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Abstract

Libor is an estimate of interbank borrowing costs computed daily from rates reported by a
fixed panel of banks. Evidence suggests that banks have manipulated Libor in recent years by
misreporting their borrowing costs. I estimate a strategic reporting model that identifies banks’
borrowing costs as well as their motives for misreporting. The estimation places a lower bound
on the value that Libor would have had if banks had truthfully reported their borrowing costs.
The model is identified even when unobserved heterogeneity exists in the form of a common cost
component that is known by all banks but unobservable to the econometrician and is allowed to
follow a nonstationary process. The only data used for identification are banks’ Libor quotes.
Overall, I find that the estimated lower bound for the unmanipulated Libor is always above the
published Libor, with an average deviation of 25 basis points at the worst of the financial crisis of
2007 - 2008. The estimated bound displays a pattern similar to two other measures of interbank
borrowing costs that have been used previously to assess the extent of manipulation. The model
is also used to determine the extent to which misreporting was motivated by signaling or banks’
net exposure to Libor. The estimation results indicate that sending creditworthiness signals was
the main driver of systematic misreporting from 2007 to 2010.
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1 Introduction

On April 16, 2008, the Wall Street Journal published an article suggesting that banks had been
underreporting their borrowing costs by submitting quotes for the computation of Libor (London
interbank offer rate) below estimates of such costs implied by credit default swaps (CDS) spreads
(Mollenkamp andWhitehouse, 2008). Libor is a measure of the average cost of short-term, unsecured
borrowing in the London interbank market. Before recent regulatory reforms, it was computed
daily as a trimmed mean of interest rates self-reported by a fixed panel of large banks. In recent
years, several banks have been investigated for their alleged attempts to manipulate Libor and
other similar benchmarks. On May 21, 2015, the Council on Foreign Relations reported on its
website that banks had paid more than $9 billion in fines and settlements with regulators for their
involvement in the Libor scandal.1 According to recent estimates reported by Schrimpf and Sushko
(2019), approximately $400 trillion worth of financial contracts where indexed to Libor by mid-2018,
although financial regulators worldwide had already started implementing strategies to transition
from Libor to other benchmark rates.2

All banks in the Libor panel hold billions of dollars’ worth of floating-rate assets and liabilities,
and interest rate derivatives indexed to this benchmark. Consequently, they are exposed to vari-
ations in Libor. Libor is widely used as a measure of credit risk. Hence, a bank reporting above
average Libor quotes could be seen as facing higher risks than others, which may further increase its
funding costs or even trigger a run, as discussed by Duffie and Stein (2015).3 Financial regulators,
the academic literature and the press have all recognized that sending signals of creditworthiness
to the market and benefiting from exposure to the benchmark were the two main drivers of Libor
misreporting during the financial crisis (see Mollenkamp and Whitehouse, 2008; Duffie and Stein,
2015; Abrantes-Metz et al., 2012; and Gandhi et al., 2019).

In this study, I use structural econometric methods from the empirical auctions literature to esti-
mate a model of strategic reporting that identifies a set of parameters determining banks’ incentives
for misreporting Libor, as well as the distributions of their true borrowing costs. Based on these
estimates, I place a lower bound on the value Libor would have taken had banks truthfully reported
their borrowing costs. The only data used in the main specification are the banks’ reported quotes.
The estimated bound is above the published Libor during the whole period considered, suggesting
that Libor understated interbank borrowing costs, which is consistent with the results of previous
studies. The model also identifies signaling and net exposures to Libor as distinct motives for mis-

1A more detailed account of the penalties that regulators imposed on banks can be found at:
http://www.cfr.org/united-kingdom/understanding-libor-scandal/p28729

2Duffie and Stein (2015) provide a detailed account of the crucial role that Libor played for many years in financial
markets globally.

3On June 7, 2018 the Financial Times published a report on previously undisclosed court documents showing that
the Department of Justice had evidence in 2015 suggesting that high-level executives at Société Générale ordered
the bank’s attempt to manipulate the USD Libor. As described in the report, “in a meeting on May 21 2010, as
European banks struggled with the eurozone crisis, the first executive told a manager “to lower Société Générale’s
Libor submissions” after complaining that they were higher than other banks, according to the DoJ.” (Shubber and
Keohane, 2018)
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reporting. The results indicate that the main driver of misreporting during the financial crisis was
an attempt to send creditworthiness signals to the market.

In the model, banks play a Bayesian game. Each day, each bank receives a private shock to
its borrowing cost in the interbank market and reports a quote to the regulator. Banks interact
strategically, they all potentially benefit from manipulating the benchmark rate, given their individ-
ual net exposure to it, and from underreporting their private borrowing costs to signal themselves
as more creditworthy than their peers. They also face misreporting costs due to potential loss of
reputation or regulatory penalties. Banks make their strategic decisions both simultaneously and
independently.

Snider and Youle (2012) propose a Libor reporting game with complete information and find
evidence of manipulation driven by exposure to Libor; their model does not include signaling.
Chen (2013) assumes symmetric independent private costs and adds signaling to banks’ objective
functions. He proves the existence of a Bayesian Nash equilibrium in pure non-decreasing strategies.
I extend his results and show that equilibrium strategies are strictly increasing. This result is
necessary for my identification strategy, which is based on inverting the equilibrium strategies,
following an idea from the auctions literature originally introduced by Guerre et al. (2000). Youle
(2014) estimates the parameters of the model capturing exposure-based incentives to manipulate
Libor. His identification strategy relies mainly on additional data sources, such as CDS spreads,
to approximate banks’ borrowing costs and does not address unobserved heterogeneity. It does not
identify the signaling motives for misreporting and, thus, cannot recover the unmanipulated Libor.

My model coincides with Youle (2014) in the specification of banks’ payoff function. Nonethe-
less, crucial differences exist in the way I model the process followed by borrowing costs, which
are necessary for a valid identification and estimation of the model primitives. I assume that daily
borrowing costs include a time-varying common component that is known by all banks, but not
observable to the econometrician, which allows for unobserved heterogeneity. I contribute to the
structural estimation literature by allowing the common cost component to follow a nonstationary
process, relaxing an assumption in Li et al. (2000) and Krasnokutskaya (2011). In the present
context, assuming either time-independence or stationarity likely results in largely inaccurate es-
timates, given the high persistence of interest rates (Rose, 1988). Instead, I propose an extension
of the deconvolution method of Li and Vuong (1998), Li et al. (2000) and Krasnokutskaya (2011)
that removes the common component.4 This allows me to identify the model parameters and dis-
tributions from data on Libor quotes alone, without relying on any other information on banks’
borrowing costs.

Removing the common cost component identifies the distributions of normalized quotes, defined
as the quotes that banks would have reported if there were no variation in common costs, but only
up to an unknown additive constant. To identify a lower bound on the unmanipulated Libor, I use
the lowest signaling motives that are consistent with the model estimates. Higher values for the

4Li et al. (2000) and Krasnokutskaya (2011), among others, have studied unobserved heterogeneity that arises in
the estimation of procurement auctions when bidders share common costs that are unobservable to the econometrician.
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signaling parameters would imply a higher unmanipulated Libor because sending creditworthiness
signals gives banks incentives to understate their borrowing costs.

The identification of signaling and exposure to Libor as distinct drivers of misreporting relies
on two assumptions. First, I assume that each bank’s idiosyncratic borrowing costs are drawn
daily from a distribution with the same mean and median, which is weaker than assuming that
these distributions are symmetric. Roughly speaking, symmetry would imply that on any given
day banks are equally likely to receive a positive or a negative idiosyncratic shock to their mean
borrowing cost. Second, I assume that the means are the same for all banks in the US Dollar
Libor panel, but I allow their variances and all other higher moments to differ across banks. For
each bank, the idiosyncratic private cost is the daily difference between the interest rate it pays
for an average-size loan from other bank and the common cost. In turn, the latter is the mean
interbank rate. Hence, the second assumption requires that the borrowing costs of no bank in
the panel deviate substantially, on average across several days, from the overall interbank market
mean. With truthful reporting, the distributions of normalized quotes would coincide with the
distributions of idiosyncratic costs. However, the estimated normalized quotes do not have the
same means across banks and, for a given bank, do not generally have the same mean and median.
In the model, these two differences are explained by two parameters: signaling and net exposure to
Libor. As a robustness check, I estimate an alternative model that drops the assumption that the
mean idiosyncratic costs are the same for all banks. The results regarding the relative importance of
signaling and exposure to Libor do not seem to depend on these assumption. However, this version
of the model does not provide an estimate of the lower bound of the unmanipulated Libor. Instead,
it requires an observable measure of the common cost to identify signaling and exposure separately.
Therefore, I maintain this assumption in the baseline model.

I estimate the model using data on the USD three-month Libor from September 9, 2007 to
December 31, 2010. The estimated lower bound of the counterfactual unmanipulated Libor is always
above the published Libor. In the aftermath of Lehman Brother’s bankruptcy, the lower bound is,
on average, 25 basis points (0.25 percentage points) higher than the published Libor. The lower
bound on the unmanipulated Libor follows similar patterns than two other measures of average costs
for unsecured funding described by Kuo, Skeie, and Vickery (2012). All three metrics indicate that
Libor understated borrowing costs during this period. Regarding banks’ incentives to misreport,
the estimates strongly suggest that the deviation between Libor submissions and borrowing costs
is mostly explained by banks’ attempts to send signals of creditworthiness. According to these
estimates, previous studies focused exclusively on exposure may have overlooked the main driver of
misreporting. The results also show large changes over time in the signaling incentives to misreport,
and suggest that these increased dramatically immediately after Lehman Brother’s bankruptcy.
A likely explanation is that banks’ signaling incentives responded to a sharp rise in the market’s
perception of default risk, as measured by CDS spreads. Indeed, a simple regression of the estimated
signaling parameters on CDS spreads confirms a positive association.

Previous empirical work by Abrantes-Metz, Villas-Boas, and Judge (2011) and Abrantes-Metz,
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Kraten, Metz, and Seow (2012) suggests that Libor misreporting was a generalized practice, not
restricted to a few banks or dates. Cassola, Hortaçsu, and Kastl (2013) estimate the maximum
rates that banks are willing to pay for short-term collateralized loans at liquidity auctions conducted
by the European Central Bank. They find that Euribor5 quotes are usually below the estimated
willingness to pay for secured loans during 2007 and 2008, even though these are quotes for unsecured
borrowing, and thus should include a risk premium. Similarly, Kuo, Skeie, and Vickery (2012)
compare Libor quotes to other measures of individual borrowing costs from 2007 to 2009 and find
evidence of underreporting. They also analyze changes in the spreads between Libor and other
estimates of average costs for unsecured funding, specifically, the New York Funding Rate (NYFR)
and the Eurodollar deposits rate (EDR) published by the Federal Reserve, showing that during the
period considered the spread is negative and wider than in previous years, which suggests that Libor
understated borrowing costs during the financial crisis. Gandhi et al. (2019) find that banks’ excess
equity returns correlate with changes in Libor and with their individual reports. They interpret
this as evidence of exposure and signaling incentives to manipulate Libor. By contrast, I find
no evidence of manipulation before September 2007, when the signaling incentive was presumably
negligible. This finding is broadly consistent with the behavior of other funding costs measures.
During a period of two years prior to September 2007, the spread between the EDR and Libor is
mostly positive and much smaller in magnitude than in the following three years.

The remainder of this paper is organized as follows. Section 2 describes some measures of banks’
borrowing costs and credit risk that are indicative of Libor underreporting. Section 3 presents a
model of strategic Libor reporting. Section 4 discusses the identification strategy. Section 5 describes
the estimation procedure. Section 6 presents estimates of the extent of misreporting separately
attributable to signaling and exposure to Libor. It also compares Libor to an estimated lower
bound on the unmanipulated Libor. In Section 7 I discuss a counterfactual analysis that assesses
the effectiveness of current proposals to improve interest rate benchmarks.

2 Background

Libor is an average of interbank offer rates, computed daily for different currencies and maturities,
based entirely on quotes reported by a panel of banks. Each day, each bank in the panel reports a
rate answering the question “At what rate could you borrow funds, were you to do so by asking for
and then accepting interbank offers in a reasonable market size just prior to 11 am?” After receiving
all quotes, the regulator publishes the benchmark rate and also the set of all quotes submitted by
the banks with their respective identities.6 The benchmark is a trimmed mean of these quotes after
dropping roughly the 25% highest and 25% lowest quotes. For each currency, the panel consists of

5Euribor stands for Euro Interbank Offered Rate. It is similar to Libor but for the euro interbank market.
6From 1985 to 2013, the British Banking Authority (BBA) was responsible for the administration of Libor. As

a consequence of the manipulation scandal, on February 1 2014, administration was handed over to the Interconti-
nental Exchange Benchmark Administration (IBA). Since the scandal broke, several changes have been implemented
following recommendations by Wheatley (2012). Starting in April 2013, individual quotes are now published with a
lag of three months after the submission date.
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approximately 16 leading banks trading in London that borrow and lend in this currency.7

For at least two years in the midst of the financial crisis, Libor was consistently below other
measures of borrowing costs for unsecured funds in the interbank market. Two such measures
are the NYFR and the EDR. The NYFR was based on a survey of contributors that trade in
interbank markets. In contrast to Libor, individual quotes were not published and the identity of
the contributors was unknown. The EDR is computed from quotes provided by brokers who act as
intermediaries in the interbank market (see Kuo et al. (2012) for a more detailed description of these
rates and how they compare to Libor). Figure (1) shows the spreads between Libor and each of these
rates. Libor followed the EDR closely since its inception until late 2007, mostly lying a few basis
points above it (1 basis point is equal to 0.01 percentage points; henceforth I use the abbreviation
“bp”). The Libor-EDR spread becomes negative and relatively large in magnitude around August
2007, when BNP Paribas announced that it had suspended redemption in two subprime mortgage
funds. It then drops drastically with Lehman’s collapse reaching its lowest historical value (approx.
-200 bp). As the crisis evolves, this spread narrows but remains negative and large in magnitude
compared to its pre-crisis levels. The NYFR was introduced on June 2, 2008, and was discontinued
in 2012. For a few months before Lehman Brothers’ bankruptcy, the Libor-NYFR spread was, on
average, no lower than -1.5 bp. However, this difference increased substantially in magnitude after
Lehman’s collapse and remained large and negative for at least one year.

