environment interplay (G× E) is that effects of nature and nurture
are not additive and separable but intrinsically joined and nonlinear. Interaction effects have also
be referred to as synergies, complementarities, supermodularity, or heterogeneity of treatment
effects (Mullahy, 1999). Consider a data-generating process in which the outcome Yi =

F (a∗, Gi, Ei, ei) is a function of genetic endowments Gi, the environment Ei, individual choices
a∗ = a∗(Gi, Ei, ei), and random factors ei. To test for the existence of G × E, one needs to
test for nonlinearities in the function F (·), specifically that ∂2F/∂G∂E ̸= 0. After taking a
second-order Taylor approximation, we focus on the identification of G× E in a typical linear

7This property is also exploited in so-called Mendelian randomization studies that use genotypes as instrumental
variables for endogenous environmental exposures (Von Hinke et al., 2016). Mendel’s law also allows for calculating
the expected relatedness among offspring given the relatedness of the parents. Deviations from expected relatedness
(“relatedness disequiblibrium”) are due to random segregation and can therefore be used to estimate a trait’s
heritability free from environmental bias (Young et al., 2018).

8Assortative mating on educational attainment induces a correlation across SNPs that influence the genetic
propensity to educational attainment in future generations. It can be thought of as a form of population stratification
(see also Appendix B.2), where children from higher educated parents inherit different alleles compared with
children from lower educated parents (Morris et al., 2020a). Because of environmental transmission of the
propensity to higher education, the importance of particular SNPs that are over-represented in higher-educated
families will be overestimated, biasing the predictive power of a PGI upwards (e.g., Okbay et al., 2022).
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regression model:

Yi = β0 + βGGi + βEEi + βG×E (Gi × Ei) + βG2G2
i + βE2E2

i

+ β1Xi + β2 (Gi ×Xi) + β3 (Ei ×Xi) + εi. (1)

where we include control variables Xi, which should not be caused by G and E to avoid bias
due to ‘bad controls’ (e.g., Angrist and Pischke, 2008). We also include a full set of interactions
between the control variables and the genetic and environmental measures—(Gi ×Xi) and
(Ei ×Xi) respectively—to ensure that the coefficient of interest βG×E does not capture spurious
correlations between Xi and either Gi or Ei (Keller, 2014; Feigenberg et al., 2023).

In Table 1, we present nine possible scenarios for estimating gene–environment interplay
based on (exogeneity) assumptions for G and E. We also highlight a representative study for
each cell (where possible), which we discuss in more detail in Appendix D. We distinguish
between three possible scenarios for genotype G: (1) exogenous G and a PGI obtained from
a parent-child or sibling GWAS (top row); (2) exogenous G and a PGI based on a regular
(between-family) GWAS (middle row); and (3) endogenous G and a PGI based on a regular
GWAS (bottom row).9 Exogenous G refers to a situation where genotyped family data allow
one to control for (imputed) parental genotype, or where sibling data are available, allowing
one to include family fixed effects, such that the variation in offspring genotypes is randomly
assigned.

We also distinguish between three categories for the environmental measure: exogenous (left
column), predetermined (middle column), and non-predetermined E (right column; the latter two
being endogenous). Predetermined measures of environment E are defined as those set before
conception or not caused by genotype G. Examples of predetermined environments E could
be family income or air pollution levels before conception. Such environmental exposures are
clearly not caused by one’s genes but are likely correlated with other environmental exposures
(which we refer to as E∗) and possibly influenced by parental genotype.

In the following subsections, we discuss each of the nine scenarios. For reasons of space
and exposition, we mostly focus on the interpretation and biases in the main effects of G and E

and do not separately discuss the G× E interaction term. However, in specific cases where the
interpretation of the interaction term does not follow naturally from the main G and E effects,
we discuss those separately.

9A fourth category exists where a researcher has access to a PGI based on the results of a parent-child or
sibling GWAS but applies this in a sample without parent–child/sibling pairs. There are currently no such studies,
and therefore we do not separately discuss it since the issues highlighted in scenario (3) also apply here (see
Appendix C).
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3.1 The ideal experiment: exogenous G and exogenous E

Unbiased estimates of the coefficients on G, E, and G × E can be obtained by combining a
quasi-experimental design that isolates exogenous variation in environmental exposure with
genetic data from multiple family members to control for parental genotype, along with summary
statistics from a well-powered parent-child or sibling GWAS to construct the PGI. This scenario,
illustrated in the top row, left column of Table 1, is likely to emerge in the near future but
does not yet exist. In this ideal experiment, the constructed PGIs are perfect estimates of the
genotype G, though measurement error in the PGI may result in downward bias as we highlight
in Section 3.2.2. Since exogenous variation in E is commonly used in economics, we focus in
our discussion on the estimation of exogenous G.

The source of variation in one’s genotype is well-understood. As stated by Mendel’s first
law, one’s genotype is the result of the random segregation of one’s parental genotypes during
meiosis. Thus, conditional on parental genotype, the genotype of the child is random. Consider
the following simplified relation between the outcome Yi of child i and her genotype Gi,
conditional on the genotype of her mother Gm(i) and father Gf(i) (Kong et al., 2020):

Yi = β0 + βGGi + βGmGm(i) + βGf
Gf(i) + εi, (2)

where β0 is a constant term, βG captures the direct genetic effect of the child’s genotype Gi,
βGm and βGf

capture indirect genetic effects from the mother and father, respectively, and εi

denotes the error term.
We can think of Equation 2 in terms of either a GWAS stage or an analysis stage. The analysis

stage represents the use of PGIs for the child and parents (Gi and Gm(i)/Gf(i), respectively)
based on results from a GWAS, and applied to explain variation in the outcome of interest
Yi. The GWAS stage instead reflects a series of J regressions that estimate the βj effect sizes
for each of J SNPs, conditioning on parental genotype. Following our definition of variant
substitution, any association between a genetic variant and the outcome of interest in a GWAS
that conditions on parental genotypes reflects a causal genetic effect.

In practice, such analyses do not always require the availability of trios (two parents and one
or more children). Pairs of close relatives can be sufficient since one can impute the genotype
of the “missing” third individual in a trio (Kong et al., 2020; Young et al., 2022) by leveraging
the Mendelian laws of genetic inheritance and the observed alleles of relatives. The aim is to
estimate the four parental alleles: two for the mother and two for the father. When all four are
observed (e.g., the two children have four different alleles), parental genotypes can be accurately
reconstructed. When only two or three parental alleles are observed, the missing parental alleles
can be imputed, for example using the average allele frequency in a reference panel—a dataset
containing genetic data on a comprehensive sample of individuals with similar ancestry. This
approach results in consistent and unbiased estimates of the direct genetic effect (for a detailed
proof, see Young et al., 2022).
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An alternative strategy to establish causal genetic effects in the GWAS stage is to use a
sample of sibling pairs and to run a sibling GWAS by including family fixed effects (Howe et al.,
2022). Instead of Equation 2, we then have:

Yij = β0j + βGGij + εij, (3)

where Yij is the outcome for individual i in family j, Gij is the genotype of individual i in
family j, and β0j represents a family fixed effect absorbing the parental genotype.10 The analysis
compares differences in sibling genotypes Gij to differences in their outcomes Yij . Such analyses
exploit the fact that the genotypic variation between siblings is randomly assigned given that
siblings draw from the same shared genetic pool: their parental genes.

When PGIs constructed from the results of such a GWAS are applied in a G× E analysis
that conditions on parental genotypes, the PGI coefficient represents the causal genetic effect βG.
Indeed, controlling for parental genotypes in the analysis stage fully addresses the confounding
that results from passive rGE: the links between the gray (causal) and white (confounding)
parts in Figure 1 are broken. When combined with an exogenous source of variation in the
environment, such analyses would constitute the ideal experiment: when both G and E are
exogenous, the estimated effects of the PGI G, the environment E, and their interaction G× E

will all be unbiased and can thus be interpreted as causal (Table 1, top row, left column).
One potential advantage of the family fixed effects approach over the parent–child trio

approach in the G × E analysis stage is that it may render the assumption of exogeneity of
the environmental exposure more plausible. However, it also carries four important limitations.
First, because the family fixed effects strategy requires at least two siblings from the same family,
it cannot be used to study single-child families. Second, when one sibling’s genotype directly
affects another sibling’s outcome (sibling effects), this will bias the coefficient of G in a family
fixed effects model (see Kong et al. (2020) and Appendix C.1 for details). In contrast, bias
due to sibling effects does not exist in parent–child trio analyses, since sibling genotypes are
randomly assigned conditional on parental genotype, and hence independent of each other.

Third, even though the main genetic effects are identified based on within-family variation
in Equation 3, the G× E interaction term in these fixed effects regressions might be partially
identified from between-family variation (see Shaver (2019), Giesselmann and Schmidt-Catran
(2022), and Appendix C.2 for details). A final limitation is that members of a sibling pair have
to be exposed to different exogenously determined environmental circumstances, because the
model is identified from variation within families. This obviously puts restrictions on any natural
experiment in a sibling approach to studying G × E interplay. In contrast, parent–child trio
analyses enable the study of a single exogenous environmental shock affecting a single child or
all siblings within a family because such analyses can exploit variation across families.

10Since the only confounding variables in a GWAS are the father’s and mother’s genotypes, the GWAS is
sometimes also performed using a regression without family fixed effects but with the mean sibling’s genotype as a
control variable (e.g., Howe et al., 2022). Inclusion of the mean sibling’s genotype is sufficient to control for the
mean influence of parental genotype and therefore leads to point estimates equivalent to those from Equation 3.
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3.2 The current state of the literature

Due to the limited availability of large scale datasets with parent–child or sibling genotypes,
there is currently only one example of a sibling GWAS (Howe et al., 2022) and one of a parent-
child GWAS (referred to as a ‘family GWAS’ in Tan et al., 2024). The explanatory power of the
resulting PGIs however, is limited, because the size of the discovery sample is relatively small.
As a result, we empirically find ourselves in the middle or bottom row of Table 1.