CDS spreads on bank bonds increased dramatically during the crisis raising concerns that Libor
quotes were not accurately capturing the underlying credit risks (Mollenkamp and Whitehouse,
2008). CDS spreads are a form of fee protection buyers pay to insure against default or other credit
events. Hence, they are measures of the perceived likelihood of a credit event, and ultimately of
perceived credit risk.8 Figure 1 shows the mean spread for five-year CDS on bonds issued by banks
in the USD Libor panel. Clearly, the financial crisis and subsequent sovereign debt crisis in Europe
were accompanied by a sharp and persistent increase in banks’ CDS spreads. Bank executives may
have felt pressured to use Libor quotes as signals of creditworthiness. The results in Section 6.3
indicate that higher CDS spreads are associated with higher signaling motives.

Finally, as the crisis unfolded, market participants and regulators became increasingly concerned
that Libor reports were not accurately reflecting borrowing costs. This may have raised the expected
costs of misreporting Libor due to potential loss of reputation or regulatory penalties, and at least
partially counteracted the incentives to misreport.

3 The Model

Banks choose Libor quotes in a complex dynamic environment where they borrow from each other,
take short and long positions indexed to Libor, and report these quotes knowing that they will

7There is some variation in the composition of Libor panels across currencies and over time. In particular, there
were sixteen banks in the USD Libor panel from September 2007 to December 2010, the period I use for the estimation
of the model, although there was a change in its composition in January 2009.

8Blanco et al. (2005) provide empirical evidence that CDS spreads are useful indicators of credit risk. Cassola
et al. (2013) find a positive correlation between five-year CDS spreads and banks’ short term funding costs.
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Figure 1: Borrowing costs and CDS spreads
The left panel shows the spread between the three-month USD Libor and the Eurodollar deposit rate (EDR) or the
New York Funding Rate (NYFR). The right panel shows the average spread of five-year credit default swap (CDS) on
bonds issued by banks in the Libor panel.The EDR is a measure of Eurodollar deposits based on quotes from brokers
with access to data on interbank transactions. The NYFR is based on a survey of contributors that participate in
the market for unsecured funds. CDS are measures of perceived credit risk in bond markets. Three dates are marked
with vertical lines. (a) 09/03/2007: First trading day after BNP Paribas suspended redemption in two subprime
mortgages funds. (b) 03/16/2008: JPMorgan Chase acquired Bear Stearns for less than 7% of its market value two
days before (c) 09/15/2008: Lehman Brothers filed for bankruptcy protection. All spreads are measured in basis
points (bp).

be publicly available soon after submission. The model below focuses exclusively on the reporting
game, taking as given the equilibria in the interbank market and the markets for Libor-indexed loans
and derivatives. Conditional on their behavior in these markets, banks realize there are potential
gains and losses from reporting rates different than their borrowing costs. Since these gains depend
at least partially on the benchmark rate, banks interact strategically when reporting their rates.

There is a fixed set of banks, N = {1, ..., N}, that participate in the game. Each day t, within
period p, bank i ∈ N observes its own borrowing costs in the interbank market for unsecured funds,
si,t,p. The regulator asks all banks to report their costs, and in response, each submits a quote
ri,t,p chosen from a set of admissible reports

[
rp, r̄p

]
. For all i 6= j, si,t,p and sj,t,p are assumed

to be independent, conditional on a common cost component ct,p that is common knowledge. The
distributions of costs might differ for different banks, and are also common knowledge. A period
corresponds to a time window of several days, within which some parameters of the model are
assumed to remain constant.

3.1 Banks’ Incentives

Banks submit their quotes simultaneously to maximize their expected payoff from participating in
the static game, conditional on ct,p. After observing all the quotes, the regulator computes the
reference rate r̃t,p (r1,t,p, ..., rN,t,p), and reveals r̃t,p and the whole vector of individual quotes to the
public. Banks could benefit from the game in two different ways: by manipulating the reference
rate (in a direction that is consistent with their exposure) and by sending signals to the market
of their creditworthiness. Correspondingly, their payoff functions include a linear gain on the level
of the reference rate r̃t,p and another term that is linear on the difference between the reference
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rate and their quote. Additionally, a cost component that is quadratic in the difference si,t,p− ri,t,p
reflects expected costs from reporting rates different from the underlying costs owing to potential
credibility loss or regulatory penalties. Formally, bank i’s expected payoff from reporting ri,t,p after
observing both si,t,p and ct,p is

ui (ri,t,p; si,t,p, ct,p) = ER−i,t,p

αi,pr̃t,p (ri,t,p, R−i,t,p)︸ ︷︷ ︸
exposure

+ vp (r̃t (ri,t,p, R−i,t,p)− ri,t,p)︸ ︷︷ ︸
signaling

− γp (si,t,p − ri,t,p)2︸ ︷︷ ︸
cost

|ct,p, si,t,p


(1)

where R−i,t,p is the vector of all other banks’ reported rates, which is a random variable for bank
i.9 By assumption, vp > 0 and γp > 0, but αi,p is allowed to have an arbitrary sign reflecting the
possibility that banks’ exposure to the benchmark might be long or short. All these constants are
common knowledge thus the only source of uncertainty for any bank is other banks’ reports. The
reference rate r̃t,p is a function of the vector of quotes submitted by all banks and is defined by:

r̃t,p =
1

Ñ

n̄−1∑
k=n+1

r
(k)
t,p (2)

where r(k)
t,p is the k-th smallest element of the vector of quotes (r1,t,p, ..., rN,t,p). n and n̄ are cut-offs

set by the regulator, and known by the banks, determining which quotes are trimmed; and Ñ is the
effective number of quotes used to compute the trimmed mean.

Assuming a specific functional form for banks’ payoff might raise some concerns on how accu-
rately the model captures their incentives. Although there is a trade-off between generality and
tractability, Equation (1) may still approximate banks’ incentives reasonably well. The linear term
αi,pr̃t,p can be interpreted as the periodic cash flow of bank i from its net exposure to Libor. As
long as the exposure remains constant, the change in this cash flow due to an increase in r̃t,p of 1 bp
should also be constant, regardless of the level of the reference rate. Moreover, a single bank cannot
cause the reference rate to differ by a large margin from the value it would have under truthful
reporting, since extreme quotes are not included in the computation of the trimmed mean. Hence,
we should not expect a bank to deviate significantly from truthful reporting as long as there is
an expected reputational or regulatory cost from doing so. The signaling and cost components of
the payoff function can be interpreted as first and second order approximations to a more general
specification of the respective gains and costs. Higher order effects may be present, but they should
not be the main drivers of banks’ quotes.

The signaling component captures the reputational gain that bank i derives from reporting a
low borrowing rate ri,t, relative to other banks, as described in Section 2. It is broadly consistent
with descriptions of signaling incentives in previous academic literature on Libor manipulation and
with anecdotal evidence reported in the financial press.

Regarding costs, the quadratic form γp (si,t,p − ri,t,p)2 is meant to bind the extent of misreporting
9I follow the convention of using uppercase letters for random variables, and lowercase letters for their realizations.
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by, presumably, capturing expected costs due to loss of credibility and likely regulatory penalties.10

The functional form chosen is the lowest-order polynomial approximation that is symmetric around
zero (si,t,p− ri,t,p = 0) and also attains its minimum at zero (hence the linear term is not included).
It is symmetric because, ex-ante, banks are similarly likely to have incentives to over or understate
their borrowing costs, and deviations in both directions are potentially damaging for other market
participants who borrow and lend at rates indexed to Libor.

Banks in the model behave competitively and choose their reports privately to maximize their
individual payoffs. They rely on information about each other incentives to devise their optimal
strategies. The model does not allow for explicit collusion as a source of systematic manipulation
for the following reasons. For each bank, its net exposure to Libor is the result of thousands of
loans and derivatives. Given that the amounts at stake are substantial, it is reasonable to expect
profit maximizing banks to choose their Libor quotes based on their net exposure, rather than on
the specific positions of individual traders. There is indeed evidence that top bank executives were
involved in manipulation attempts (see Section 2). Moreover, banks with opposing net exposures
have strong incentives to compete rather than cooperate. However, it is presumably much harder
for managers to collude than for individual traders due to much stricter regulatory scrutiny, even
more so if it requires them to coordinate on both their Libor submissions and their net exposure to
Libor.

The vast majority of fines and settlements that banks have paid due to their involvement in
the manipulation of the USD Libor are related to individual rather than concerted wrongdoings.
However, regulators in Europe have imposed fines on several banks after presenting evidence that
some traders participated in cartels to try to manipulate Euribor and the Japanese Yen Libor. In
consequence, in spite of the previous arguments, I cannot fully rule out the existence of similar
cartels in the USD Libor panel. It is hard to anticipate, though, how ignoring such coalitions,
if they are present, affects my estimates as any potential bias would depend on the number of
coalitions and their respective incentives. For instance, two coalitions with opposing net exposures
to Libor would likely compete in equilibrium to push the benchmark rate in different directions. The
identification strategy in Section 4 should still extract information on the sign of their exposures
from the distributions of their quotes, but the estimated magnitudes may be biased if the model
ignores that banks internalize the positive externality on their coalition.

I will now introduce a set of assumptions that I use to characterize the Bayesian Nash Equilibrium
of the non-cooperative game.

Assumption 1. For all i ∈ N , at each period p, the parameters αi,p, vi,p and γi,p are common
knowledge.

A potential concern with Assumption 1 is that banks may not know each other’s exposure to
Libor.11 However, such detailed knowledge of other banks’ balance sheets is not necessary for banks

10As a matter of fact, almost all banks in the USD Libor panel have paid fines and settlements due to their
involvement in the manipulation scandal.

11A weaker version of Assumption 1, where (αi,p, vi,p, γi,p) is i’s private information, but it is drawn from a
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to choose their optimal strategies. As shown below, the first order condition of (1) implies that a
weaker sufficient condition is that in equilibrium banks form correct beliefs about the distribution of
reported rates. In a Bayesian fashion, by playing the game repeatedly and observing the actions of
others after each instance of the game, together with other information they gather from trading with
each other in the interbank market, banks would likely be able to correctly infer this distribution
and converge to the equilibrium implied by Assumption 2.

3.2 Borrowing Costs

The cost of each bank (si,t) is determined by a common component ct, known to all banks, and a
private shock πi,t,p. Each day t, Πi,t,p is drawn independently from the same distribution Fi,p.

Assumption 2. For all i ∈ N and all (t, p), si,t,p = ct,p+πi,t,p. ct,p is common knowledge but πi,t,p
is only privately known.

In their work on the design of robust interest rates benchmarks, Duffie and Dworczak (2021) also
assume that private borrowing costs are the sum of a common component and a zero mean idiosyn-
cratic shock. Unlike them, I also assume that ct,p is common knowledge, but not observed by the
econometrician. Cassola et al. (2013) study liquidity auctions in which banks periodically borrowed
short-term funds from the European Central Bank in 2007 and 2008. Such funds were presumably
close substitutes for interbank loans, and the set of bidders contains all banks in the USD Libor
panel. They assume independent private values, conditional on commonly observed information.
Assumption 2 is a particular case, with additively separable private and common components. I
interpret the empirical results of Cassola et al. (2013) as a validation of their assumption.

Assumption 3. For all i, Πi,t,p
iid∼ Fi,p, and for any (t, p) and j 6= i, Πi,t,p and Πj,t,p are indepen-

dent. The support of Fi,p is a closed interval
[
πi,p, π̄i,p

]
on the real line. The distributions Fi,p, for

all i, are also common knowledge.

Note that the independence of Si,t,p and Sj,t,p, conditional on ct,p, follows directly from Assump-
tions 2 and 3. In addition, from Assumption 3, let Si,p (c) =

[
c+ πi,p, c+ π̄i,p

]
be the support of

si,t,p, conditional on c. Si,p (c) is the set of all possible types for each player i, given c, at period p.

Assumption 4. For all i, the random variable Πi,t,p is absolutely continuous with respect to the
Lebesgue measure.

The last assumption guarantees that both Πi,t,p and Πi,t,p have Lebesgue integrable densities on
their support.

commonly known distribution for all i ∈ N , still implies a model that has a Nash equilibrium in pure monotone
strategies. McAdams (2003) proves existence in pure monotone strategies for a broad class of games with multi-
dimensional types that includes this one as a particular case.
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3.3 Bayesian Nash Equilibrium

The focus of this section is to describe the Bayesian Nash equilibrium (BNE) of the static game
that banks play every day (t, p), hence I drop indices t and p for convenience. I first use results from
previous literature to show that there is a BNE in pure, non-decreasing strategies. Then, I show
that these strategies are strictly increasing in a subset of their domain. These results are crucial
since the identification strategy in Section 4 is based on the existence of strictly increasing inverse
equilibrium strategies.

From Equation (3), bank i’s best response is given by

%i (si) = argmax
ri∈[r,r̄]

ER−i

[
αir̃ (ri, R−i) + vi (r̃ (ri, R−i)− ri)− γi (si − ri)2 |c, si

]
(3)

for all si ∈ Si (c). Note that banks are restricted to choose their quotes from a closed interval [r, r̄].
For instance, they may not be allowed to report borrowing rates below zero.

The maximization problem in (3) could have more than one solution for some si, hence %i may
be set-valued or, equivalently, a correspondence. Since I am interested in single-valued equilibrium
strategies, I use ρi to denote a single-valued function such that ρi (si) ∈%i (si), for all si ∈ Si (c).

The payoff function ui satisfies the single crossing property (SCP) of Milgrom and Shannon
(1994), for any set of strategies ρ−i, as can be verified by direct differentiation (in fact, ∂2ui

∂si∂ri
=

2γi > 0). Therefore, the best response correspondence %i is non-decreasing in the strong set order
(see Lemma 1 in Athey, 2001),12 and it satisfies the single crossing condition for games of incomplete
information of Athey (2001). It follows from her Corollary 2.1 that the game has a Bayesian Nash
equilibrium in pure non-decreasing single-valued strategies. Moreover, since the best response ρi
is non-decreasing, regardless of the strategies used by all other players, it follows that in any pure
strategy Bayesian Nash equilibrium of this game all strategies are non-decreasing.

A set of necessary conditions for (ρ1, ..., ρN ) to be a vector of equilibrium strategies can be
obtained from the first order conditions of the payoff maximization problem (3). For any i ∈ N and
si ∈ Si (c), if ρi (si) is an interior solution to problem (3), when all other banks follow strategies
ρ−i, then

(αi + vi)
∂ES−i [r̃ (ρi (si) , ρ−i (S−i)) |c, si]

∂ri
− vi + 2γi (si − ρi (si)) = 0 (4)

where ρ−i (S−i) = {ρj (Sj) : j 6= i} and ES−i [·|c, si] denotes the conditional expectation operator
from the perspective of bank i, that is, when si is known, but for all j 6= i, Sj is a random variable
with known conditional distribution.

Since ρj is strictly monotone, ES−i [r̃ (ρi (si) , ρ−i (S−i)) |c, si] = ER−i [r̃ (ri, R−i) |c, si]. Notice
that Assumptions 2 and 3 imply that ER−i [r̃ (ri, R−i) |c, si] = ER−i [r̃ (ri, R−i) |c]. That is, given
knowledge of c, its own cost si does not provide any further information to bank i regarding the
distribution of other banks’ quotes (costs).

12In Appendix A, I show that, as a correspondence, %i is non-decreasing in a very strong sense, i.e, for all s, s′ ∈
Si (c), with s < s′, max %i (si) ≤ min %i (s′i). By Berge’s Theorem of the Maximum, we know %i is compact valued,
so each of these sets has a minimum and a maximum.
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As noted by Chen (2013), the derivative
∂ER−i [r̃(ri,R−i)|c]

∂ri
can be expressed in terms of the

probability that bank i assigns to the event that its quote would be used in the calculation of the
benchmark rate, that is, the probability that R(n) ≤ ri ≤ R(n̄) (see Appendix A for a proof of this
statement). More precisely,assumption that the mean idiosyncratic costs are the same for all banks

∂ER−i [r̃ (ri, R−i) |c]
∂ri

=
1

Ñ
PR−i

{
R(n) ≤ ri ≤ R(n̄)|c

}
(5)

where the probability is consistent with the equilibrium distribution of R−i. Let φi (ri|c) denote
such probability. Notice that it depends on the vector of equilibrium strategies of all other banks
and the distributions of their costs. In Appendix A, I derive an explicit expression for φi (ri|c) in
terms of the distributions of borrowing costs.

Since αi, vi and γi cannot be separately identified, without loss of generality, I normalize the
payoff function by dividing it by 2γi. Henceforth, αi and vi denote the potential gains from exposure
and signaling expressed as a fraction of the misreporting costs. Letting βi = αi+vi

Ñ
, the expression

for the necessary condition in (4) simplifies to:

βiφi (ρi (si) |c)− vi + (si − ρi (si)) = 0 (6)

For each bank i, its equilibrium strategy ρi satisfies Equation (6), for all si ∈ Si (c) such that
ρi (si) is an interior solution to problem (3). A natural lower bound for the set of admissible quotes
is r = 0. However, there is no obvious restriction on how large the reported rates should be allowed
to be. I show in Appendix A that the upper bound r̄ can be chosen in such a way that it is never
binding. It follows that any positive optimal quote r∗i is an interior solution, therefore, for all such
r∗i > 0 there is a si such that:

si = r∗i − βiφi (r∗i |c) + vi (7)

Therefore, the equilibrium strategy ρi : Si (c) → [r, r̄] is invertible, hence strictly increasing,
in the set SIi (c) = {si ∈ Si (c) : ρi(si) > r}. The points were ρi(si) = r are excluded from SIi (c)

because the lower bound r might be binding for some si.

Proposition 1. For each bank i, the equilibrium strategy ρi : Si (c)→ [r, r̄] is strictly increasing at
all si ∈ SIi (c)

Henceforth, I refer to Equation (7) as the inverse equilibrium strategy of bank i. Such inversion
is crucial for proving some of the properties of the Bayesian Nash Equilibrium. Besides, it also
provides the key for the identification of the model, following a strategy similar to Guerre et al.
(2000), Li et al. (2000), Li et al. (2002), and all the subsequent literature in structural estimation
of auctions, as will be shown below in the section on identification.
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4 Identification Strategy

In this section, I present identification results for a fixed period p. Hence, I drop the index p but
keep t to denote a day in the sample. Ideally, we would want the model in Section 3 to identify
the distributions of the borrowing costs (at least conditional on c) and, if possible, for every bank
i and every day t, the specific borrowing cost si,t. If we could recover all these costs, we would be
able to compute the daily (trimmed) average borrowing cost of the N banks in the panel, which is
precisely the value that the reference rate would have under truthful reporting (the unmanipulated
Libor). Unfortunately, this cannot be done using data on quotes alone.13 However, I conclude this
section by showing that a lower bound on the extent of misreporting is identified. Furthermore, in
Section 5, I propose an estimate of a lower bound on the common cost ct and the unmanipulated
Libor, which is quite useful given the evidence suggesting that Libor was manipulated downward
during the period considered. In fact, as shown in Section 6, the estimated lower bound is mostly
above the published rate during this period, which is consistent with previous evidence.

Let us start by considering a simple case where ct is constant, and vi and βi are observed.
In such a case, banks would be playing the same static game at each t, and for each bank i its
observed quote ri,t would be drawn from the same unconditional distribution every day t. Hence,
these distributions could be estimated directly from the observed quotes. Moreover, we could also
estimate the probabilities φi (ri,t|c̄), from the estimated quote distributions. Then, we could recover
the private costs of each bank, at each t, from the inverse equilibrium strategies:

si,t = ri,t − βiφi (ri,t|c̄) + vi (8)

4.1 Unobserved Game Heterogeneity

More realistically,ct changes every day and it is unobservable to the econometrician. Since it is
common knowledge for the banks, it changes the game that banks are playing each day, hence the
observed quotes follow different distributions each day. To control for this unobserved heterogeneity
I follow a strategy similar to Krasnokutskaya (2011).

Following an argument analogous to that in Haile et al. (2003) and Krasnokutskaya (2011),
Proposition 2 states that the equilibrium strategies (when thought of as functions of both the purely
private costs πi,t and the common cost ct), are additively separable into a common component and
a private quote component.

13To better understand the challenges to the identification strategy, let’s consider the first price sealed bid auction
with independent private values analyzed in Guerre et al. (2000), where the private values of all bidders at each
auction are indeed identified from the set of bids submitted by all bidders. As opposed to their case, here the inverse
equilibrium strategies (7) depend on parameters (βi and vi), that are unknown to the econometrician. Moreover, the
costs are not independent across banks, but only conditionally independent given a common cost c, that is common
knowledge for the banks, but unobservable to the econometrician. Our setup is closer to that of Campo (2012), who
admits heterogeneous risk aversion, and Krasnokutskaya (2011), who allows for unobserved auction heterogeneity. In
the former, the risk aversion coefficient of each bidder is identified by imposing strong conditions on the distributions
of their private values (they are all assumed to have the same marginal distributions). In the latter, the distributions
of the private and the common cost components (in a procurement auction) are identified, but the specific realizations
of these costs that correspond to the observed bids, are not.
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Proposition 2. Let ρj (·; 0) be the equilibrium strategies of all banks j ∈ N , when ct = 0. If the
strategy of each bank j 6= i, when ct 6= 0, is

ρj (πj,t; ct) = ct + ρj (πj,t; 0) (9)

then i’s best response is also ρi (πi,t; ct) = ct + ρi (πi,t; 0).

The proof of Proposition 2 is left for Appendix A. It consists of directly verifying that ct +

ρi (πi,t; 0) maximizes i’s expected payoff when all other players are using the strategies in (9). An
immediate corollary of Proposition 2 is that, if

(
ρ0

1, ..., ρ
0
N

)
is a BNE of the game with ct = 0, then

(ρ1, ..., ρN ), with ρi = ρ0
i + ct for all i ∈ N , is a BNE of the game with ct 6= 0.14

Let Πi,t be the private cost component of bank i at time t, and Qi,t = ρi (Πi,t; 0) be the
normalized equilibrium quote that bank i would submit, when its purely private cost is Πi,t and
Ct = 0 (assuming these are random variables for the econometrician). It follows that, for all i ∈ N ,
Ri,t = Ct +Qi,t. In particular, for any two banks i1, i2 ∈ N ,

Ri1,t = Ct +Qi1,t

Ri2,t = Ct +Qi2,t (10)

Notice that Qi1,t and Qi2,t are functions of Πi1,t and Πi2,t, respectively, hence they are independent.
Moreover, from the point of view of the econometrician, Ct is also independent of Qi1,t and Qi2,t.
The goal now is to recover the unknown distributions of Ct, Qi1,t and Qi2,t from the observable
distributions of Ri1,t and Ri2,t. Under the additional assumption that Ct is independently drawn
from the same distribution at all t, this is the same deconvolution problem introduced by Li and
Vuong (1998), in the context of measurement error with multiple indicators, and later studied by Li
et al. (2000) and Krasnokutskaya (2011) for the estimation of procurement auctions with a common
cost component. All of them base their results on Kotlarski’s Lemma (Kotlarski, 1966).

An additional difficulty here is that Ct could be drawn from a different distribution on each t
and these draws may not be independent across time, hence the assumptions of Kotlarski’s Lemma
would no longer hold.15 When Ct is not i.i.d. it is necessary to assume further that at least three
quotes and the identities of the banks submitting them are observable.16 Accordingly, I assume that
the joint distribution of pairs of the form (Ri,t −Rj,t, Rk,t −Rj,t) is given.

14A critical assumption when estimating static games is that at each repetition of the game, the observable set
of actions chosen by the players correspond to the same equilibrium (conditional on the unobserved heterogeneity).
Of course, this assumption would be trivially satisfied if the equilibrium

(
ρ01, ..., ρ

0
N

)
was unique. If instead there

were multiple equilibria for a given c, the identification strategy would fail because the same distribution of borrow-
ing costs would result in a different distribution of quotes under different equilibria. The observed distribution of
quotes would then be a mixture of these different distributions from different equilibria. To address this concern, I
conducted simulations where I computed the BNE of the game numerically, for different regions of the parameters
space. Reassuringly, the results suggest that the equilibrium is in fact unique. All simulations converge to the same
equilibrium strategies, regardless of the starting point. A detailed description is included in Online Appendix B.

15Li et al. (2000) and Krasnokutskaya (2011) provide identification results for the case with i.i.d. Ct, which require
that at least two bids and the identities of the corresponding bidders are observable.

16The data strongly suggests that the unobserved common cost component Ct is highly persistent and may even
follow a non-stationary process, as shown in Online Appendix B. To the best of my knowledge, the particular case

14



Assumption 5. For all i, j, k ∈ N ,the joint distribution of (Ri,t −Rj,t, Rk,t −Rj,t) is known. Here
Ri,t, Rj,t and Rk,t are random variables denoting optimal quotes.

Given three different bidders, i1, i2 and i3, Equation (10) implies that

Ri1,t −Ri2,t = −Qi2,t +Qi1,t

Ri3,t −Ri2,t = −Qi2,t +Qi3,t

where Qi1,t, Qi2,t and Qi3,t are mutually independent, and Qi,t is i.i.d. for each i, thus these
two equations satisfy the assumptions of Kotlarski’s Lemma. Therefore, Assumption 5 implies
Proposition 3 below (the details of the proof are left for Appendix A).