3.2.1 Exogenous G and a PGI based on a regular GWAS

When (i) using PGIs from a regular GWAS and (ii) controlling for parental PGIs or family
fixed effects in the G× E analysis stage, one generally underestimates the effect of the child’s
PGI (see Appendix C.3 for details). To understand the intuition, consider a family fixed effects
specification that exploits sibling differences in PGIs that are obtained from a regular GWAS. The
PGI coefficient not only captures the direct genetic effects but also genetic nurture, assortative
mating, sibling effects and ancestry (see Figure 1). Hence, if one sibling carries more SNPs that
reflect genetic nurture effects than does the other, the within-sibling PGIs will differ. However,
genetic nurture is arguably identical across siblings, reflecting the parental environment shared
by siblings. The difference in the estimated PGIs across siblings therefore effectively constitutes
measurement error. This leads to an attenuation bias in the PGI coefficient (Trejo and Domingue,
2018) and its interaction (see the second row of Table 1), and therefore reflects conservative
estimates.11 Combining exogenous G with a PGI based on a regular GWAS and random variation
in an environment (exogenous E) represents the current “state of the art” and our empirical
application is an example of this (see Section 4).

3.2.2 Endogenous G

Because of the scarcity of genotyped parent–child / sibling data, the PGI is typically endogenous
in contemporary G× E analyses (bottom row of Table 1). Hence, even when the environment
is exogenous (Table 1, left column, bottom row), G may pick up the effects of parental G
and associated environments E∗ shaped by the genotypes of parents and other ancestors (see
Figure 1). As discussed in Trejo and Domingue (2018), the genetic effect βG is likely to
be biased upward in this case, as the PGI coefficient captures both direct genetic effects and
environments shaped by parental genes, which typically have the same sign (e.g., child genetic
variants associated with higher educational attainment are generally associated with familial
environments more conducive to education). In most cases, the coefficient on the interaction
term will also be biased upward. However, since G here reflects the sum of direct genetic effects

11However, if parents respond differently to their children’s genetic endowments (see, e.g., Sanz-de-Galdeano
and Terskaya 2023), genetic nurture may differ between siblings. Moreover, in theory it could be that the interaction
between the direct genetic effect and a certain environment has an opposite sign compared to the interaction between
genetic nurture and the environment, such that the G× E term is not necessarily attenuated.
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and passive rGE, in theory they could have opposite signs, leading to bias in an unknown
direction.

Although not explicitly included in Table 1, another source of endogeneity in the estimation
of the effect of PGIs is measurement error. Since the discovery GWAS samples are not infinitely
large, there is measurement error in the estimated GWAS coefficients and hence the constructed
PGI is a noisy proxy of the “true” PGI (see Appendix B.3). A promising way to address the
resulting attenuation bias is to apply instrumental variable (IV) techniques. As first suggested by
DiPrete et al. (2018), by splitting the GWAS analysis sample into two parts, one can construct two
“independent” PGIs in the analysis sample using the two sets of GWAS summary statistics and
use these as instruments for one another. The most efficient way to combine this information is
to use the “obviously related instrumental variable” method (Gillen et al., 2019; Van Kippersluis
et al., 2023). When the discovery and prediction sample come from a very different context,
or for small GWAS discovery samples, an alternative approach is offered by Becker et al.
(2021), who propose to scale the coefficients of the PGI by a factor based on the SNP-based
heritability. These methods are well-established and recommended for purging measurement
error in the main effect of the PGI in between-family settings. However, for G× E studies and
for within-family settings much remains to be explored.

3.2.3 Predetermined E

A commonly analyzed environmental measure is the childhood environment (e.g., area-level
unemployment or death rates, distance to facilities, family income). When such predetermined
measures are analyzed in a family-based sample (i.e., with controls for parental genotype or
with family fixed effects) and when the PGI is constructed based on a parent-child or sibling
GWAS, any statistically significant G× E interaction coefficient indicates the existence of a
“true” G× E effect. The intuition is that by virtue of the family-based nature of the GWAS and
analysis stage, the measure of G is unbiased and “randomized” with respect to the environment.
Detecting a G× E interaction therefore implies the existence of such an interaction rather than
a G×G or E × E interaction. However, predetermined environmental characteristics tend to
cluster together. For example, areas with high unemployment rates tend to have fewer facilities;
and family income is strongly associated with parental education and occupation. When G× E

is identified, the interaction term may therefore reflect G× E∗, where E∗ is some unobserved
correlate of the putative environmental characteristic E (Table 1, top row, middle column).

When parent-child/sibling GWAS results are not available for constructing the PGI, but the
analysis stage includes controls for parental genotype or family fixed effects, the coefficients on
G and G× E will be downward biased (Table 1, middle row, middle column). The reason for
the downward bias is identical to the case of exogenous E (Table 1, middle row, left column).

Without access to family-based datasets (neither in the GWAS nor the analysis stage), the
predetermined environmental characteristic E may reflect parental G (Table 1, bottom row,
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middle column) as a result of familial influences (passive rGE). For example, if parental G
influences the location of residence or family income E, this may lead to bias in an unknown
direction. As before with endogenous G (Table 1, bottom row, left column), the coefficient of G
is upward biased since the PGI captures both direct genetic effects and environments shaped by
parental genes, which typically have the same sign.

Most existing studies fall into the category of endogenous G and predetermined E (see
Figure G.1 in Appendix G). Therefore, a possible correlation between G and E – often family
SES – is arguably the most important source of bias in existing G×E applications. This form of
bias is not difficult to imagine: with assortative mating based on a moderately heritable trait like
educational attainment, a correlation between G and socioeconomic advantage naturally arises
over generations (Abdellaoui et al., 2022). It is not straightforward to assess the magnitude
of this correlation, because virtually all existing PGIs capture both direct as well as indirect
genetic effects, the latter being itself an environmental component. This biases any correlation
between the PGI and family socioeconomic advantage upward. At the same time, measurement
error in existing PGIs biases the correlation downward. Despite these challenges, evidence from
Papageorge and Thom (2020) and Ronda et al. (2022) suggests that although a significant (yet
modest) correlation exists – e.g., individuals from high and low SES families differ on average
0.20 (0.27) of a standard deviation in the EA PGI in the US (Denmark) – in both cases the more
striking observation is the substantial overlap in the distribution of the EA PGI across individuals
from advantaged and disadvantaged socioeconomic groups (see Figure 3 in Papageorge and
Thom, 2020, and Figure 1 in Ronda et al., 2022).

3.2.4 Non-predetermined E

The last column of Table 1 presents the case of non-predetermined E. Endogeneity of E may
arise from five sources: reverse causality, omitted variable bias, measurement error, mediation,
and correlation of the GWAS sample selection with the analyzed environment E. The first
three sources of endogeneity are common to many econometric analyses (see, among others,
Wooldridge, 2002; Angrist and Pischke, 2008; Cunningham, 2021), and so we relegate a detailed
discussion of these possible biases to Appendix C.

Non-predetermined E can lead to an endogeneity problem through mediation. For example,
E can be shaped by G through active or evocative rGE. In this case, if the environment to
which one is exposed is partially shaped by one’s genes, E essentially becomes a “bad control”
(i.e., E is itself an outcome of G) in the relationship between Y and G.12 It is no longer clear
whether the coefficients on E and G× E genuinely reflect policy-relevant parameters (Wagner
et al., 2013). This can lead to spurious detection of a G×E effect when in fact one is measuring
the effect of G×G (if E is shaped by one’s genes through active rGE) or of G× E∗ (through

12This is not the case for a predetermined E, since the environment precedes G, implying that E is not the result
of G. A predetermined E therefore rules out active and evocative rGE but not passive rGE (hence our distinction
between exogenous, predetermined, and non-predetermined E).
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correlated environments). These scenarios are presented in the last column of Table 1.
Endogeneity in G × E analyses can also arise when the treatment group in the analysis

sample closely mirrors the GWAS discovery sample, even without overlap between the samples.
This resemblance can lead to significant G×E effects being estimated, even if no true interaction
exists, because the GWAS-based PGI reflects the genetic effects within the environmental context
of the original GWAS sample. If the treatment group is more similar to this context, G may be
more predictive among the treated group than the controls, leading to an apparent G× E. This
issue can occur even if the environment E is exogenous.13 To check for this, one can test if G
differs across environments, akin to testing for rGE, but focused on exogenous environments. If
rGE is found, the environment may actually be endogenous to the GWAS sample. The solution
is to use alternative GWAS summary statistics that are not endogenous to the environment of
interest.

3.2.5 Summary

Our discussion of the nine scenarios in Table 1 shows that one can keep bias in G× E analyses
manageable when exploiting exogenous variation in both genetics and environments. Exogenous
variation in E can be analyzed with the usual toolkit available to the applied econometrician:
randomized controlled trials, difference-in-differences methods, regression discontinuity designs,
instrumental variables, or other (quasi-)experimental methods (Schmitz and Conley, 2017a). In
this way, the environmental measure is independent of G, and one can draw causal conclusions
from the environmental exposure. With current within-family GWAS samples too small to
construct PGIs, for the time being regular (between-family) GWAS results will be used to
construct PGIs. The coefficient of G in such analyses will be upward or downward biased
depending on whether family- or population-based analysis samples are used. In a within-
family setting, the effect of G can be interpreted as causal, running through biological and/or
environmentally driven (i.e., through active or evocative rGE) pathways (Figure 1).

3.3 Functional form

The literature on G × E interplay typically specifies G as a continuous PGI, which in turn
is interacted with a certain environmental exposure. At first sight, it may appear incorrect
to construct a PGI based on an additive GWAS model and use this additive index to test for
non-linearities with a certain environmental exposure. However, starting from a less restrictive

13For example, our application investigates how being old-for-grade, captured by being born in September versus
August, interacts with one’s EA PGI in explaining test performance. If the original GWAS was performed only on
September-borns (an unlikely scenario but useful for illustration), the PGI would likely be more predictive for this
group than for August-borns since it better captures the environments experienced by September-born students
(e.g., longer exposure to the parental rearing environment, being older than one’s peers, etc.). A regression of the
outcome of interest on G, E, and G × E may then lead to a positive estimate on the interaction, merely from
picking up the additional predictive power among those with September birthdays without an interaction effect
necessarily existing.

17



linear mixed model, Miao et al. (2022) show that the common practice of modelling G × E

using PGI ×E interactions has a clear interpretation in terms of an underlying data generating
process with SNP main effects and SNP ×E interactions. The coefficient of the PGI ×E term
is proportional to the covariance between the SNP coefficients and the SNP ×E interaction
coefficients. Therefore, the interaction term in typical PGI ×E applications captures systematic
linear amplification or reduction of the SNP main effect across the entire genome by the
environmental moderator E.14

It therefore follows that measuring G as a continuous variable, i.e., as a PGI, is currently the
natural starting point. The relevant PGI is typically pinned down by the choice of the outcome
of interest. For example, if one studies educational attainment, a natural choice for G is the PGI
for education. However, this need not always be the case. Any PGI could be used if warranted
by theory or for empirical reasons. For example, the PGI for educational attainment has been
shown to predict a variety of outcomes, such as social mobility and wealth (Belsky et al., 2016,
2018; Papageorge and Thom, 2020; Barth et al., 2020). Because the PGI has no natural metric,
its effects are typically reported in standard deviations on an underlying latent scale of (loosely
speaking) genetic propensity (Becker et al., 2021).

A final consideration is how to model the outcome variable. Most existing applications adopt
linear regressions because of the well-known challenges with interaction terms in non-linear
specifications (Ai and Norton, 2003). However, when the prevalence of a binary outcome is
relatively low, adopting a linear probability model may lead to spurious G× E effects (see, e.g.,
Domingue et al. (2020, 2022) for details).

4 An empirical illustration of G× E interplay:
school-starting age and test scores

Our empirical application examines a school entry policy in England, where month of birth
determines when pupils start school. They start school in the school year (the period beginning
September 1st and ending August 31st) in which they turn five. At one extreme, children born
on August 31 start their primary schooling when they are four years and one day old, whereas
those who are born one day later, on September 1, start on their fifth birthday. Hence, the latter
group is a full year (minus one day) older than students born on August 31. At age four, this is
25% of their lifetime—a non-negligible difference.

We study the effect of this English school entry policy on skills measured by standardized

14In cases with non-systematic or non-linear environmental moderators (e.g., E increases the effect size of
one SNP but decreases another), the interaction effect PGI ×E may be zero. In other words, a null PGI ×E
coefficient does not preclude other types of G× E explaining part of the variation in an outcome (see Miao et al.,
2022, for more details and an empirical test for this case). An alternative specification to explore G × E is a
so-called genome-wide interaction study (GWIS), which can be used to construct PGIs for the main and interaction
effects (Jayasinghe et al., 2024). However, such GWIS results are not available in sufficiently large samples yet, in
particular not for the (exogenous) environments E that economists are typically interested in.
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(so-called Key Stage) tests administered during years 2, 6, 9, and 11 of formal schooling (i.e.,
ages 6-7, 10-11, 13-14 and 15-16) as well as a test taken before children start school, which
we refer to as the Entry Assessment test. A student’s month of birth induces quasi-exogenous
variation in the policy environment (E) shaping student performance on these tests (Y ). In
particular, the policy dictates that some students enter school later and take these tests when they
are older than other students. This treatment therefore (i) shifts the age at which students take
the test, (ii) changes the amount of developmental time spent at home, and (iii) alters the relative
age of students compared to their peers. We ask whether exposure to this treatment affects
students differently based on their genetic endowments measured by the PGI for educational
attainment (G).15

4.1 Background and theoretical framework

The existing literature provides evidence that age-at-entry policies matter for pupils’ outcomes:
older pupils perform better on educational tests than their younger counterparts in the same grade
(see, e.g., Bedard and Dhuey, 2006; Fredriksson and Ockert, 2005; Black et al., 2011; Crawford
et al., 2010; Ritchie and Tucker-Drob, 2018). This has significant long-term implications (Page
et al., 2019) such as for the likelihood of attending university (Bedard and Dhuey, 2006) and
individual earnings (Fredriksson and Ockert, 2005). Whether effects are heterogeneous across
child or family characteristics is less clear. Some studies report differences by child gender (e.g.,
Cornelissen and Dustmann, 2019), while others do not (e.g., Fredriksson and Ockert, 2005).
Black et al. (2011) find little evidence of heterogeneous effects by socioeconomic status for IQ,
mental health, teen pregnancy, education, or social assistance receipt, while Fredriksson and
Ockert (2005) find stronger effects among children with lower educated parents, suggesting that
a later starting age is particularly beneficial among those from disadvantaged backgrounds.

Several possible mechanisms could give rise to these effects (see Crawford et al., 2010).
First, as exams are generally taken at a fixed date, any differences can be due to absolute age

effects (or test age effects): older pupils in the school year will be up to one full year older at the
time they sit the exam than their younger counterparts. Second, there can be a direct effect of
starting formal schooling too early, when pupils are simply not yet ready. This is referred to as
the school starting age effect. Third, there may be a length of schooling effect, particularly in
school systems that allow pupils to start later in the year depending on their date of birth. With a
fixed exam date, these pupils will have experienced a shorter length of schooling compared to
those who start at the beginning of the school year. Finally, there may be a direct effect on your
test scores of being younger than your peers when starting school; the relative age effect.

The strongest evidence is found for absolute age effects as a mechanism through which

15Throughout our empirical analysis, we follow best practice for G×E research as described above. For the
applied researcher, we outline the empirical analytical steps in Appendix E.1 and provide all syntax in our GitHub
or Zenodo repository. We also conducted ex-ante power calculations, reported in Appendix E.2. These analytical
steps can be broadly applied to similar analyses.
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age-at-entry impacts on student outcomes (Crawford et al., 2010; Black et al., 2011). Other
school-related age effects also appear to play a role in pupils’ performance, albeit with smaller
impacts. For example, examining the effect of school starting age net of any absolute age
effects, Black et al. (2011) find that, although a later starting age does not impact educational
attainment, it does lead to better mental health at age 18 and negatively impacts individuals’
earnings, an effect that disappears by age 30. Starting school older also reduces the probability
of teenage pregnancy. Similarly, Cornelissen and Dustmann (2019) focus on identifying the
length of schooling effect in a setting with universal early schooling (England), conditional
on age-at-entry. They find that increasing exposure to schooling by starting school earlier
increases pupils’ cognitive and non-cognitive outcomes at early ages, but only the effects on
non-cognitive skills persist (at least until age 11). Effects are larger for boys (but not girls) in
low socioeconomic status households.

Here, we introduce a stylized economic model of skill accumulation, parental investment,
and test outcomes. The model distinguishes between skill at school entry and skill as students
progress through school, and highlights how a particular environmental exposure (school starting
age policy) can interact with genetic endowments to produce G× E effects through a variety of
channels. Let’s consider a school system where at the end of τ periods of schooling, students
take an exam which measures their accumulated skill, θτi . This is our key outcome of interest.
We assume that θτi is determined by a dynamic skill accumulation process with two distinct
stages: time at home before school entry, and the τ years spent in the formal schooling system.
Let aei represent a student’s age at school entry, which can be thought of as our environmental
exposure Ei. Some children are randomly assigned an “old” starting age (aei = 5), while
others are assigned a “young” starting age, (aei = 4). Also, let Gi represent the child’s genetic
endowment, and let θei refer to the child’s stock of skills at school entry.

Skill accumulation before entry: Age-at-entry can impact later schooling outcomes through
several potential channels, the first of these being the effect of age-at-entry on the stock of skills
that students possess when they enter formal schooling, θei . Let θei4 denote the stock of skills
the student would have at entry if they were assigned entry at age 4, and let θei5 denote the stock
under assigned entry at age 5. If a child enters school at age 4, we assume entry skills are an
increasing function of genes: θei4 = θei4(Gi). However, if a child enters school at age 5, then θei5

emerges as a function of θei4(Gi) (initial skills at age 4), genotype (Gi), and parental investments
between age 4 and 5, xi5. This technology is summarized by the production function:

θei5 = θei5(θ
e
i4(Gi), Gi, xi5) (4)

Skill accumulation during formal schooling: Once students enter formal schooling, their
skills evolve as a function of skill at entry, θei , their genetic endowments, Gi, and their age at
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entry, aei :
θτi = θτi (θ

e
i , Gi, a

e
i ). (5)

Here θτi (·) can be interpreted as a stylized summary of a more complicated dynamic skill
accumulation process throughout the τ years of schooling. We assume that θτi is increasing
and concave in entry skills θei and in the genetic endowment Gi (the two continuous inputs):
∂θτi
∂θei

> 0, ∂2θτi
∂θei

2 < 0, ∂θτi
∂Gi

> 0, ∂2θτi
∂G2

i
< 0.16 For simplicity, we abstract from several sources of

complexity that may be important. First, we do not model the role of parental characteristics
and parental investments during school. Parental genetic factors Gp

i could be an additional
input in the production function, giving rise to the various sources of confounding discussed in
Section 3.2. We also do not explicitly model peer effects, except that entry age aei could affect
skill production through a relative age effect (e.g., benefiting from being surrounded by older
or younger peers, or because they receive different attention from teachers). Finally, we also
abstract from the role that siblings might play in this process.