Proposition 3. If the characteristic functions of the normalized quotes Qi1,t, Qi2,t and Qi3,t are
non-vanishing everywhere, their distributions are identified, up to an additive constant (−E [Qi1,t]),
from the joint distribution of (Ri1,t −Ri2,t, Ri3,t −Ri2,t).

It is worth noticing that the constant term E [Qi1,t] in Proposition 3 is not identified. Hence, we
only achieve identification of the distributions of the normalized quotes up to an additive constant.
However, the distributions of Qi1,t−E [Qi1,t], Qi2,t−E [Qi1,t] and Qi3,t−E [Qi1,t] are all identified.
Let Q̃i,t = Qi,t−E [Qi1,t], Proposition 2 implies Q̃i,t is the optimal report of bank i in a game with
ct = −E [Qi1,t].

Proposition 3 is crucial for the identification of the model, because it removes the unobserved
heterogeneity from the game. More importantly, it implies the distribution of the normalized quotes
Q̃i,t are identified, even though the constant −E [Qi1 ] remains unidentified.

4.2 Identified Parameters

Proposition 3 allows us to fix the common cost c = −E [Qi1 ]. I now establish conditions for the
identification of βi, vi and the distribution of Πi,t, for all i ∈ N .

First, I notice that the probability φi (q̃i,t| − E [Qi1,t]) is identified for each value q̃i,t in the
support of Q̃i,t. Proposition 3 implies that the distribution of Q̃j,t is identified for all j ∈ N and it
does not vary with t. It follows that,

φi (q̃i,t| − E [Qi1,t]) = PQ̃−i

{
Q̃(n) ≤ q̃i,t ≤ Q̃(n̄)

}
(11)

where Q̃(n) and Q̃(n̄) are order statistics of the vector of all normalized quotes. Therefore, these
probabilities are identified for all i ∈ N and each realization q̃i,t of Q̃i,t, because they are functions
of identified distributions.

Moreover, φi (ri,t|ct) = φi (q̃i,t| − E [qi1 ]), hence, despite the notation, identification of these
probabilities does not require knowledge of ct. Intuitively, since ct is common knowledge for the

with non-i.i.d. heterogeneity has not been considered before in the empirical auctions literature, although it is just a
natural extension of the model with i.i.d. heterogeneity.
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banks and reports are additively separable (Proposition 2), the probability that i assigns to the
event r(n) ≤ ri ≤ r(n̄) is equivalent to the probability that q(n) ≤ qi ≤ q(n̄). Formally,

φi (ri,t|ct) = Pi

{
r

(n)
t ≤ ri,t ≤ r(n̄)

t |ct
}

= Pi

{
r

(n)
t − ct ≤ ri,t − ct ≤ r

(n̄)
t − ct

}
= Pi

{
q

(n)
t ≤ qi,t ≤ q(n̄)

t

}
= Pi

{
q

(n)
t − E [qi1 ] ≤ qi,t − E [qi1 ] ≤ q(n̄)

t − E [qi1 ]
}

(12)

= φi (qi,t − E [qi1 ] | − E [qi1 ])

Given the results in 11 and 12, I will used the simplified notation φi (q̃i,t) to denote the probability
φi (q̃i,t| − E [Qi1,t]).

Let us now derive an expression for βi in terms of the distribution of Q̃i,t and the probability
φi (q̃i,t). The first order condition (7) of the game with c = −E [Qi1,t] can be written as:

− c+ πi,t = q̃i,t − βiφi (q̃i,t) + vi (13)

for all i ∈ N . Moreover, taking expectations,

− c+ E [Πi,t] = E
[
Q̃i,t

]
− βiEQ̃i

[
φi

(
Q̃i,t

)]
+ vi (14)

and subtracting expected values from 13 we get,

Πi,t −E [Πi,t] = Q̃i,t − E
[
Q̃i,t

]
− βi

(
φi

(
Q̃i,t

)
− EQ̃i

[
φi

(
Q̃i,t

)])
(15)

The distribution of Q̃i,t is identified and does not vary with t, thus the means E
[
Q̃i,t

]
and

EQ̃i

[
φi

(
Q̃i,t

)]
are identified as well. Equation (15) is the key for the identification of βi (and

the distribution of Πi,t − E [Πi,t]). However, an additional restriction must be imposed on Fi to
achieve identification.

Assumption 6. For all i ∈ N Med (Πi,t) = E [Πi,t], where Med (Πi,t) denotes the median of Πi,t.

Assumption 6 states that, for any given bank, it is equally likely that it receives a positive or a
negative idiosyncratic shock. As a restriction on the distributions of Πi,t, this assumption is implied
by, but weaker than, symmetry around the mean. Under such assumption, the parameter βi and
the distribution of Πi,t are identified, for all i, as stated in the next two propositions.

Assumption 7. In the game with ct = −E [Qi1,t], the optimal quote of bank i when πi,t = E [Πi,t]

is an interior solution to (3), for all i ∈ N . Briefly, 0 ∈ SIi (−E [Qi1,t]) ,for all i ∈ N .

Assumption 7 requires that the lower bound r in the set of admissible reported rates is not
binding when the private cost is equal to its mean. In the model, we can make r low enough (even
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negative) to ensure it is never binding. More realistically, when the model is matched to the data,
a reasonable bound is r = 0. Reassuringly, Libor rates have never hit the zero lower bound so this
restriction is innocuous.

Proposition 4. Under Assumptions 2-7, the preference parameter βi is identified, for all i ∈ N ,
from the distributions of the normalized quotes. Moreover,

βi =
Med

(
Q̃i,t

)
− E

[
Q̃i,t

]
φi

(
Med

(
Q̃i,t

))
− EQ̃i

[
φi

(
Q̃i,t

)] (16)

where Q̃i,t is a random variable that denotes the quote of bank i in the game with ct = −E [Qi1,t].
The distribution of Πi,t − E [Πi,t] is identified as well.

The proof of (16) is left for Appendix A. It relies on the fact that Equation (15) is a translation
of the inverse equilibrium strategy of bank i in the game with ct = −E [Qi1,t], hence it is satisfied by
any interior optimal normalized quote. Moreover, since the optimal strategy is strictly increasing
in the interior of the support of Πi,t, when the private cost is equal to Med (Πi,t) the optimal quote
is Med

(
Q̃i,t

)
. Identification of the distribution of Πi,t − E [Πi,t] follows directly from Proposition

4 and Equation (15), since all the distributions and the constants on the right hand side of this
equation are identified.

Additional assumptions are required to recover all other model primitives. Notice that−E [Qi1,t],
E [Πi,t] and vi are all unknown additive constants in Equation (14), hence they cannot be separately
identified from reports alone. I thus add the next assumption.

Assumption 8. For each bank i, the mean of its purely private cost is zero, that is, E [Πi,t] = 0.

Assumption 8 rules out any first order heterogeneity in the distributions of banks’ borrowing
costs.However, such a model still allows for persistent differences in risk, since the distributions
might have different variances. It might be the case that some banks in the USD Libor panel
face persistently higher borrowing costs than others. To address this concern, I report in Online
Appendix B the results of an estimation of a version of the model where such differences are allowed
(a model where Assumption 8 does not hold). However, that model restricts the signaling parameter
vi to be the same for all banks and it requires additional data sources for identification. In Section
6 I compare the results of the estimation of these two models.17

Proposition 5. Under Assumptions 2-8, the distribution of Πi,t, Fi, and the deviation of the private
signaling parameters from their mean, vi − v̄, are identified for For all i ∈ N . Moreover, for all
i ∈ N , a lower bound on its private signaling parameter vi is also identified.

17Assumption 8 and the normalization c = 0 in Proposition 2 imply that I am allowing for negative borrowing costs,
which seems unrealistic. However, such normalization is completely arbitrary and I chose zero just for mathematical
convenience. I could have chosen any other fixed value c̄ such that c̄+ π > 0 to avoid negative borrowing costs, and
all the identification results would remain the same.
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Identification of Fi follows straightforward from Proposition 4 and Assumption 8. Equation (14)
and Assumption 8 imply that vi − E [Qi1,t] is also identified for all i ∈ N (but −E [Qi1,t] remains
unknown). Moreover, for each i ∈ N ,

vi − E [Qi1,t]−min
i∈N
{vi − E [Qi1,t]} = vi −min

i∈N
{vi} ≤ vi (17)

therefore vi − E [Qi1,t]−mini∈N {vi − E [Qi1,t]} identifies a lower bound on vi.

4.3 Motives for misreporting and the distribution of normalized quotes

To illustrate the ability of the model to separately identify signaling and exposure to Libor as
distinct motives for misreporting, I simulate the optimal response of Bank 1 to the equilibrium
strategies of all other banks, under hypothetical scenarios with different values for the parameters
v1 and β1, and a given distribution of private costs that satisfies Assumptions 2, 3 and 6 - 8.

First, I set v1 = 30 bp, β1 = 10bp, and vj = βj = 0 for all j 6= 1, and compute the BNE of
the game described in Section 3. I provide a detailed description of the equilibrium simulations in
Online Appendix B.

Let us remember from 6, that the best response of any bank i, ρi, is implicitly defined by
ρi (si) = si + βiφi (ρi (si) |c) − vi. Figure 2 shows the two optimal responses of Bank 1 to the
equilibrium strategies of all other banks, under two different sets of parameters. The right panel
shows the equilibrium strategy with v1 = 30 and βi = 10. For comparison, the left panel shows the
best response of the same bank with v1 = 0 and β1 = 10, keeping constant all other parameters
and the distributions of borrowing costs. When v1 = 0, the only incentive for misreporting is the
exposure to Libor. In such a case, the bank optimally chooses to report its costs truthfully when
the probability φi that its report is included in the benchmark rate computation is either zero or
one. When its costs are closer to the mean (zero), the bank assigns a higher probability to this
event and thus has higher incentives to overstate its costs and benefits from its positive exposure
to Libor. The effect of adding signaling as a further motive for misreporting, while keeping βi = 10

constant, is just a vertical translation of the equilibrium strategy (by exactly−30 bp). The benefit
the bank derives from signaling is the same regardless of its true borrowing cost.

Similarly, the left panel of Figure 3, shows the difference between the distributions of the costs
and optimal reports, when β1 = 0 and v1 = 30. In this case, the distribution of reports is just a
horizontal translation of the distribution of costs. When β1 = 0, the optimal strategy simplifies
to ρ1 (s1) = s1 − v1; hence, the extent of misreporting, exclusively due to signaling, is the same
across the entire support of the distribution of its private costs. In contrast, when β1 6= 0, the size
of misreporting from exposure to Libor depends on φi, hence it is a non-constant function of the
bank’s private cost. The right panel of Figure 3 shows the resulting distribution of reported rates
when v1 = 30 and β1 = 10. If the exposure is sufficiently large to induce misreporting, it changes
the shape of the distribution of the normalized quotes when compared to the distribution of the
private costs. In particular, the former is no longer symmetric; hence, its mean and median no
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Figure 2: Best responses to equilibrium strategies with different incentives for misreporting
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Figure 3: Equilibrium distributions of quotes under different incentives for misreporting

longer coincide.
In a nut shell, the model attributes any observed difference between the mean and the median

of the distribution of normalized quotes to β1 (given Assumption 6) and identifies (a lower bound
for) v1 from any change in location (translation) that remains unexplained after controlling for β1

(given Assumption 8). This highlights the importance of Assumption 6 for the identification of the
signaling parameters. If the distributions of idiosyncratic costs all have the same mean, then the
model attributes the unexplained differences in the average costs reported by banks to signaling.

4.4 Lower bound for the extent of misreporting and manipulation

Besides the signaling and exposure parameters in the payoff function of the banks, under Assump-
tions 2 - 8, average measures of the extent of misreporting for each bank and the overall Libor
manipulation are also identified. Notice that

E [si,t − ri,t] = vi − βiE [φi (ri,t|ct)] (18)
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and all terms on the right hand side of Equation (18) are identified, except for vi for which only
a lower bound is identified. Thus we can also identify a lower bound on each banks’ average
misreporting. Moreover, the model also identifies a lower bound on the mean spread between average
borrowing costs and average Libor quotes, E

[
1
N

∑
i∈N (sit − ri,t)

]
, that provides a conservative

measure of the extent of Libor manipulation.
Notice that I have not provided any arguments showing that the daily realizations of the com-

mon cost component ct are identified. In fact, the identification strategy described in this section
consists of removing the game heterogeneity due to ct from each instance of the game, so that
they can be considered independent occurrences of the same game. This allows us to identify the
distributions of the normalized quotes; however, the corresponding normalization implies that the
results are invariant to additive constants that affedt all costs equally. Therefore, daily measures of
the unmanipulated Libor are not identified by these procedure. 18

5 Estimation

The model can be estimated using a procedure based on the deconvolution result presented in Section
4. Very similar estimation algorithms are proposed in Li and Vuong (1998), Li et al. (2000) and
Krasnokutskaya (2011). Li et al. (2000) establish conditions under which the resulting estimators
are uniformly consistent. However, these estimators are known to have very low convergence rates,
as shown by Li and Vuong (1998), even under strong assumptions about the smoothness of the
distributions involved.19 Broadly speaking, the moral is that for short samples (say, less than 500
observations) the density estimators would have non-negligible noise and would be highly sensitive to
the choice of a particular smoothing method.20 As an alternative, I propose an estimation method
that has a noise term that does not vanish asymptotically as the number of days in the sample
increases (unless the number of banks also grows large), but still has low variance relative to the
variance of the quotes, as I show below.21

The estimation procedure in this section must be applied separately for each period p; hence,
I drop the corresponding index. Roughly, the main idea is to use the observable deviations of the
individual quotes from their intraday average as (moderately) noisy measures of normalized quotes.
From Section 4, under maintained assumptions, the quotes are additively separable into a common
component and a purely private component. That is, ri,t = ct + qi,t, for all i ∈ N and all t.

18In Section 5, I propose a (noisy) estimator of a lower bound of the daily common cost component ct. In Section
6, I show that the estimated lower bound always lays above the reported Libor, and mostly in-between two other
measures of average borrowing costs already described in Section 2.

19See Ch. 5 in Horowitz (2009) for a general description of the deconvolution estimator and a discussion about the
slow rate of convergence of the corresponding density estimator.

20The empirical characteristic function must be smoothed to guarantee the existence of the integral in the in-
verse Fourier transform, which requires the econometrician to make some choices regarding smoothing functions and
parameters

21I have performed several Monte Carlo simulations in which the method I propose in Section 5.1 outperforms
the estimation based on deconvolution, even for samples larger than T = 500. The results of these simulations are
reported in Online Appendix B.
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Therefore, r̄wt = ct + q̄wt , where r̄wt =
∑

i∈N wiri,t, with wi > 0 for all i and
∑

i∈N wi = 1, and q̄wt is
analogously defined. Let ξwt = q̄wt − E [q̄w], it follows that

ri,t − r̄wt = qi,t − E [q̄w]− ξwt (19)

where, by construction, E [ξt] = 0 and V ar [ξwt ] = V ar [q̄wt ] =
∑

i∈N w
2
i V ar [qi,t].22

5.1 Estimation Procedure

By subtracting the intraday mean from the observed quotes, we remove the unobserved heterogeneity
almost entirely, except for the remaining mean-zero error term ξwt . It is easy to show that the weights
that minimize the variance of ξwt are the inverse of the variance of the normalized quotes, that is,

wi = V ar [qi,t]
−1
(∑N

i=1 V ar [qi,t]
−1
)−1

. In Appendix A, I show how to obtain a consistent estimate
of V ar [qi,t], denoted σ̂2

qi . I use these estimates to compute the weighted average r̄wt . Moreover,
ˆV ar [ξwt ] =

(∑
i∈N

1
σ̂2
qi

)−1
provides an estimate of V ar [ξwt ].

For any bank i, the observed ri,t − r̄wt are independent draws from the distribution of the
normalized quote qi − E [q̄w] (plus noise −ξwt ). Thus, the entire sample {ri,t − r̄wt }

T
t=1 can be used

to estimate the distribution of qi−E [q̄w], for each i ∈ N . Section 4 shows that the distributions of
qi − E [qi1 ] are identified. Equivalently, the distributions of qi − E [q̄w] are identified, since

qi − E [q̄w] = qi − E [qi1 ]−
∑
i∈N

wiE [qi − E [qi1 ]]

All the results concerning (the distributions of) qi − E [qi1 ] also hold for qi − E [q̄w]. Note that
in Section 4.2 we could have considered the hypothetical game with c = −E [q̄w] (instead of c =

−E [qi1 ]) and all the results would hold.
Besides having a lower variance in small samples, the main advantage of this alternative esti-

mation procedure compared to the one based on deconvolution is that it allows us to recover (with
low-variance, mean-zero error) the actual realizations of the normalized quotes for each t, and not
just their distributions. That is, suppose that on day t, bank i observes the cost si,t = ct + πi,t, for
a specific realization of πi,t, and correspondingly submits a quote ri,t. Then, ri,t− r̄wt is a (noisy) es-
timate of the quote that bank i would have submitted in a counterfactual game with ct = −E [q̄w],
if it had faced the cost si,t = −E [q̄w] + πi,t (for the same realization of πi,t). Thus, for each t,
(r1,t − r̄wt , ..., rN,t − r̄wt ) is an estimate of the vector of realized normalized quotes, corresponding to
the actual purely private costs observed by banks (π1,t, ..., πN,t).

Let q̃i,t = ri,t − r̄wt , then it follows from the previous argument that we have the whole sample
{(q̃1,t, ..., q̃N,t)}Tt=1 of realized normalized quotes available for the estimation of the model. Equation

22Even though E [ξt] = 0, it should be noted that ξt cannot be interpreted as classical measurement error, since it
is correlated with qi,t. Moreover, ξt does converge in probability to zero as the number of banks increases.
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(12) implies that a natural estimator of φi (ri,t|ct) would be:

φ̂i (ri,t|ct) =
1

T

T∑
τ=1

1
(
q̃(n)
τ ≤ q̃i,t ≤ q̃(n̄)

τ

)
(20)

where q̃(n)
τ and q̃(n̄)

τ are order statistics of the vector of all (normalized) quotes.
To increase the efficiency of φ̂i (ri,t|ct), I use a resampling method based on Hortaçsu (2000) and

Hortaçsu and McAdams (2010). The procedure works as follows. Fix any bank i, and for each other
bank j 6= i, take Ts draws with replacement from the sample {q̃j,t}Tt=1 of normalized quotes. Let
qsj,τ denote the τ -th of such draws. Then, build Ts possible scenarios for bank i, that is Ts vectors of

normalized quotes
{
qs−i,τ

}Ts
τ=1

that the other banks could have submitted, given the distribution of
their normalized quotes which is known by bank i in equilibrium. Finally, for each ri,t estimate the
probability φi (ri,t|ct) using (20) after replacing q̃(n)

τ , q̃(n)
τ and T by q̃s(n)

τ , q̃s(n)
τ and T s, respectively.

With an estimate of φi (ri,t|ct) at hand, the preference parameter βi can be estimated using the
sample counterpart of the expression for βi in Proposition 4. Suppose, for now, that we have such
an estimate β̂i, for all i ∈ N . Then, the private cost component πi,t observed by each bank i at
each date t in the sample can be estimated by

π̂i,t = q̃i,t −
1

T

T∑
t=1

q̃i,t − β̂i

(
φ̂i (q̃i,t)−

1

T

T∑
t=1

φ̂i (q̃i,t)

)
(21)

where φ̂i (q̃i,t) = φ̂i (ri,t|ct) as in (20). This is the empirical counterpart of Equation (15).
Similarly, an estimate of vi− v̄, the signaling parameter of bank i, is derived from the empirical

counterpart of Equation (13):

v̂i = − 1

T

T∑
t=1

(
q̃i,t −

1

N

∑
i∈N

q̃i,t

)
− β̂i

1

T

T∑
t=1

(
φ̂i (q̃i,t)−

1

N

∑
i∈N

β̂iφ̂i (q̃i,t)

)

Moreover, lower bounds on each vi are obtained by setting v̂i = v̂i −min {v̂i : i ∈ N}.
We can then estimate lower bounds for all common costs {ct}Tt=0, since ct = ri,t−βiφi (ri,t|ct) +

vi−πi,t and we either observe, or can estimate, all the terms on the right hand side of this expression.
An estimate of these lower bounds is given by

c̄t =
1

N

N∑
i=1

(
ri,t − β̂iφ̂i (q̃i,t) + v̂i − π̂i,t

)
(22)

5.2 Estimation of βi

The identification of βi relies on the assumption that Med (πi) = 0. Proposition 4 shows that under
this assumption βi can be explcitly expressed as a function of the distributions of the normalized
quotes. We can derive a point estimator of βi from this proposition, but before I derive a result
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of the model that is useful for estimating βi because it places bounds on the values of βi that are
consistent with the optimality of the observed quotes ri,t.

Assuming differentiability of the best response ρi,23 for all si ∈ Si (c), dρi(si)dsi
=
(

1− βi dφi(ρi(si)|c)dri

)−1
.

Since ρi is strictly increasing in Si (c), dρi(si)dsi
> 0 and thus 1− βi dφi(ρi(si)|c)dri

> 0, for all si ∈ Si (c).
Therefore, for all optimal ri, in particular, for any equilibrium quote ri, 1− βi dφi(ri|c)dri

> 0. Equiva-
lently, for all ri, βi < 1/dφi(ri|c)dri

if dφi(ri|c)dri
> 0 and βi > 1/dφi(ri|c)dri

if dφi(ri|c)dri
< 0.

It follows that,
1/inf

qi∈Q
−
i

(
dφi(qi)
dqi

)
≤ βi ≤ 1/sup

qi∈Q
+
i

(
dφi(qi)
dqi

)
(23)

where Q−i =
{
qi ∈

(
q
i
, q̄i

)
: dφi(qi)dqi

< 0
}

and Q+
i =

{
qi ∈

(
q
i
, q̄i

)
: dφi(qi)dqi

> 0
}
.

The inequalities in (23) place bounds on the values of βi that rationalize the observed (normal-
ized) quotes. Then, they hold for any βi that satisfies (16) in Proposition 4. In a finite sample,
however, the point estimate derived from (16) could lie outside these bounds. Therefore, to obtain
estimates that are consistent with the assumption that all observed quotes correspond to the BNE
of the game, I define an estimator of βi that always lies within estimates of these bounds in (23).
Let us denote these estimates of the lower and the upper bound β̂lbi and β̂ubi , respectively. The idea
is to find a value β̂i in the interval

[
β̂lbi , β̂

ub
i

]
that minimizes the squared median of the sample of

private borrowing costs implied by the inverse equilibrium strategies and the observed distributions
of the normalized quotes.

Formally, for any b ∈
[
β̂lbi , β̂

ub
i

]
, let

πi,t (b) = q̃i,t −
1

T

T∑
t=1

q̃i,t − b

(
φ̂i (q̃i,t)−

1

T

T∑
t=1

φ̂i (q̃i,t)

)

The estimator β̂i is defined by

β̂i = argmin
b∈[β̂lbi ,β̂ubi ]

(Med {πi,t (b) : t = 1, ..., T})2 (24)

which is a classical minimum distance estimator (see Newey and McFadden, 1994 for a general
description of minimum distance estimators and its asymptotic properties). I do not derive here
the asymptotic distribution of β̂i; instead, I use the bootstrap to estimate its variance and perform
inference, as described in Online Appendix B.

To calculate β̂lbi and β̂ubi , I first estimate the derivative dφi(q̃i,t)
dqi

for each estimated normalized
quote q̃i,t. Then I compute the empirical counterparts of the bounds in 23. It is possible, though,
that the set Q−i (Q

+
i ) is empty for some banks. In such a case, the lower (upper) bound is just −B

(B), for an arbitrarily large B.
23I assume differentiability of the best response functions only for notational convenience, but bounds for βi can

also be derived from weaker assumptions using only one-sided derivatives.
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6 Results

The model in Section 3 is estimated using only three-month USD Libor quotes for five different sam-
ple periods covering the financial crisis: (i) 09/03/2007 - 03/15/2008, (ii) 03/16/2008 - 09/14/2008,
(iii) 09/15/2008 - 12/31/2008, (iv) 02/09/2009 - 12/31/2009, and (v) 01/01/2010 - 12/31/2010.
(i) Starts the first trading day after BNP Paribas announced that it would suspend redemption in
two subprime mortgage funds and ends with Bear Stearns failure. (iii) Goes from the day Lehman
filed for bankruptcy until the end of 2008, when the BBA changed the composition of the USD
Libor panel.24 (iv) and (v) are somehow arbitrary periods of roughly one year each overlapping
the manipulation scandal. The main criterion to choose these periods is that at the reference dates
there is an apparent structural change in borrowing costs, or there are reasons to expect changes
in banks’ incentives to misreport (see Figure 1). Within each period, I estimate a lower bound for
the unmanipulated Libor, the daily idiosyncratic cost shocks faced by each bank, and (bounds on)
all parameters in the banks’ payoff function. All parameters and distributions are held constant
for each period. I restrict their duration to no more than one year to allow for potential variations
in banks’ incentives or in the distributions of their idiosyncratic borrowing costs. In principle, the
model could be estimated separately with data from more but shorter periods to capture more
frequent changes in those parameters, at the cost of decreasing the precision of the estimators.

6.1 Estimation of a counterfactual unmanipulated Libor

This section reports an estimate of the unmanipulated Libor, that is, the value that Libor would
have had if banks had not misreported their borrowing costs. Since previous literature has found
indications of downward manipulation, the lower bound is likely a conservative estimate of the
extent of Libor manipulation. The left panel of Figure 4 shows that the published Libor is lower
than the lower bound on the unmanipulated Libor on all days in my sample. In period (iii), the
average Libor - unmanipulated Libor spread is -22 bp, and it reaches a maximum absolute deviation
of 30 bp on 09/24/2008, only seven days after Lehman’s bankruptcy. There is weaker evidence of
manipulation in periods (i) and (ii), with an average spread of roughly -2 bp, but yet statistically
lower than zero at a significance level of 0.05. Finally, the average spreads in periods (iii) and (iv)
are -7 bp and -8 bp, respectively.