Optimization problem: The only choice variable in the model is parental investment between
ages 4-5, if the child is assigned to aei = 5. Parents choose xi5 to maximize child i’s school
test score θτi = θτi (θ

e
i , Gi, a

e
i ) net of a convex cost function Ci(xi5, Gi). That is, the parental

decision problem can be formalized as maximizing the following value function V :

Vi = max
xi5

θτi (θ
e
i5(θ

e
i4(Gi), Gi, xi5), Gi, 5)− Ci(xi5, Gi). (6)

Limiting the scope for parental action to ages 4-5 is no doubt a simplification, but still allows for
endogenous parental choices to shape the differential effect of school-entry age across genotypes.
A more detailed version of the model would endogenize investment throughout early childhood,
and would also recognize the trade-offs that parents face when choosing how to invest across
multiple children with potentially different endowments.17

The first-order condition for an optimum requires:

∂θτi
∂θei

(θei5, Gi, 5)
∂θei5
∂xi5

(θei4, Gi, xi5)−
∂Ci

∂xi5

(xi5, Gi) = 0. (7)

The solution to the first order condition gives rise to the policy function x∗
i5 = x∗

i5(Gi). Also,
let θe∗i5 = θei5(θ

e
i4(Gi), Gi, x

∗
i5(Gi)) refer to the endogenous level of entry skills for those assigned

to aei = 5, given the optimal investment choice. In this model, the treatment effect of moving a

16We assume a monotonic relationship between the genetic endowment Gi, measured by the PGI, and the skill
endowment θei . This is consistent with descriptive analyses that show a monotonic relationship between the PGI
and human capital outcomes like educational attainment.

17In particular, modeling how parents allocate investments across children would be particularly valuable for
interpreting G× E results emerging from within-family designs that make use of sibling-level variation in PGIs.
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child from school entry at aei = 4 to aei = 5 on skills θτi at time τ is given by:

∆θ
i = θτi (θ

e∗
i5 , Gi, 5)− θτi (θ

e
i4, Gi, 4). (8)

Utilizing a first-order linear approximation of the function θτi (·) around θei = θei4,
18 and

rearranging Equation 8, we obtain:

∆θ
i = (θe∗i5 − θei4)

∂θτi
∂θei

(θei4, Gi, 5)︸ ︷︷ ︸
Pre-entry skill accumulation effect

+ θτi (θ
e
i4, Gi, 5)− θτi (θ

e
i4, Gi, 4)︸ ︷︷ ︸

Technological age effect

. (9)

The treatment effect of age-at-entry is comprised of two distinct parts. The first is a pre-
entry skill accumulation effect. Individuals who start formal schooling one year later will have
accumulated more skills at home before entry, θe∗i5 − θei4, and these extra skills will produce
more later-stage skills at the rate ∂θτi

∂θei
(θei4, Gi, 5). However, children who start school later will

have other advantages besides a higher initial stock of skills. Age itself may be an input in the
human capital production function while in school, or it may increase the productivity of other
inputs. For example, an extra year of maturity or biological age could increase the marginal
productivity of teacher time or quality. We call this the technological age effect, which is
represented by θτi (θ

e
i4, Gi, 5) − θτi (θ

e
i4, Gi, 4). As a result of this effect, two children starting

schooling at different ages might end up with different skills after τ periods, even if they both
entered with the same stock θei4.

We next differentiate Equation 8 with respect to the genetic endowment Gi to characterize
possible interactions between genotype and age-at-entry in skill accumulation, which yields:

∂∆θ
i

∂Gi

=
∂θτi
∂θei

(θe∗i5 , Gi, 5)
dθe∗i5
dGi

+
∂θτi
∂Gi

(θe∗i5 , Gi, 5)

−∂θτi
∂θei

(θei4, Gi, 4)
dθei4
dGi

− ∂θτi
∂Gi

(θei4, Gi, 4) , (10)

where dθe∗i5
dGi

is the total derivative, given that θe∗i5 is a function of θei4(Gi), Gi and xi5 (see
Equation 4), whereas θei4 is only a function of Gi. After a few manipulations, aimed at separating
distinct skill and age at school entry effects,19 we arrive at the following derivative, which

18 θτi (θ
e∗
i5 , Gi, 5) ≈ θτi (θ

e
i4, Gi, 5) +

∂θτ
i

∂θe
i
(θei4, Gi, 5) (θ

e∗
i5 − θei4) .

19Add and subtract ∂θτ
i

∂θe
i
(θei4, Gi, 4)

dθe∗
i5

dGi
and rearrange to get:

∂∆θ
i

∂Gi
=

∂θτi
∂θei

(θei4, Gi, 4)

[
dθe∗i5
dGi

− dθei4
dGi

]
+

[
∂θτi
∂θei

(θe∗i5 , Gi, 5)−
∂θτi
∂θei

(θei4, Gi, 4)

]
dθe∗i5
dGi

+
∂θτi
∂Gi

(θe∗i5 , Gi, 5)−
∂θτi
∂Gi

(θei4, Gi, 4) .

The last two terms ∂θτ
i

∂Gi
(θe∗i5 , Gi, 5) and ∂θτ

i

∂Gi
(θei4, Gi, 4) still differ in two of their arguments, namely skill and

age at school entry, whereas the other terms only in one. To better highlight the differences at play here, take
the linear approximation of ∂θτ

i

∂Gi
(θe∗i5 , Gi, 5) around the entry skill level, θei = θei4, and evaluate at θe∗i5 , i.e.,

22



decomposes the theoretical object we seek to estimate:

∂∆θ
i

∂Gi

=
∂θτi
∂θei

(θei4, Gi, 4)

[
dθe∗i5
dGi

− dθei4
dGi

]
︸ ︷︷ ︸

(1) Differential pre-entry accumulation

+

[
∂θτi
∂θei

(θe∗i5 , Gi, 5)−
∂θτi
∂θei

(θei4, Gi, 4)

]
dθe∗i5
dGi︸ ︷︷ ︸

(2) Effect on productivity of entry skills

+
∂2θτi

∂Gi∂θei
(θei4, Gi, 5) [θ

e∗
i5 − θei4]︸ ︷︷ ︸

(3) Entry skill - Gene interaction

+
∂θτi
∂Gi

(θei4, Gi,, 5)−
∂θτi
∂Gi

(θei4, Gi, 4)︸ ︷︷ ︸
(4) Age - Gene interaction

. (11)

There are four separate channels through which such an interaction might operate. The first
term reflects differential pre-entry skill accumulation. An extra year at home before formal
schooling could differentially affect a child’s skill at entry depending on their genotype, captured
by dθe∗i5

dGi
− dθei4

dGi
. Individuals with higher genetic endowments Gi might accumulate skills faster

during an extra year at home, even given the same level of inputs. In addition, differences in Gi

could induce differences in parental investment before entry, x∗
i5, which in turn impacts the level

of (entry) skills. This can be seen by noting that dθe∗i5
dGi

=
(

∂θe∗i5
∂θei4

dθei4
dGi

+
∂θe∗i5
∂Gi

+
∂θe∗i5
∂xi5

dxe∗
i5

dGi

)
, which

thus includes the parental behavioral response dxe∗
i5

dGi
. As we discuss in Section 2 such evocative

rGE represents a mediator and is part of the causal effect of interest. These differences in entry
skill formation, in turn, translate into differences in skills at time τ , reflected in ∂θτi

∂θei
. This first

term in Equation 11, operating through the production θei of school entry skills (Equation 4),
captures the school starting age effect described above.

The second term in Equation 11 is a source of G × E interaction arising from an effect
on the productivity of entry skills. Starting school older could have an effect on the marginal
productivity of entry skills: ∂θτi

∂θei
(θe∗i5 , Gi, 5) − ∂θτi

∂θei
(θei4, Gi, 4). Children who are old-for-grade

(regardless of genotype) could be more mature in ways that either increase or decrease the
productivity of skills at entry. For example, more mature children could evoke more favorable
attention from teachers or peers which may complement their existing skills at entry. Since
children with higher values of Gi will have higher starting skills on average

(
dθe∗i5
dGi

> 0
)

, such a
boost in the productivity of starting skills could generate a positive interaction between Gi and
Ei. However, it is also plausible for this interaction to be negative. For example, the maturity
that comes with older age could flatten the entry skill versus completed skill relationship if it
allows older children to more easily ask questions or seek help when struggling.

The third term in Equation 11 reflects a possible interaction between entry skills and genotype
in the production function while in school. Suppose that all children increase entry skills θei
by a homogenous θe∗i5 − θei4 during an extra year at home. These extra skills could add more
or less to later-life skills for children with different levels of Gi, depending on the strength of
complementarity in skill production between pre-entry skills and genotype, ∂2θτi

∂Gi∂θei
. If Gi and θei

are complementary – i.e., children with higher Gi are better able to use existing skills to produce

∂θτ
i

∂Gi
(θe∗i5 , Gi, 5) ≈ ∂θτ

i

∂Gi
(θei4, Gi, 5)+

∂2θτ
i

∂Gi∂θe
i
(θei4, Gi, 5) [θ

e∗
i5 − θei4]. Inserting this expression leads to Equation 11.
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new skills – then we would expect this to generate a positive G× E interaction. However, it
may also be the case that ∂2θτi

∂Gi∂θei
< 0. Higher values of Gi might reduce the relationship between

entry skills and completed skills if those with higher Gi can more easily overcome deficits in
initial skill.