The right panel in Figure 4 compares the estimated unmanipulated Libor to the two other
measures of average borrowing costs in the interbank market described in Section 2. On 85% of
the days after 06/02/2008, when ICAP started publishing the NYFR, the estimated bound on the
unmanipulated Libor lies between the other two measures and is consistently closer to the NYFR,
except for the last period when all three measures yield similar results. Since the lower bound
is estimated from banks’ Libor quotes alone, this result validates the model based on testable
implications, under the assumption that the NYFR and the EDR are more accurate measures of

24Since banks are ex-ante heterogeneous, a change in the Libor panel implies a new game structure. Therefore, I
separately estimate the model before and after this change.
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Figure 4: Spreads between Libor and the Estimated Common Borrowing Costs
The left panel shows the spread between the published Libor and the estimated unmanipulated Libor. The highlighted
dates are 03/16/2008, when JPMorgan Chase acquired Bear Stearns for less than 7% of its market value two days
before; 09/15/2008, when Lehman Brothers filed for bankruptcy; 12/31/2008, when the British Banking Authority
changed the composition of the Libor panel; 02/09/2009; and 12/31/2009. Data on Libor quotes from 01/01/2009
to 02/09/2009 are not available. I computed 95% confidence intervals (light blue dotted lines) using the bootstrap.
The right panel compares the estimated unmanipulated Libor to the two other measures of average borrowing costs
described in Section 2 and Figure 1.

borrowing costs than the distorted Libor.
Although most empirical research on Libor manipulation has focused on the financial crisis

when the signaling incentive was presumably stronger, related court documents contain evidence
of manipulation attempts going back to 2005. To test whether these attempts succeeded in ma-
nipulating Libor, I extend the sample to include two more consecutive periods, from 09/03/2005
to 09/02/2006, and from 09/03/2006 to 09/02/2007. The estimated lower bound on the unmanip-
ulated Libor provides very weak evidence, if any at all, of Libor manipulation during 09/03/2005
- 09/02/2007. Figure 5 shows the results. For this period, the average estimated spread between
Libor and the lower bound on ct is -0.6 bp. During this same period, the EDR is much closer to
Libor than in any other period in the sample, and lies mostly above Libor. A likely explanation is
that before the BNP Paribas announcement, there were no serious concerns about large financial
institutions facing credit or liquidity risk; thus, banks did not have strong incentives to use Libor
reports as signals of creditworthiness. Moreover, their individual attempts to benefit from trading
positions may not have been sufficient to cause a substantial distortion in the benchmark rate.

6.2 Incentives for Misreporting

The size and direction of a bank’s misreporting, that is, the difference between its quote and its
borrowing cost, can be separated into two distinct components, one due to exposure to Libor and
another exclusively attributable to signaling, as follows:

ri,t,p − si,t,p =
αi,p

Ñ
φi,p (ri,t,p|ct,p)︸ ︷︷ ︸
Exposure

+
vi,p

Ñ
φi,p (ri,t,p|ct,p)− vi,p︸ ︷︷ ︸

Signaling

(25)
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Figure 5: Spread between Libor and the Estimated Common Borrowing Costs Before the Crisis
This figure shows the spread between the published Libor and the estimated unmanipulated Libor from 09/03/2005
to 09/14/2008. It also includes the Libor - Eurodollar Deposits Rate (EDR) and Libor - New York Funding Rate
(NYFR) spreads for comparison. The NYFR is only available from 06/02/2008. The highlighted dates are 09/03/2006,
09/03/2007 (the first trading day after BNP Paribas suspended two subprime mortgage funds), and 03/16/2008
(when JPMorgan Chase acquired Bear Stearns for less than 7% of its market value two days before). The model
is estimated separately for each corresponding period. I compute 95% confidence intervals (light blue dotted lines)
using the bootstrap.

Table 1 contains the estimates of the upper bounds for the exposure and signaling components
in Equation (25). It reports the averages for each bank and each period. For most banks, signaling
seems to be the main driver of systematic misreporting, in all five periods. Period (iii) displays
the largest deviations. In this period, signaling alone is responsible for differences of approximately
-20 bp, on average, and this number is only an upper bound. In contrast, during the same period,
with a few notable exceptions, the absolute differences due to exposures are lower than 6 bp. For
all other periods, the magnitudes are much smaller. In periods (i) and (ii), the largest estimated
deviation due to signaling is -3.5 bp, and the absolute differences attributable to exposures are all
below 1 bp. Finally, in periods (iv) and (v) misreporting due to signaling remains high compared
with that before Lehman’s bankruptcy.

Overall, the model attributes most of the difference between the published Libor and the un-
manipulated Libor to signaling rather than exposure to Libor. Figure 6 shows the spread between
Libor and the lower bound on the unmanipulated Libor obtained from a model that only allows
for exposure as a motive for misreporting (I set vi,p to zero for all banks and periods and then
estimate the model). In that model, the estimated Libor manipulation ranges from −8 to 4 bp
from 09/03/2007 to 12/31/2010, which is broadly consistent with the results obtained in previous
studies that have focused exclusively on this incentive (Snider and Youle, 2012; and Youle, 2014).
However, when signaling is added to the model the implied deviations are substantially larger in
all five periods, and signaling accounts for most of the resulting spread. To evaluate whether this
result depends on Assumption 8, in Section 6.4, I report an alternative estimation in which I allow
for persistent differences in idiosyncratic costs across banks. Reassuringly, the result appear robust
to dropping this assumption.
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(i): 09/03/2007 (ii): 03/15/2008 (iii): 09/15/2008 (iv): 02/01/2009 (v): 01/01/2010

- 03/14/2008 - 09/14/2008 - 12/31/2008 - 12/31/2009 - 12/31/2010

Bank Signaling Exposure Signaling Exposure Signaling Exposure Signaling Exposure Signaling Exposure

Barclays 0 0.8* 0 -0.1* 0 5* -6* -1.2* -5.5* -2.5*

BOA -2.1* 0.1 -2.9* -0.4* -27.3* 0.1 -7.2* -0.6 -8.5* 0.3*

BTMU -0.7 -0.4* -0.8* 0.1 -16* 5.3 -0.8 -0.5 -3.1* -0.4*

Citi -3.3* -0.5* -2.6* 0 -22.8* -8.1 -9.7* 0.5 -9.3* 0.2

Credit Suisse -1.1* -0.2 -0.5* -0.6* -13.1* 1.9 -5.1* -1.2 -5.3* -1.2*

Deutsche -2.8* 0.2* -1.2* -0.4* -16.9* -2.3 -7.2* -3.7* -9.7* -0.4

HBOS -0.7* -0.5* -0.6* -0.7* -6* -5.8* - - - -

HSBC -3.5* -0.4* -2.2* 0 -34.6* 5.9* -9.4* -1.2 -8.2* -2.3*

JPM -2.4* 0.2* -3.5* 0.1* -47.4* -0.7 -11.9* -0.3 -9.8* -0.4

Lloyds -2.3* 0.6* -2.8* 0.2* -25.2* -5.5 -7.3* 0 N/A N/A

Norinchuckin -0.4 0.1 -0.7* 0.1 -1.1 -14.7* 0 -0.7 -3* 0.3*

Rabobank -3.5* -0.6* -2.4* -0.3 -34.8* -3.7* -10.5* 0.9 -9.6* 0.6*

RBC -1.9* -0.1 -1.5* -0.5 -23.4* 0.4 -0.2 -3.9* -2* -4.9*

RBS -2.4* -0.2 -2* -0.1 -10.6* -2.1 -0.5 -0.3 -4.8* -1.4*

Societe Generale - - - - - - -8.5* -0.1 -26.3* 20.2*

UBS -3.4* 0.1* -0.9* -0.8* -26.8* 4.5 -4.1* -1.8* -9.7* 0.2

WestLB -1.3* -0.1 -0.7 -0.2 -22.5* 1 -1.1 0.2 0 0

Table 1: Signaling vs Exposure Incentives
This table presents estimates of two separate components of the average differences si − ri, that depend on whether
incentives to misreport are driven by signaling or exposures to Libor. Signaling is defined as vi,p

Ñ
φi,p (ri,t,p|ct,p)−vi,p,

and exposure as αi,p

Ñ
φi,p (ri,t,p|ct,p). All the estimates reported are upper bounds for the corresponding parameters

of the model, measured in basis points. In January, 2009, Societe Generale replaced HBOS as a new member of the
USD Libor panel.
*Significant at the 5% level (inference is performed using the bootstrap, as described in Online Appendix B).
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Figure 6: Spread between Libor and the Estimated Common Borrowing Costs with no Signaling
This figure shows the spread between Libor and the lower bound on the unmanipulated Libor obtained from a
model that only allows for exposure incentives (I set vi,p to zero for all banks and periods and re-estimate the
model). For comparison, I also include the spread estimated with the baseline model. The highlighted dates
are: 03/16/2008, 09/15/2008, 12/31/2008, 02/09/2009, and 12/31/2009. Data on Libor individual reports from
01/01/2009 to 02/09/2009 are not available.
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In the baseline model, estimated misreporting due to exposure shows substantial variation.
This is not very surprising. Most likely, exposures to Libor differ considerably across banks and
change over time as outstanding contracts mature and new positions are opened. In contrast, the
ranking of banks’ signaling incentives tends to persist for longer periods. The correlation coefficient
between the vectors of the signaling parameters for two consecutive periods range from 0.61 to
0.77. However, the magnitudes of these parameters substantially differ across banks and over time.
Recall, however, that the normalization of the payoff function in (3) implies that parameters vi,p
and αi,p measure the gains from misreporting as a fraction of the expected costs from misreporting.
Hence, a possible contributor to the overall heterogeneity in these estimates are changes to the
likelihood of being caught misreporting driven, for instance, by swings in market volatility. Another
potential explanation for the variation in signaling motives is a difference in market perceptions of
credit risk. I explore this hypothesis further in Section 6.3.

6.3 Signaling and CDS Spreads

As discussed in Section 2, CDS spreads for bonds issued by banks in the USD Libor panel increased
dramatically during the financial crisis and remained high during the subsequent sovereign debt
crisis in Europe. The higher perception of credit risk reflected in CDS spreads might have induced
banks to use their Libor submissions to try to alleviate concerns about their creditworthiness.
Consistent with this hypothesis, I find virtually no indication of manipulation before the BNP
Paribas announcement, when CDS spreads were much lower than during the crisis (see Figure 1).
To further explore this association, I regress the the estimated signaling parameter vi,p on daily CDS
spreads, and control for the bank-specific TED spread. The TED spread is defined as the difference
between the USD three-month Libor and the three-month Treasury Bill yield and is widely used by
market participants as a measure of credit risk.

Overall, I find a positive association between credit risk and signaling during the periods (i) - (v),
as shown in Table 2.25 An increase of 1 bp in the the CDS spread is associated with a statistically
significant increase of 0.8 - 3.1 bp in the signaling parameter. A large fraction of this association
seems to be explained by co-movements in time, for any given bank, rather than by cross-sectional
variation. When controlling for bank fixed effects, the regression coefficient increases to 3.08 bp and
is highly significant. However, when I also include period fixed effects, the coefficient on the signaling
parameter drops to 0.75 bp and is no longer significant at the 5% level (the respective p-value is
0.06, with standard errors clustered by bank to control for autocorrelation). Overall, differences
in CDS spreads seem to account for only a modest fraction of the cross-sectional heterogeneity in
signaling incentives.

As explained in Section 3.3, vi,p is measured as a fraction of the expected cost of misreporting γi,p.
25The positive association between signaling and CDS spreads reported in Table 2 might explain why Abrantes-

Metz, Kraten, Metz, and Seow (2012) do not find a positive correlation between the cross-sectional ordinal rankings
of Libor submissions and CDS spreads. Absent any misreporting, they should be positively correlated because both
reflect credit risk, but provided signaling incentives, banks with high CDS spreads would understate their borrowing
costs.
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(1) (2) (3)

CDS Spreadi,t
2.51*** 3.08*** 0.75*

(0.63) (0.88) (0.42)

TED Spreadi,t
1.50 2.40*** -1.16***

(1.16) (0.88) (0.31)

Period FE No No Yes

Bank FE No Yes Yes

Adjusted R2 0.07 0.65 0.84

Table 2: Regression of Signaling Parameter on CDS Spread
The dependent variable is the estimated signaling parameter vi,p. CDS Spreadi,t is the daily spread for five-year
credit default swaps (CDS) on bonds issued by bank i. TED Spreadi,t is the difference between the 3M USD Libor
quote of bank i and the yield on 3M US Treasury bills on day t. The sample encompasses 09/03/2007 to 12/31/2010
and includes only banks in the USD Libor panel with available data on CDS spreads. Standard errors (in parentheses)
are clustered at the bank level to control for autocorrelation. *, ** and *** indicate statistical significance at the
10%, 5% and 1% levels, respectively.