Finally, the fourth term in Equation 11 highlights an interaction that does not involve the
influence of skills produced at-home before entry. Individuals with different levels of Gi

could experience systematically different effects of biological maturation on skill accumulation,
holding entry skills constant. This difference in the technological age effect could arise for
several reasons with ambiguous implications for the sign of G × E interactions here. For
example, endowments Gi could affect brain function in ways that become more pronounced
over time (or whose effects compound over time), regardless of entry starting skills. It may
also be that higher values of Gi make current biological age less important. Students that more
easily learn (perhaps because of higher Gi) may gain less from a later entry if such an ability
can substitute for the benefits of being old-for-grade (e.g., more advantageous interactions with
teachers and peers).

Equation 11 highlights two important points to consider when interpreting econometric
studies of G× E. First, such interactions at least partially arise from the endogenous choices
of optimizing agents. In particular, in our very stylized model, parents react to an exogenous
change in age-at-school-entry by adjusting their parental inputs x∗

i5 during time spent at home.
Since G× E interactions are not purely technological parameters, better understanding of how
and why these interactions arise (and what they imply for policy) requires economic theory. A
second point is that G× E results are useful for researchers interested in the technology of skill
formation and the behavioral processes that shape it. The treatment effect of moving a child
from school entry age 4 to age 5 and its interaction with genotype, ∂∆θ

i

∂Gi
, depends on general

features of the production technology including the marginal productivity of entry skills, the
marginal productivity of parental investments, and the effect of age. Estimates of ∂∆θ

i

∂Gi
(together

with other analyses) may thus shed light on important features of the production technology,
regardless of whether one has an interest in genetics or not.

One final insight is that there is a potentially important distinction between G×E interactions
in determining an outcome and G×E interactions in determining welfare. Equation 11 accounts
for the sources of G× E interactions for the observable outcome of test scores θτi . However,
agents in this model care not only about the production of skills, but also about the costs
associated with the investment. Indeed, one could also consider expressing G× E interactions
in terms of the value function Vi (Equation 6). Here, that would be:

∂∆V
i

∂Gi

=
∂∆θ

i

∂Gi

− ∂Ci

∂xi5

∂xi5

∂Gi

− ∂Ci

∂Gi

. (12)

The literature often interprets the presence of G × E as an effect on inequality. Finding
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∂∆θ
i

∂Gi
< 0 (Equation 8) for a particular policy might be interpreted normatively as demonstrating

that the policy reduced inequality due to genetic factors. While this may be true at the level of
the outcome, there may be fundamentally different implications for the level of welfare, which
might be the more important margin, depending on the preferences of a policy maker.

4.2 Data

We investigate the effect of age-at-entry using the Avon Longitudinal Study of Parents and
Children (ALSPAC). ALSPAC is a cohort study in which pregnant women living in Avon (UK)
with an expected delivery date between April 1, 1991 and December 31, 1992 were invited to
take part. The initial number of pregnancies was 14,541, including 14,676 fetuses. Among these,
13,988 children were alive at age 1.20

We use ALSPAC for three main reasons. First, the cohorts covered by the data had to abide
by strict rules on when children could start school relative to their date of birth,21 resulting in a
strong discontinuity in children’s starting age between those born just before and just after the
threshold of September 1. Although births are often planned, implying that month of birth is a
choice variable and therefore endogenous, we find no evidence that being born just before or after
the end of August is systematically related to children’s or parental background characteristics;
we show this below. Second, the majority of cohort members, a substantial number of their
mothers, and a small number of fathers have been genotyped. We exploit this feature of the
data and use the software package snipar (Young et al., 2022) to impute the remaining paternal
genotypes using data on the cohort members and their mothers, allowing us to optimally utilize
ALSPAC’s family-design. We create the EA PGI by meta-analysing GWAS summary statistics
from the UK Biobank and 23andMe, correcting for linkage disequilibrium (LD) between SNPs
with the software package LDpred (Vilhjalmsson et al., 2015).22 We standardize the PGI to have
mean 0 and standard deviation 1 in the analysis sample. Third, ALSPAC contains an extremely
rich set of child outcomes, including from administrative sources. Specifically, we use children’s
performance on exams taken at five time points. We use an Entry Assessment test, taken by
all pupils about to start primary school (at ages 4-5; i.e., before the start of formal schooling),
and four nationally set examinations taken in Years 2, 6, 9, and 11 of formal schooling (ages
6-7, 10-11, 13-14 and 15-16), also known as Key Stage 1 (KS1), 2 (KS2), 3 (KS3) and 4 (KS4
or GCSE) examinations, respectively. Children’s scores are obtained from the National Pupil
Database, a census of all pupils in England within the state school system, which is matched to

20The sample size for analyses using data collected after age seven is 15,454 pregnancies (15,589 fetuses), with
14,901 children alive at age 1. For more information on ALSPAC, see Boyd et al. (2013) and Fraser et al. (2013).
Details of all the available data can be found through a fully searchable data dictionary and variable search tool.

21Although parents can now choose to send their child to school a year earlier or hold them back a year, this was
not possible for the pupils in our dataset. Note also that children do not repeat school years in England.

22LDpred adjusts the GWAS weights for LD using a Bayesian approach. We re-weight the SNP effects on the
basis of LD and the supposed fraction of causal SNPs, which we set to 1, as is standard practice for behavioral
traits (Cesarini and Visscher, 2017).
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ALSPAC.23 For each of the tests, we use an average score for the child’s mandatory subjects24,
which we standardize to have mean 0 and standard deviation 1.

4.3 Identification strategy

To identify the effect of age-at-entry, we use a regression discontinuity design (RDD), specifying
the treated and control groups as pupils born after and before September 1, respectively. To
empirically check the validity of our identification strategy, we begin by exploring the raw data,
plotting the trends in test scores by month of birth and examining the correlations between
treatment, test scores, and the PGI.

Figure 2: Standardized test scores at different ages by month of birth.

Figure 2 presents standardized test scores at ages 4-5, 6-7, 10-11, 13-14 and 15-16 as a
function of pupils’ month of birth. It shows a clear discontinuity in test scores for those born
in September and beyond in comparison to those born before September, with the latter group
performing significantly worse on all five tests: at age 4-5, those born in September perform
approximately one standard deviation better than their August-born peers. This difference
reduces as children age (i.e., as the relative difference in age across the cut-off decreases), but
it remains sizable and statistically significant across all assessments. Our main interest is in
the discontinuity in test scores at the cutoff and in investigating whether (and how) this varies
with an individual’s genetic predisposition for educational attainment. Thus, in the empirical
analyses, we restrict the sample to those born between June and November: three months before

23At age 18, study children were sent ‘fair processing’ materials describing ALSPAC’s intended use of their
health and administrative records and were given clear means to consent or object via a written form. Data were not
extracted for participants who objected, or who were not sent fair processing materials.

24For KS1, this is an average of the child’s reading, writing, spelling and mathematics scores; KS2 includes
reading, writing, science and mathematics tests. For KS3 and KS4, the final score is an average of the child’s
English, mathematics and science scores.
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and three months after the threshold.25

To explore whether one’s month of birth is as good as random, Table 2 reports descriptive
statistics for a set of pupil and family characteristics by treatment status. We include only
covariates observed before (or at) birth, as any variables measured later in life could be directly
or indirectly affected by the treatment. Although Table 2 shows some significant differences,
they are very small and do not survive corrections for multiple hypothesis testing. There are
also no differences by treatment status in the child’s, mother’s or father’s PGI for education (i.e.,
there is no evidence of rGE; bottom three rows). This suggests that individuals’ month of birth
is unrelated to the various child and family background characteristics observed here.

Table 2: Descriptive statistics of child and family characteristics by treatment status.

Treated Control t test
N Mean N Mean p value

Mother’s age at first pregnancy (years) 2062 25.138 2168 25.257 0.431
Mother smoked cigarettes during pregnancy* 1927 0.167 2052 0.168 0.896
Mother’s anxiety score during pregnancy 1888 4.651 2037 4.659 0.946
Mother’s depression score during pregnancy 1887 4.245 2038 4.211 0.714
Mother’s marital status* 2061 0.843 2169 0.859 0.153
Mother has vocational training* 2047 0.096 2146 0.088 0.361
Mother has O-levels* 2047 0.338 2146 0.366 0.056
Mother has A-levels* 2047 0.248 2146 0.241 0.609
Mother has a university degree* 2047 0.157 2146 0.156 0.882
Father has vocational training* 1976 0.082 2085 0.071 0.188
Father has O-levels* 1976 0.197 2085 0.218 0.101
Father has A-levels* 1976 0.275 2085 0.278 0.836
Father has a university degree* 1976 0.214 2085 0.228 0.258
Mother in Social Class II* 1713 0.325 1864 0.326 0.948
Mother in Social Class III (non-manual)* 1713 0.422 1864 0.434 0.471
Mother in Social Class III (manual)* 1713 0.067 1864 0.072 0.576
Mother in Social Class IV* 1713 0.101 1864 0.083 0.058
Mother in Social Class V* 1713 0.016 1864 0.014 0.652
Child’s birthweight (kg) 2089 3.448 2189 3.451 0.875
PGI Child 2114 0.016 2209 0.037 0.499
PGI Mother 1526 0.036 1533 0.022 0.688
PGI Father 1478 0.006 1475 0.039 0.367

Notes: Sample size and means for a set of child and family characteristics observed before or at birth. * denotes
a binary variable (0=No;1=Yes). Mother’s anxiety and depression scores are sub-scores of the Crown-Crisp
Experimental Index, capturing maternal mental health during the pregnancy period. Higher scores mean the mother
is more affected. Mother’s marital status is equal to one for those ever married (including those widowed, divorced
or separated), and zero otherwise. Maternal and paternal education is defined as vocational training, ordinary (O)
level, advanced (A) level, and university degree. Social class is defined using the standard UK classification of class
based on occupation: professional (I), managerial and technical (II), non-manual skilled (IIInm), manual skilled
(IIIm), semi-skilled (IV) and unskilled (V). The last column shows the p value from a t-test of the difference in
means between the treated and control group.

To more formally check for rGE, we explore whether the treated and control groups have
systematically different PGIs, which would suggest selection into treatment based on genotype.

25The three-month bandwidth balances the need for efficiency (including many data points) and the potential of
bias (staying close to the cutoff). Our results are robust to different bandwidths (see Appendix F).
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The top panel of Figure G.1 in Appendix G plots the density of the child’s PGI for the treatment
and control groups, showing little difference in their distributions. The bottom left and right-
hand panels present the PGI for the children’s mothers and fathers respectively by treatment
and control group, showing similarly overlapping distributions. The polychoric correlations
between the treatment indicator and the child’s PGI (ρ = −0.013, s.e. 0.019), the maternal
PGI (ρ = 0.009, s.e. 0.023), and the paternal PGI (ρ = −0.021, s.e. 0.023) are very small and
statistically indistinguishable from zero. This suggests there is no gene–environment correlation.

4.4 Predictive power of the PGI

Table 3 explores the predictive power of the PGI for the five test scores at different ages. Panel
A presents the estimates without controls for the parental PGIs, showing that a one standard
deviation increase in the child’s PGI is associated with an increase in test scores of 0.163
standard deviations at age 4-5, 0.255 standard deviations at age 6-7 (KS1), and between 0.318
and 0.357 standard deviations at ages 10–16, suggesting that the predictive power of the PGI
increases with child age. The PGI explains between 8.5–13.4% of the variation in test scores.

Table 3: OLS estimates of the effect of the PGIs for EA on test scores at different ages.

Entry Assessment Key Stage 1 Key Stage 2 Key Stage 3 Key Stage 4

Age 4-5 Age 6-7 Age 10-11 Age 13-14 Age 15-16

Panel A: No parental PGI controls

PGI Child 0.163*** 0.255*** 0.344*** 0.357*** 0.318***
(0.028) (0.015) (0.015) (0.017) (0.016)

R2 0.085 0.096 0.128 0.134 0.128
Observations 1094 3436 3610 3073 3579

Panel B: Parental PGI controls

PGI Child 0.163*** 0.248*** 0.321*** 0.301*** 0.302***
(0.039) (0.022) (0.022) (0.024) (0.023)

PGI Mother 0.032 0.081*** 0.069*** 0.108*** 0.055***
(0.039) (0.021) (0.020) (0.023) (0.021)

PGI Father -0.025 -0.059** -0.016 0.017 -0.015
(0.042) (0.024) (0.023) (0.026) (0.024)

R2 0.086 0.111 0.135 0.146 0.131
Observations 1094 3436 3610 3073 3579

Notes: The test score and the polygenic index (PGI) for educational attainment (EA) are standardized to have mean
0 and standard deviation 1 in the analysis sample. All regressions control for gender and the first ten principal
components of the genetic data, as well as a dummy if the parental PGIs are missing. Robust standard errors in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Panel B of Table 3 shows the same estimates, additionally adjusting for the maternal and
(imputed) paternal PGIs. This shows somewhat smaller, but surprisingly similar, point estimates
of the child’s PGI, which again increase with child age. The maternal PGI explains additional
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variation in child test scores, but the paternal PGI does not, except for Key Stage 1. This may be
explained by increased measurement error in the paternal PGI due to imputation, but could also
reflect that the maternal PGI is more important in shaping child outcomes.26

4.5 Functional form

We motivate the functional form used in our main analysis by graphically examining the
relationship between the PGI and test scores for our treatment (Sep-Nov borns) and control
(Jun-Aug borns) group. We illustrate this with the age 4-5 Entry Assessment. Figure 3 plots the
non-parametric relationship between the PGI and pupils’ performance on this test, distinguishing
between treatment and control groups. The figure shows that both relationships are positive,
with some suggestion that the slope is slightly steeper for the treatment group. Furthermore, the
relationship between the PGI and the outcome is approximately linear for both the treatment
and control group. We therefore use a linear specification in our main analysis. However, we
also explore the robustness of our results to non-linearities in the PGI in Appendix F.

Figure 3: The relation between PGI Child and the Entry Assessment (age 4-5) test score in the treatment
and control group

Note: Black dots refer to the treated group; grey dots to the control group. The polygenic index (PGI) distribution
is trimmed to be between -3 and +3 to avoid nonlinear overfitting of outliers.

4.6 Empirical specification

We are interested in the discontinuity in test scores between those born before and after Septem-
ber. To estimate the main effect of the PGI (PGIi) and treatment status (Treatedi) as well as

26When we only include the parental PGIs, omitting the child PGI, both the maternal and paternal PGI are highly
statistically significant and often of relatively similar magnitude (see Table G.2 in Appendix G).
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their interaction, we adopt a standard regression discontinuity design:

TestScorei = δ0+δGPGIi + δETreatedi + δG×E(PGIi × Treatedi)+

δ1MoBi + δ2(MoBi × PGIi) + δ3(MoBi × Treatedi)+

δ4(MoBi × PGIi × Treatedi) + δ5 (Xi, PGIi, T reatedi)+

δ6

(
10∑
p=1

PCp
i , PGIi, T reatedi

)
+ ei.

(13)

where TestScorei is the test score for child i, PGIi is pupils’ EA PGI and Treatedi is the
environment of interest: a dummy that equals one for treated individuals and zero for the
controls; MoBi is the running variable, capturing the trend in TestScorei by month of birth for
those born before September (note that this variable runs from -3 to 2, capturing the calendar
months June–November, with September set to 0). The coefficients for MoBi × Treatedi and
MoBi × PGIi capture changes in slope for those born from September onwards and those
with higher PGIs respectively. The control variables Xi include a gender dummy, a dummy for
birth in 1992 (capturing potential differences in test scores between the birth cohorts), and the
first ten principal components of the genetic data (

∑10
p=1 PCp

i ). We also include interactions
between the main effects and all (demeaned) controls Xi (represented by δ5(·) and δ6(·)), as
suggested by Keller (2014); Feigenberg et al. (2023).27 Hence, the coefficient for PGIi, δG,
captures the change in test scores associated with a one standard deviation increase in the PGI
for the control group (E = 0) with average characteristics Xi, while δE estimates the treatment
effect for pupils with a PGI of 0 and average characteristics Xi. Finally, δG×E is our estimate of
interest, capturing whether the discontinuity in test scores differs by individuals’ PGI.

Table 2 suggests that our environment, i.e., being older in one’s grade, is as good as random.
This suggests that δE is unbiased (see Table 1), capturing the causal effect of being older in
one’s grade on one’s test scores. In contrast, since the specification above does not control
for the parental genotypes, the PGI potentially captures a spurious correlation with the family
environment. To deal with this, we include both the maternal and (imputed) paternal PGIs as
additional control variables. In doing so, we additionally control for all interactions between the
parental PGIs and PGIi and between the parental PGIs and Treatedi.28

In summary, our setting is rare: the environment is as good as randomly assigned and the
data allow for the inclusion of the parental PGIs as covariates to account for parental genetic
influences. Random Treatedi ensures δE is unbiased and the inclusion of the parental PGIs
ensures δG captures a direct (i.e., causal) genetic effect, removing any genetic nurture or passive

27δ5 (Xi, PGIi, T reatedi) denotes all interactions between the demeaned covariates (i.e., gender and year of
birth) and PGIi, as well as between the demeaned covariates and Treatedi; δ6

(∑10
p=1 PCp

i , PGIi, T reatedi

)
is

shorthand notation for all interactions between the ten demeaned principal components and PGIi and between the
ten demeaned principal components and Treatedi.

28To ensure we keep the same sample as that in Equation 13 (without parental PGIs), we use mean imputation if
the parental PGIs are missing and include a dummy to indicate these cases.
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rGE effects that enter via the parental genotype. This in turn implies that also δG×E is net of
any such influences and captures the causal G× E effect. Since no sufficiently well-powered
parent-child or sibling GWASs exist, the coefficient on G and G× E is potentially downward
biased, though they remain causal effects.

4.7 Results

Entering formal schooling: We report the estimated main effects and their interactions for the
analysis of the Entry Assessment score in Table 4. Columns (1) and (2) present the results from
estimating Equation 13, first without and then with the interaction term. For both specifications,
we find that the treatment effect is positive and sizable (1.138 and 1.133, respectively): old-for-
grade pupils (born in September – November) score on average just over one standard deviation
higher on their entry test than those who are young-for-grade (born in June – August). This
is consistent with the raw data in Figure 2 where treatment (here roughly the change from
August to September) is about 1 standard deviation. Furthermore, our estimates suggest that
among the controls, being born one month later (MoB) is associated with a 0.148 standard
deviation reduction in the average test score; this trend is slightly less pronounced (though
insignificantly so) for the treated (differing from 0.148 by a statistically insignificant 0.055).
The PGI coefficient in column (1) suggests that a one standard deviation increase in the EA PGI
is associated with an increase of 0.156 standard deviations in the Entry Assessment score—a
result similar to the average predictive power of the PGI of 0.163 in Table 3.