Hence, some of the heterogeneity in the estimated signaling parameters may be due to differences
in the expected costs of misreporting that are not related to credit risk. Moreover, as mentioned
in Section 4.3, Assumption 8 might also result in cross-sectional heterogeneity in vi,. If the model
does not allow the means of the idiosyncratic costs to differ across banks, then it attributes the
differences in average reported rates that are not explained by heterogeneous exposures to differences
in signaling. The model tends to assign higher signaling parameters to banks with lower reported
rates. If lower CDS spreads are also associated with persistently lower idiosyncratic borrowing costs,
then the results in Table 2 underestimate the association between CDS spreads and signaling. In
particular, the coefficient may be substantially attenuated when period fixed effects are included.
Finally, some of the cross-sectional estimated heterogeneity is likely attributable to the variance of
estimators of the the bank-specific parameters, and this may be of particular concern in period (iii)
because of the small sample size.

6.4 Robustness Check: Heterogeneous Private Costs Means

In this section I report the results of an alternative estimation in which I drop the assumption that
the mean of the private costs distribution is the same for all banks. Instead, I estimate the mean for
each bank but now I restrict the signaling parameter v to be the same for all banks. This version of
the model requires an additional measure of the common cost component ct to separately identify
signaling and exposure to Libor as the drivers for misreporting. Following Kuo et al. (2012), I use
the NYFR and the EDR as rough approximations of the common cost (see Section 2). In both
cases, signaling seems to be the main driver of misreporting, which confirms the result in Table 1.
Thus, the former does not depend on the assumption about the means of the private costs.

Table 3 presents the results of the alternative estimation. The table shows the average absolute
misreporting within a period and across all banks ( 1

N
1
Tp

∑
i,t |ri,t,p − si,t,p|) that the model attributes

to signaling and exposure to Libor according to the decomposition in (25). In period (iii) signaling
alone is responsible for absolute differences of, approximately, 14 to 90 bp between bank’s borrowing
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(i): 09/03/2007 (ii): 03/15/2008 (iii): 09/15/2008 (iv): 02/01/2009 (v): 01/01/2010

- 03/14/2008 - 09/14/2008 - 12/31/2008 - 12/31/2009 - 12/31/2010

Sig. Expo. Sig. Expo. Sig. Expo. Sig. Expo. Sig. Expo.

EDR 5.39 0.4 17.47 1.27 92.72 6.66 29.35 2.44 11.06 2.61

NYFR - - 1.01 0.29 14.62 4.56 0.09 1.06 2.13 2.58

Table 3: Average differences between Libor Quotes and Borrowing Costs
This table presents the average absolute misreporting ( 1

N
1
Tp

∑
i

∑
t |ri,t,p − si,t,p|) due to signaling and exposure to

Libor. For this robustness check, the means of the private cross distributions are allowed to differ across banks and
the signaling parameter vi,p is the same for all banks in each period p. The estimates are based on the assumption
that either the Eurodollar deposits rate (EDR) or the NewYork Funding Rate (NYFR) are approximate measures of
the average borrowing costs, ct. The NYFR was introduced in June 2, 2008. I report individual estimates for each
bank in Online Appendix B.

costs and their quotes. In contrast, the average absolute difference due to exposure is lower than 7 bp.
There are substantial differences depending on whether the EDR or NYFR is used to approximate
ct, given the large spread between these two rates (see Figure 1). In all other periods, misreporting
due to signaling seems much lower than in period (iii), but is still substantially larger than what
the model attributes to exposure when based on the EDR. However, if the NYFR is used instead to
approximate ct, the corresponding signaling estimate within period (iv) is virtually zero (although it
is 29 bp when based on the EDR). Only for this period, and just for the most conservative estimates
(NYFR), the deviations from exposure seem larger in magnitude than those motivated by signaling.
The differences across periods also resemble the results presented in Section 6.2. I report individual
estimates for each bank in Online Appendix B.

6.5 Variation in Borrowing Costs

The estimation results allow us to decompose the variation in borrowing rates into common and
idiosyncratic factors. Only for this decomposition, I further assume that the common cost follows
a random walk, ct,p = ct−1,p + ηt,p (an augmented Dickey-Fuller test does not reject a unit root, as
reported in Online Appendix B). In Table 4, I compare the estimated standard deviation of ηt,p to
the mean, lowest and largest estimated standard deviations of the private costs πi,t,p across banks,
for each period p. I report individual estimates for each bank in Online Appendix B.

In periods (i) and (ii), after the BNP Paribas announcement but before Lehman’s failure, aggre-
gate shocks seem to account for most of the variation in interbank funding rates for almost all banks.
Lehman’s collapse disrupted the market severely. Consequently, the volatility of both aggregate and
idiosyncratic shocks increases dramatically in period (iii), most likely reflecting much higher uncer-
tainty about idiosyncratic and systemic defaults. There is also much more heterogeneity across
banks during this period as reflected by the gap between the lowest (2pb) and the largest (30pb)
idiosyncratic factors. Periods (iv) and (v) display the lowest standard deviation of aggregate shocks
(1.9 and 0.5 bp, respectively). However, on average, idiosyncratic costs in period (iv) remain more
volatile than in periods (i) and (ii), and have higher standard deviations that the common shocks.
This could be the result of the declining market activity for unsecured interbank funds during the
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(i): 09/03/2007 (ii): 03/15/2008 (iii): 09/15/2008 (iv): 02/01/2009 (v): 01/01/2010

- 03/14/2008 - 09/14/2008 - 12/31/2008 - 12/31/2009 - 12/31/2010

sd (ct,p − ct−1,p) 5.5 2 11.4 1.9 0.5

mean σπitp 1.7 1 11 3.5 2

min σπitp 0.5 0.5 2.3 1.4 0.4

max σπitp 3.6 2.3 29.9 6.7 9.9

Table 4: Standard Deviation of Common and Idiosyncratic Costs
This table presents estimates of the standard deviation of the common cost component ct,p, and the mean, minimum,
and maximum standard deviation of the private costs πi,t,p across banks. ct,p is assumed to follow a random walk.
All estimates are measured in basis points.

crisis. As banks have fewer transactions to base their submissions on, their estimates of their own
borrowing costs become more noisy.

7 The end of Libor

The Libor manipulation scandal triggered regulatory reforms around the world to replace interest
rate benchmarks that are prone to manipulation. Libor regulators in the United Kingdom announced
in March 2021 that the publication of the USD Libor would cease on June 30, 2023. In the United
States, financial regulators and the federal government have recently approved laws and regulations
to replace the USD Libor with the Secured Overnight Financing Rate (SOFR) which reflects the
cost of secured overnight funding in the U.S. Treasury repo market.26 In contrast to Libor, it is
entirely based on data on a large volume of daily transactions. In Europe, the most widely used
benchmarks before reform were EONIA and Euribor. Recently, the ECB developed the euro short-
term rate (ESTR) as a replacement for EONIA. The ESTR reflects the costs of unsecured overnight
borrowing for banks in the euro area. It is exclusively based on deposit transactions that a sample
of banks report following ECB regulations. Euribor is not scheduled to be replaced but has recently
been reformed to comply with current regulations. It is now based on the daily contributions of a
panel of 18 banks. Individual contributions are the weighted average of eligible transactions in the
unsecured euro money market and the benchmark is a trimmed mean of these contributions.

In none of these three cases are the contributions or transactions of each bank published, which
likely strongly attenuates the signaling motive for manipulating the rate. However, for benchmarks
that are based on unsecured transactions and, hence, reflect credit risk, it is still possible that
regulators use the data to assess individual credit risk, especially during times of financial distress.
Moreover, whether the transactions used to compute such benchmark should be publicly available,
including the identities of the counterparties involved, remains an open question. Ultimately, the
question is whether transparency is a determinant of the benchmark quality.

Even if the signaling incentive is fully removed, Duffie and Dworczak (2021) have noted that
26On March 15, 2022, the U.S. government enacted the Adjustable Interest Rate (LIBOR) Act to establish a process

for replacing LIBOR with SOFR in existing contracts that lack provisions for Libor cessation.
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transaction-based benchmarks do not eliminate all the incentives or the ability to manipulate them.
For instance, banks with long exposure to a benchmark may borrow at rates above their marginal
valuation if the benefits from distorting the benchmark more than offset the cost of overpaying. This
becomes a more pressing concern when a handful of banks control a large share of the volume of
transactions underlying the benchmark, which is the case for the ESTR and Euribor. Nevertheless,
manipulating transactions is likely to be much more costly than misreporting borrowing costs; hence,
it is safe to assume that the new benchmarks are less vulnerable to manipulation than Libor.27

The model in Section 3 can be used to approximate the anticipated reduction in manipulation
from replacing Libor with a transaction-based benchmark. Two main goals of the new benchmarks
are to remove the signaling motive and to substantially increase the costs of misreporting or ma-
nipulation. Consequently, I conduct a counterfactual exercise in which I estimate the reduction in
Libor manipulation that would have resulted from a substantial increase in the cost of misreporting
or from fully eliminating the signaling incentive.28 I use the estimated borrowing costs for each bank
and each period, and simulate the equilibrium of the Libor reporting game under alternative sets of
parameters reflecting counterfactual scenarios. To measure the extent of Libor manipulation in each
scenario, I calculate the spread between the reported Libor implied by the simulated equilibrium
and my estimated unmanipulated Libor. Figure 7 shows the extent of (counterfactual) manipulation
under three scenarios. 1) The baseline scenario which is simulated using the values of the parameters
estimated from the data (reported in Section 6). 2) A counterfactual scenario with misreporting
costs ten times higher than that in the baseline. 3) A counterfactual scenario with no signaling
incentives but the same exposure incentive as in the baseline. According to these simulations, both
counterfactual policies would have implied a substantial reduction in Libor manipulation relative to
the baseline. In period (iii), the average absolute spread in the baseline scenario is approximately
21 bp, but it drops to 2 bp in the counterfactual scenario with high misreporting costs, and 1 bp
when the signaling incentive is completely eliminated. In contrast, in period (v), the equilibrium
with no signaling implies a positive average spread of 1 bp, while high misreporting costs result in
virtually no manipulation of the benchmark. In summary, transaction-based benchmarks are likely
to be much less prone to manipulation than Libor, but non-negligible manipulation may still ocurr
in periods of high uncertainty. Regulators should be particularly mindful of the risk of restoring the
signaling motive if they plan to use the data underlying the benchmark to assess individual risk.

27Duffie et al. (2013),Duffie and Stein (2015), Hou and Skeie (2016), and Coulter et al. (2017) have also discussed
the reform of interest rate benchmarks.

28With a transaction-based benchmark, the payoff function of bank i can still be captured by Equation 1. In such
case, ri,t is a summary statistic (a scalar function) of all bank i’s transactions that may be used to calculate the
benchmark rate r̃t, and si,t is the same summary statistic of bank i’s true borrowing costs (absent any manipulation
attempts). γ (si,t − ri,t)2 is the cost of manipulating transactions, and αir̃t is the gross benefit from exposure. The
equilibrium strategies, however, depend on the method used to calculate the benchmark. For a benchmark rate that
is linear on a subset of individual contributions {ri,t : i = 1, ..., N}, like the reformed Euribor, the first order condition
of bank i can be expressed in terms of the probability φi, as in 6.
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Figure 7: Spread between Libor (simulated under counterfactual scenarios) and the estimated un-
manipulated Libor
This figure shows the spread between a simulated Libor (under three different counterfactual scenarios) and the
estimated lower bound on the unmanipulated Libor. The highlighted dates are, 03/16/2008, when JPMorgan Chase
acquired Bear Stearns for less than 7% of its market value two days before; 09/15/2008, when Lehman Brothers
filed for bankruptcy protection; 12/31/2008, when the British Banking Authority changed the composition of the
Libor panel; 02/09/2009; and 12/31/2009. Data on Libor individual reports from 01/01/2009 to 02/09/2009 are not
available. On 09/24/2008, Libor is below the estimated common borrowing costs of banks in the USD Libor panel
by more than 30 bp. 95% confidence intervals (light blue dotted lines) are computed using the bootstrap.

8 Conclusion

I extend structural econometric methods from the empirical auctions literature to estimate a strate-
gic reporting model that identifies signaling and net exposures to Libor as distinct motives for
misreporting Libor, using data on banks’ Libor submissions only. The model also identifies a lower
bound on the unmanipulated Libor, defined here as the value that Libor would have had in the
absence of misreporting.

The estimated bound is above Libor during the financial crisis of 2007 - 2008 and the subsequent
sovereign debt crisis in Europe, suggesting that Libor understated interbank borrowing costs, which
is consistent with the results of previous studies. The estimation results also indicate that signaling
was the main driver of misreporting. Regulators concerned with replacing and reforming interest
rate benchmarks should pay particular attention to the signaling motive, specifically if data used
to compute these benchmarks is also used to assess individual bank risk.

Data Availability Statement

Replication package available at: https://doi.org/10.5281/zenodo.7686525
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Data by source

Bloomberg L.P.: access via university terminal subscription

Libor submissions provided by banks in the 3-month USD Libor panel from 09/03/2005 to 12/31/2010.
The Bloomberg symbols are: US2003M, US6703M, US0303M, US1403M, US1603M, US2803M,
US3403M, US5603M, US7503M, US0103M, US7103M, US1903M, US4803M, US1803M, US3303M,
USBN03M, US7603M, USSM03M, US9903M, US2303M, US2203M.

3-month USD Libor from 09/03/2005 to 12/31/2010. The Bloomberg symbol is: US0003M.
New York Funding Rate from 06/02/2008 to 12/31/2010. The Bloomberg symbol is: NYFR3M.