Considering the G × E estimate (Treated × PGI Child) in Column (2), we find that the
discontinuity in the entry assessment score by treatment status is larger for those with a higher
PGI: a one standard deviation increase in the PGI is associated with an additional 0.088 standard
deviation increase in the discontinuity. This is consistent with the descriptive analysis of
Figure 3, showing a steeper line in the treatment versus the control group. Taken at face value,
the regression results suggest that a delayed entry-age increases skill inequalities at ages 4-5
(i.e., before the start of formal schooling) associated with genetic endowments, although the
effect is only marginally significant at the 10% level.

We next show the estimates that account for the parental PGIs as well as interactions between
the parental PGIs and G and between the parental PGIs and E: our preferred specification.
In line with the prediction from Table 1, compared to Column (2), the effect of the treatment
remains roughly similar while the effect of the EA PGI decreases in Column (3). The results
show that our main effect of interest δ̂G×E increases both in size and in precision when including
the parental PGIs and their interactions with PGI Child and Treated (0.126, s.e. 0.021, p < 0.01),
suggesting that the interaction effect in column (2) is unlikely to be driven by genetic nurture or
passive rGE.
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Table 4: OLS estimates of the main and interaction effects of being old-for-grade (Treated) and the EA
PGI on children’s Entry Assessment (age 4-5) test score, with and without controls for parental PGIs.

(1) (2) (3)

Treated 1.138*** 1.133*** 1.151***
(0.088) (0.077) (0.077)

PGI Child 0.156*** 0.024 -0.049
(0.027) (0.024) (0.025)

Treated × PGI Child 0.088* 0.126***
(0.035) (0.021)

Month of birth (MoB) -0.148** -0.150** -0.156***
(0.042) (0.039) (0.038)

Treated × MoB 0.055 0.059 0.064
(0.045) (0.045) (0.041)

MoB × PGI Child -0.080** -0.088***
(0.021) (0.021)

MoB × PGI Child × Treated 0.127*** 0.138***
(0.025) (0.026)

PGI Mother 0.016
(0.051)

PGI Father 0.114**
(0.038)

PGI Mother × Treated 0.075
(0.060)

PGI Father × Treated -0.131**
(0.034)

PGI Mother × PGI Child 0.023
(0.042)

PGI Father × PGI Child -0.018
(0.016)

R2 0.258 0.267 0.278
Observations 1094 1094 1094

Notes: The analysis uses a bandwidth of 3 months before and after the September cutoff (i.e., June till November).
Additional control variables include gender, year of birth, the first 10 principal components, a dummy for missing
parental PGI, and interactions of all covariates with PGI Child and with Treated. Robust standard errors in
parentheses, clustered by month of birth. * p < 0.10, ** p < 0.05, *** p < 0.01.

Progressing through formal schooling: To explore how the G×E effect changes as children
age and progress through the formal schooling system, Table 5 shows the analysis that uses the
four Key Stage tests as the outcomes of interest. The main “treatment effect” is consistent with
the previous literature: those who are older in their grade have test scores that are approximately
0.7, 0.4, 0.2, and 0.3 standard deviations higher at ages 6-7, 10-11, 13-14, and 15-16 respectively;
the treated perform better than the controls on all Key Stage tests, though the difference declines
as children age. The downward trend in test scores by month of birth (MoB) is also visible in all
specifications and is less steep for those born after September. Focusing on the G×E interaction
term (Treated × PGI), we find a negative effect that is significant across all Key Stages other
than Key Stage 3, where the coefficient is close to zero. This finding suggests that although the
treated have higher test scores on average, the discontinuity is smaller for those with a higher
PGI. In other words, the benefits of delayed entry on test performance are larger for those with
lower PGIs. Our preferred specification however, is one that controls for the parental PGIs
and its interactions. We find that our estimates are generally robust to their inclusion (the even
columns). One exception is the KS1 assessment, for which adding these extra controls increases
the standard error on the G× E interaction term substantially and prevents us from rejecting
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Table 5: OLS estimates of the main and interaction effects of being old-for-grade (Treated) and the EA
PGI on children’s Key Stage test scores.

KS1 (age 6-7) KS2 (age 10-11) KS3 (age 13-14) KS4 (age 15-16)

(1) (2) (3) (4) (5) (6) (7) (8)

Treated 0.698*** 0.687*** 0.389*** 0.379*** 0.223** 0.210** 0.281*** 0.274***
(0.026) (0.025) (0.021) (0.021) (0.057) (0.056) (0.021) (0.021)

PGI Child 0.316*** 0.303*** 0.368*** 0.319*** 0.321*** 0.211*** 0.348*** 0.297***
(0.002) (0.034) (0.020) (0.015) (0.016) (0.014) (0.004) (0.018)

Treated × PGI Child -0.088** -0.107 -0.052* -0.093*** 0.011 0.008 -0.050*** -0.042*
(0.026) (0.059) (0.023) (0.021) (0.022) (0.039) (0.010) (0.019)

Month of birth (MoB) -0.083*** -0.082*** -0.096*** -0.094*** -0.023 -0.022 -0.036** -0.035**
(0.015) (0.014) (0.009) (0.009) (0.014) (0.014) (0.010) (0.010)

Treated × MoB 0.049** 0.048** 0.080*** 0.079*** 0.018 0.020 0.019 0.020
(0.013) (0.013) (0.011) (0.011) (0.032) (0.031) (0.012) (0.012)

MoB × PGI Child 0.040*** 0.040*** 0.011 0.014 -0.013 -0.012 0.020*** 0.022***
(0.002) (0.003) (0.013) (0.013) (0.012) (0.012) (0.003) (0.004)

MoB × PGI Child × Treated -0.012 -0.014 0.015 0.014 0.048*** 0.047** -0.002 -0.002
(0.012) (0.013) (0.012) (0.012) (0.011) (0.013) (0.010) (0.008)

PGI Mother 0.093* 0.086*** 0.154*** 0.076***
(0.036) (0.010) (0.021) (0.005)

PGI Father -0.051 0.028 0.084* 0.035
(0.036) (0.026) (0.033) (0.023)

PGI Mother × Treated -0.007 0.025* -0.025 -0.009
(0.054) (0.012) (0.035) (0.031)

PGI Father × Treated 0.038 0.033 0.023 -0.013
(0.041) (0.027) (0.053) (0.033)

PGI Mother × PGI Child -0.009 0.002 0.020 0.002
(0.020) (0.019) (0.020) (0.014)

PGI Father × PGI Child 0.007 0.000 0.002 -0.007
(0.015) (0.013) (0.014) (0.012)

R2 0.182 0.195 0.151 0.162 0.149 0.164 0.145 0.149
Observations 3436 3436 3610 3610 3073 3073 3579 3579

Notes: The analysis uses a bandwidth of 3 months before and after the September cutoff (i.e., June till November). Additional control variables
include gender, year of birth, the first 10 principal components, a dummy for missing parental PGI, and interactions of all covariates with PGI
Child and with Treated. Robust standard errors in parentheses, clustered by month of birth. * p < 0.10, ** p < 0.05, *** p < 0.01.

the null. However, even here the point estimate is consistent with estimates from specifications
omitting these controls. In fact, adding these controls increases the magnitude of the estimate.

The estimated interactions, summarized in Figure G.2, are economically meaningful. For
example, for Key Stage 4 we find an average treatment effect of 0.27-0.28 standard deviations
associated with being assigned to old-for-grade. The estimated interaction between treatment
and the PGI suggests that two children with a one standard deviation difference in the EA PGI
are expected to have differences in this treatment effect of 0.04 - 0.05 standard deviations, or
15-20% of the overall treatment effect. In Appendix F we investigate the robustness of the
results with respect to non-linearities in the PGI and the chosen bandwidth of our RDD. The
results remain very similar in terms of magnitude, sign, and significance. When allowing for
non-linearities in addition to an extensive set of interaction terms, precision is considerably
reduced – occasionally increasing p-values above commonly employed thresholds for statistical
significance. However, even then the sign and magnitude remain very similar to our main results.
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4.8 Interpretation and discussion

Our estimates of the treatment effect and the PGI are in line with the existing literature. We
estimate that being old-for-grade has positive main effects across all available test scores:
individuals assigned a later age of school entry have an educational advantage relative to their
younger peers. This effect declines in magnitude for later grades, perhaps reflecting a decline
in the relative age differences between treated and untreated students as they all grow older.
Unsurprisingly, children with higher EA PGIs also have an advantage, and the magnitude of the
main PGI effect appears to be relatively stable across grades.

The G× E interactions may seem more surprising. They are qualitatively different when
considering performance on the Entry Assessment test taken before school entry (ages 4-5)
compared to performance on the four Key Stage assessment tests taken as pupils progress
through the schooling system (ages 7-16). Being older at school entry benefits children on
the Entry Assessment test (ages 4-5), but more so for those with a higher genetic propensity
for education, exacerbating genetic inequalities. By contrast, while being old-for-grade also
benefits children on the assessment tests at later ages (ages 7-16), it benefits those with a lower
genetic propensity for education more, reducing genetic inequalities. This qualitative difference
in the G× E interaction suggests an interesting role of the formal schooling system in reducing
genetic inequality. Here we put forward an interpretation of our results given the theory outlined
in Section 4.1. While speculative, this exercise highlights the potential value of incorporating
economic theory into G× E studies.

The positive G × E interaction for the Entry Assessment test is in line with the broader
literature on parental investment in skill formation. Children benefit both from a higher genetic
propensity and from being older at school entry. This literature stresses the existence of
complementarities between inputs, including between parental investments and past skills (e.g.,
Cunha and Heckman, 2007; Cunha et al., 2010; Muslimova et al., 2024). Sources of advantage
tend to compound one another and magnify inequality. This makes the negative interactions
for the Key Stage tests, taken after teachers start investing in children’s human capital, more
surprising and of interest for public policy. Students with lower EA PGIs experience greater
gains on the Key Stage tests from being old-for-grade. These opportunities for substitutability
emerge within the formal schooling system, and may mitigate disparities arising from genetic
factors and differences in pre-entry skills. Data on teacher-child interactions would allow us to
understand the interplay within the classroom and thereby explore potential mechanisms for our
findings. Unfortunately ALSPAC does not contain such data.

Nevertheless, our collection of results can still shed light on the signs and magnitudes of the
mechanisms by which genotype and age-at-entry interact to influence later Key Stage test scores.
Consider mechanism (1) from Equation 11: differential pre-entry skill accumulation, formalized
as ∂θτi

∂θei
(θei4, Gi, 4)

[
dθe∗i5
dGi

− dθei4
dGi

]
. Since we observe entry skills θei through the Entry Assessment,

we directly evaluate this mechanism in Table 4, where we find that being old-for-grade benefits
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those with a high PGI more on the entry test (Treated × PGI Child is positive, 0.126 [column
3]), implying that dθe∗i5

dGi
− dθei4

dGi
is positive. Assuming entry skills positively influence later skills

(∂θτi /∂θ
e
i > 0), and ignoring other drivers, mechanism (1) should generate a positive G × E

interaction in the later Key Stage tests, θτi . The fact that we estimate a negative G×E interaction
suggests that the other three mechanisms (2, 3 and 4) collectively generate a sufficiently strong
negative interaction to more than offset differential pre-entry skill accumulation.

Consider mechanism (3): entry skill–gene interaction: ∂2θτi
∂Gi∂θei

(θei4, Gi, 5) [θ
e∗
i5 − θei4]. Since

being old-for-grade positively impacts entry skills, θe∗i5 > θei4, this mechanism would be consistent
with our finding if the productivity of entry skills were lower for individuals with higher PGIs,
∂2θτi

∂Gi∂θei
(θei4, Gi, 5) < 0. One (imperfect) way to evaluate this is to control for entry skills and

its interaction with the PGI in our regressions. If mechanism (3) were negative, adding these
controls would make the G× E interaction coefficient more positive.

We perform this exercise in Table 6 where, for each Key Stage test, we present three
specifications. The first column repeats the specification found in Table 5 with our full control
set (including parental PGIs) as a baseline. The second column repeats this specification, but
restricts the sample to the set of children for whom we observe non-missing values of the age
4-5 entry assessment. The third column adds a control for the entry assessment score, and an
interaction between the entry assessment score and the PGI. These tests are not perfect. First,
sample sizes drop substantially when restricting the sample to the subset for which we have
Entry Assessment scores. More importantly, the Entry Assessment score, and its interactions
with the EA PGI, are endogenous, which makes it difficult to interpret the G× E coefficient
after controlling for these regressors. Comparing the second and third column in Table 6, the
additional controls, if anything, make the interaction effects more negative. Moreover, we find
no evidence of statistically significant interactions between entry skills and the PGI, casting
doubt on mechanism (3) as an important driver of our results. Hence, while we caution the
reader not to over-interpret these regressions, we consider them suggestive.

Since mechanism (1) should generate a positive interaction, and mechanism (3) does not
appear to be important, we are left with mechanisms (2) and (4). Our data do not allow us to
separate mechanisms (2) and (4), nor do they allow us to draw firm conclusions about how
these mechanisms operate in our specific context. Nevertheless, we can offer some speculative
possibilities. Since higher PGI students on average tend to have higher entry skills,

(
dθe∗i5
dGi

> 0
)

,
mechanism (2) could explain our results if being old-for-grade reduces the marginal productivity
of entry skills in the production function in a way that disadvantages individuals with higher PGIs:[
∂θτi
∂θei

(θe∗i5 , Gi, 5)− ∂θτi
∂θei

(θei4, Gi, 4)
]
< 0. Higher PGI children might have higher entry skills,

but this could matter less among those who are old-for-grade. On the other hand, mechanism
(4), ∂θτi

∂Gi
(θei4, Gi,, 5)− ∂θτi

∂Gi
(θei4, Gi, 4), can explain our results if being old for grade reduces the

relationship between the genetic component and skill accumulation while in school for the same
level of entry skills.

Mechanisms (2) and (4) are similar because they both show how age can compensate for
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other factors in skill development at school, serving as a substitute for either initial skills or
genetic endowments. A speculative but illustrative example could involve relational maturity –
older children could be more mature or confident in ways that allow them to better ask for help,
or extract assistance from teachers or peers. Among old-for-grade children, this might offset
advantages that students have from genetic endowments in formal schooling. Children with low
PGIs who are old-for-grade may thus be able to more easily catch-up with their peers if they
start at a skills deficit. Another possibility is that teachers may target their time and attention in
the classroom on those who are falling behind. Indeed, a potentially important feature of the
UK institutional education setting is the fact that children do not repeat school years. Hence,
to ensure that all children reach the minimum required standard to progress to the next year,
teachers will spend more time with lower-performing students. Since these are more likely to
be August-borns and low-PGI pupils (who on average perform worse on educational tests), our
negative G× E effects are consistent with the existence of complementarities between genetic
endowments and teacher inputs. This also means that our findings may be specific to our setting;
it will be interesting to explore whether they replicate in other educational systems.

Whatever the specific micro-foundations, it is noteworthy that these opportunities for substi-
tutability emerge within the formal schooling system. Under the right conditions (e.g., when
children are older at entry), the instruction and personal interactions provided by the formal
schooling system may work to mitigate disparities arising from genetic factors and differences
in pre-entry skills. Such possibilities may not be obvious from the existing literature, which
stresses complementarities between endowments and early, pre-schooling skills. Our findings
are, however, consistent with those of Arold et al. (2022) and Cheesman et al. (2022), who find
that children with lower EA PGIs benefit more from high quality teachers and schools. Taken
together, these findings provide a fruitful area for future theoretical and empirical research on
differential interactions between endowments and investments in the home versus school setting.

Depending on policy preferences regarding equity and efficiency, our finding that children
with lower PGIs appear to gain the most from delaying entry into formal schooling provides
important information to set school entry age policies and determine appropriate public funding
for preschools. More speculatively, one could also think in terms of the targeting of interventions
or school policies. In many school systems, families have some control over when their children
enter the formal schooling system. Indeed, if the ALSPAC cohort were starting school now,
families with children born between April 1 and August 31 could decide to hold them back a year.
In such settings, individual families on the margin might use privately acquired genetic test results
to help guide the decision about when to have a child enter formal schooling. It is certainly not
clear that the magnitudes of the interactions we find would make genetic information useful for
this purpose, particularly given the current limitations on using genetic data for individual-level
prediction of outcomes such as educational attainment (Morris et al., 2020b). However, whether
a particular effect size is large depends on the preferences, risk-tolerances, and expectations of
individual families.
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5 Conclusion

Recent advances in the collection and processing of genetic data have created new opportunities
for improving our understanding of how nature and nurture interact in shaping individual
outcomes, illuminating some of the oldest questions in the social sciences from a new angle.
Economists can benefit from these advances, even if they are not interested in genetic effects.
This is because G× E analyses can (i) assess treatment effect heterogeneity, (ii) test theoretical
predictions, and (iii) uncover economic, social and behavioral mechanisms. We demonstrated
best practice in a study of G× E interplay, examining interactions between one’s age at school
entry and one’s genetic propensity for educational attainment. Our results suggest (previously
unobserved) differential productivity by child genotype, where children with a lower genetic
propensity for education benefit more in terms of their test scores from delayed school entry.

Our empirical application is one of few studies (see Table G.1 in Appendix G) exploiting
random variation in both genotype and environment, enabling causal inferences in both G and
E. While this is an important contribution on its own, our extensive methodological review
also illustrates the power of interdisciplinary research. Combining approaches from genetics
with its focus on the estimation of causal genetic effects, and economics with its focus on
causal environmental effects, allows for what we consider the “ideal experiment”. In this ideal
experiment, randomized variation in genotype (ideally based on a within-family GWAS) is
combined with quasi-random variation in the environment.

Governments are investing heavily in large biobanks for research. The UK Biobank
(∼500,000 genotyped individuals) has been available for some years, and next-generation
biobanks such as the All of US in the United States and Our Future Health in the UK are
ambitiously building biobanks of, respectively, one and five million individuals. These datasets
will alter the playing field of future GWASs, increasing the number of outcomes for which
genetic data explains a substantial part of its variation. These data collection efforts will also
increase the availability of genetic data from relatives, allowing for well-powered within-family
GWASs. This would pave the way for the “ideal experiment”.

There are ethical issues involved in working with genetic data and researchers have obliga-
tions to preserve the highest standards of privacy, confidentiality, and responsible communication.
Researchers must also take seriously the need to help the public understand how to interpret
research findings based on genetic data and to clarify what conclusions can and cannot be
drawn (Nature, 2013). We would argue that the potential uses of genetic data carry societal
implications and associated risks, but simply denying the existence of genetic differences across
individuals is unlikely to be the right solution (Raffington et al., 2020; Harden, 2021b). Research
in economics and the social sciences on G × E interplay can help identify causal pathways
involved in individual development and refute genetic or environmental determinism while
identifying policy-relevant environments that can reduce socioeconomic or genetic inequalities.
In doing so, it may help improve the well-being of the population.

38



6 Data availability statement

The code to reproduce this article is available on Zenodo at https://doi.org/10.5281/
zenodo.14968164.

The data used in this study is the Avon Longitudinal Study of Parents and Children (ALSPAC).
Due to confidentiality agreements, access to ALSPAC data must be requested directly from
the data providers (University of Bristol). Details on data access can be found at: https:

//www.bristol.ac.uk/alspac/.
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