Board of Governors of the Federal Reserve System: Freely available online at FRED

U.S. Short-Term Interest Rates: Daily 3-Month Eurodollar Deposit Rate (DED3) 2005 – 2010
3-Month Treasury Bill Secondary Market Rate, Discount Basis (DTB3) 2005 – 2010
TED Spread (TEDRATE) 2005 – 2010

IHS Markit: access via Wharton Research Data Services (WRDS)

Credit Default Swaps Spreads for 5-year senior unsecured debt issued by banks in the USD Li-
bor panel 2005–2010. Markit RedCode: 06DABK, 0G655D, JJ4650, 189BFD, HK9FHL, 2H6677,
4G425R, 4I75AU, 4C933G, GLA86Z, 6BB62B, NP4897, NUD88R, 8B69AP, HPHB2J, DMFCCI,
Tier: SNRFOR, Ccy: EUR, DocClause: CR.
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A Proofs

A.1 Non-decreasing Best Response Correspondences

Let the best response correspondence of bank i be defined by

Γi (si) = argmax
ri∈R

E
[
αir̃ (ri, R−i) + vi (r̃ (ri, R−i)− ri)− γi (si − ri)2

]
We will show now that Γi is non-decreasing in the following sense (which is stronger than non-

decreasing in the strong set order, as defined in Athey, 2001). For all si, s′i ∈ S. with si < s′i,
max Γi (si) ≤ min Γi (s′i).

Let si ∈ Si (c), and ri = max Γi (si). By definition, for all r < ri

E
[
αir̃ (ri, R−i) + vi (r̃ (ri, R−i)− ri)− γ (si − ri)2

]
≥ E

[
αir̃ (r,R−i) + v (r̃ (r,R−i)− r)− γ (si − r)2

]
⇐⇒

(αi + vi) (E [r̃ (ri, R−i)]− E [r̃ (r,R−i)]) ≥ vi (ri − r) + 2γsi (r − ri) + γi
(
r2i − r2

)
⇐⇒

2γisi (ri − r) ≥ vi (ri − r) + γi
(
r2i − r2

)
− (αi + vi) (E [r̃ (ri, R−i)]− E [r̃ (r,R−i)])

Moreover, since γi > 0, for any s′i > si, 2γis
′
i (ri − r) > 2γisi (ri − r), then

2γis
′
i (ri − r) > vi (ri − r) + γ

(
r2i − r2

)
− (αi + v) (E [r̃ (ri, R−i)]− E [r̃ (r,R−i)])

⇐⇒

E
[
αir̃ (ri, R−i) + vi (r̃ (ri, R−i)− ri)− γi

(
s′i − ri

)2]
> E

[
αir̃ (r,R−i) + vi (r̃ (r,R−i)− r)− γi

(
s′i − r

)2]
Thus, for all s′i > si, ri yields a strictly higher payoff than any r < ri. Therefore, any element of
min Γi (s′i) is at least as large as ri, in particular max Γi (si) ≤ min Γi (s′i).

A.2 Proof of Equation (5).

We want to show that ∂Ei[r̃(ri,R−i)|c]∂ri
is equal to the probability that ri is included in the computation

of the reference rate r̃. The probability is computed from the perspective of bank i, that is, when
the quotes of all other banks are random variables with known probability distributions (conditional
on the common cost component c).

Proof. Let R(n)
−i be the n-th order statistic of the vector R−i of quotes submitted by all banks other

than i. From the perspective of bank i, R(n)
−i is a random variable with known distribution G(n)|c.

I follow the convention R
(1)
−i ≤ R

(2)
−i ≤ ... ≤ R

(N−1)
−i . Notice that, regardless of i’s quote, ri, for

all k ∈ {n+ 1, ..., n̄− 2} , R(k)
−i is included in the computation of the reference rate r̃. Moreover,

whether ri, R
(n)
−i or R(n̄−1)

−i is the other quote included, depends on their relative positions. For
instance, with probability 1−G(n)|c (ri), R

(n)
−i > ri, and in such case R(n)

−i would be included.
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Therefore, the expected value of the reference rate r̃, when i submits quote ri can be written as:

E [r̃ (ri) |c] =
1

Ñ

 n̄−2∑
k=n+1

E
[
R

(k)
−i |c

]
+ E

[
R

(n)
−i |R

(n)
−i > ri, c

] (
1−G(n)|c (ri)

)
+ri

(
G(n)|c (ri)−G(n̄−1)|c (ri)

)
+E

[
R

(n̄−1)
−i |R(n̄−1)

−i ≤ ri, c
]
G(n̄−1)|c (ri)

)
Notice that

E
[
R

(n)
−i |R

(n)
−i > ri, c

] (
1−G(n)|c (ri)

)
=

∫ r̄

ri

xg(n)|c (x) dx

where g(n)|c is the probability density function of R(n)
−i . A similar expression can be easily found for

E
[
R

(n̄−1)
−i |R(n̄−1)

−i ≤ ri, c
]
G(n̄−1)|c (ri) and thus, it follows from Leibniz integral rule that:

∂E [r̃ (ri) |c]
∂ri

=
1

Ñ

(
G(n)|c (ri)−G(n̄−1)|c (ri)

)
where G(n)|c (ri)−G(n̄−1)|c (ri) is precisely the probability that ri is included in the computation of
r̃.

A.3 Non-binding upper bound for the payoff maximization problem

Consider the maximization problem faced by bank i: max
ri∈[r,r̄]

Ui, where the payoff function can be

written as Ui = ER−i [βir̃ (ri, R−i) |c] − viri − 1
2 (si − ri)2. I will show that the upper bound r̄ can

be chosen in such a way that it is never binding. (Although the same holds for r, zero is a natural
lower bound for the set of admissible reported rates).

Clearly,

∂Ui
∂ri

= βi
∂ER−i [r̃ (ri, R−i) |c]

∂ri
− vi + si − ri

=
βi

Ñ
φi (ri,t|ct)− vi + si − ri

where φi (ri,t|ct) is the probability that ri is included in the computation of r̃, as shown above.
obviously, ∂Ui∂ri

< 0 iff βi
Ñ
φi (ri,t|ct)− vi + si < ri. Moreover, 0 ≤ φi (ri,t|ct) ≤ 1. Then βi

Ñ
φi (ri,t|ct)−

vi + si <
|βi|
Ñ
− vi + s̄i, where s̄i is the upper bound of Si (c). Therefore, ri >

|βi|
Ñ
− vi + s̄i implies

that ∂Ui
∂ri

< 0. It follows that if r̄ is larger than |βi|
Ñ
− vi + s̄i for all i ∈ N , the constraint is never

binding.
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A.4 Proof of Proposition 2

Proposition. Let c 6= 0, if the strategy of all bank j 6= i is

ρj (c+ πj ; c) = c+ ρj (πj ; 0)

Then i’s best response is ρi (c+ πi; c) = c+ ρi (πi; 0).

Proof. Consider the game with c = 0 and let qi = ρi (πi; 0). Clearly, for all q̆i ∈
[
q
i
, q̄i

]
, ui (qi, πi) ≥

ui (q̆i, πi). Then

(αi + v)E [r̃ (qi, q−i) |0]− vqi − γ (πi − qi)2 ≥ (αi + v)E [r̃ (q̆i, q−i) |0]− vq̆i − γ (πi − q̆i)2

where q−i is the vector of actions of all other players j 6= i and qj = ρj (πj ; 0). For any c 6= 0, let
rj = ρj (c+ πj ; c) then, by assumption rj = c+ qj for all j 6= i.

Intuitively, compared to the game where c = 0, when c 6= 0, from the point of view of i, the
distributions of all other banks’ quotes are the same, except for a change in a location parameter c.
Thus,

E [r̃ (q̆i + c,R−i) |c] = E [r̃ (q̆i, q−i) |0] + c

for all q̆i ∈
[
q
i
, q̄i

]
, and it follows that

(αi + v)E [r̃ (qi + c,R−i) |c]− v (qi + c)− γ (c+ πi − (qi + c))2 =

(αi + v) (E [r̃ (qi, q−i) |0] + c)− v (qi + c)− γ (πi − qi)2 ≥

(αi + v) (E [r̃ (q̆i, q−i) |0] + c)− v (q̆i + c)− γ (πi − q̆i)2

Since every r̆i ∈
[
q
i
+ c, q̄i + c

]
can be written as r̆i = q̆i+ c for some q̆i ∈

[
q
i
, q̄i

]
, it follows that for

such r̆i, ui (qi + c, c+ πi) ≥ ui (r̆i, c+ πi) and, thus, ri = qi + c is i’s best response when c 6= 0, all
other banks strategies are ρj (c+ πj ; c) = c + ρj (πj ; 0) and its cost is c + πi. That is, in the game
with c, bank i’s best response strategy is

ρi (c+ πi; c) = c+ ρi (πi; 0)

A.5 Proof of Proposition 3

Proposition. If the characteristic functions of the normalized quotes qi1,t, qi2,t and qi3,t are non-
vanishing everywhere, their distributions are identified, up to an additive constant, from the joint
distribution of (ri1,t − ri2,t, ri3,t − ri2,t).
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Proof. Notice that (10) implies

ri1,t − ri2,t = −qi2,t + qi1,t

ri3,t − ri2,t = −qi2,t + qi3,t

where qi1,t, qi2,t and qi3,t are mutually independent and, thus, these two equations satisfy the assump-
tions of Kotlarski’s Lemma. Let Ψ denote the joint characteristic function of (ri1,t − ri2,t, ri3,t − ri2,t)
and Ψ1, its partial derivative with respect to its first argument. Also, let Φqi1

, Φ−qi2 and Φqi3
denote

the characteristic functions of qi1,t, −qi2,t and qi3,t, respectively. Then, as shown in Li and Vuong
(1998),

Φ−qi2 (s) = exp

(∫ s

0

Ψ1 (0, u)

Ψ (0, u)
du− isE [qi1 ]

)
Φqi1

(s) =
Ψ (s, 0)

Φ−qi2 (s)
(26)

Φqi3
(s) =

Ψ (0, s)

Φ−qi2 (s)

Since the characteristic function of a random variable uniquely determines its distribution, it follows
that the distributions of qi1 − E [qi1 ], qi2 − E [qi1 ] and qi3 − E [qi1 ] are all identified.

A.6 Proof of Proposition 4

Proposition. Under Assumptions 2-6, the preference parameter βi is identified, for all i ∈ N , from
the distributions of the normalized quotes. Moreover, if q̃i = qi − E [qi1 ],

βi =
Med (q̃i)− E [q̃i]

φi (Med (q̃i) | − E [qi1 ])− E [φi (q̃i| − E [qi1 ])]

Proof. Notice that Equation (15) can be interpreted as the inverse equilibrium strategy of bank i, in
the game with c = −E [qi1 ] (translated by a constant). Hence, it implicitly defines the equilibrium
strategy in the interior of SI (c), the support of πi. By assumption, E [πi] is an interior point in
SI (c).

Let q∗i be the optimal quote when πi = E [πi]. Since q∗i is an interior solution, then:

q∗i − (E [qi − E [qi1 ]])− βi (φi (q∗i | − E [qi1 ])− E [φi (q∗i | − E [qi1 ])]) = E [πi] (27)

Let % (q) = q− (E [qi − E [qi1 ]])− βi (φi (q| − E [qi1 ])− E [φi (q| − E [qi1 ])])−E [πi]. Since the equi-
librium strategy is strictly increasing in SI (c)

% (q̃i) < 0 for all optimal q̃i < q∗i and % (q̃i) > 0 for all optimal q̃i > q∗i

It follows that Pq̃i {q̃i ≤ q∗i } = Pq̃i {% (q̃i) ≤ 0} = P {πi ≤ E [πi]}. Since, by assumption, P {πi ≤ E [πi]} =
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1
2 , then P {q ≤ q

∗
i } = 1

2 and hence q∗i is the median of the distribution of q̃i. Let Med (X) denote
the median of X. We just showed that Med (πi) = E [πi] implies Med (qi) = q∗i . Besides, q

∗
i satisfies

Equation (27), which uniquely identifies βi as

βi =
Med (q̃i)− E [q̃i]

φi (Med (q̃i) | − E [qi1 ])− E [φi (q̃i| − E [qi1 ])]

A.7 Variance of the estimated normalized quotes

Equation (19) can be used to obtain an estimator of V ar [qi,t], for all i ∈ N , as follows.

V ar [ri,t − r̄t] =

(
N − 1

N

)2

V ar [qi,t] +
1

N2

∑
j 6=i

V ar [qj,t] (28)

Since V ar [ri,t − r̄t] can be estimated directly from the data, (28) provides a system of linear equa-
tions that can be solved for V ar [qi,t], for all i ∈ N . Let σ̂2

qi denote the corresponding consistent
estimator of V ar [qi,t]. Also, let r̄wt =

∑
i∈N

ri,t
σ̂2
qi

/
∑

i∈N
1
σ̂2
qi

and q̄wt be similarly defined (using the
same weights). Moreover, let ξwt = q̄wt − E [q̄w]. It follows that ri,t − r̄wt = qi,t − E [q̄w]− ξwt . Then

ˆV ar [ξwt ] =
(∑

i∈N
1
σ̂2
qi

)−1
provides an estimate of V ar [ξwt ].
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