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1 Introduction

The hazard of finding a job is higher for workers who have just exited employment than

for workers who have been out of work for a long time. This reflects a combination of two

factors: structural duration dependence in the job finding rate for each individual worker,

and changes in the composition of workers at different non-employment durations due to

dynamic sorting (Lancaster, 1979). The goal of this paper is to combine an economically-

grounded and flexible model of the job finding rate for an individual worker with arbitrary

heterogeneity across workers, in order to understand the importance of these two factors.

Our economic model views the duration of non-employment spells as the outcome of a

comparison between the time-varying costs and benefits of working at each instant to the cost

of switching between employment and non-employment. In one interpretation of our model,

each worker has two options at each instant of time: working at some time-varying wage or

not working and receiving some time-varying income and utility from leisure. Due to a cost

of switching employment status, a worker starts working when the difference between the

wage and non-employment income is sufficiently large and stops working when the difference

is sufficiently small. Formally, this gives us an optimal stopping problem for each worker.

An alternative interpretation of the model has a firm with time-varying productivity which

unilaterally decides when to employ a worker who receives a fixed wage.

Under either interpretation, we allow for arbitrary cross-worker heterogeneity in all the

fundamental parameters describing these stopping problems. For example, some workers

may expect their labor market productivity to increase the longer they stay out of work

while others may expect it to fall. Some workers may have high switching costs, while others

have low ones. We maintain two key restrictions: for each worker, the evolution of a latent

variable, the net benefit from employment, follows a geometric Brownian motion; and the

decision to work is made optimally. We allow the parameters of the Brownian motion to

depend on the worker’s employment status. These assumptions imply that the duration of

a non-employment spell is given by the first passage time of a Brownian motion with drift,

a random variable with an inverse Gaussian distribution. The inverse Gaussian distribution

has two reduced-form parameters, which themselves are known functions of the fundamental

parameters in the stopping time problem. The fundamental parameters are fixed over time

for each worker, but we allow them to vary arbitrary across workers, so the reduced-form

parameters of the inverse Gaussian distribution have some unknown distribution G.

Given this environment, we present three main theoretical results. First, we discuss

which aspects of the distribution G are identified using duration data. We start by noticing

that the distribution of the duration of one non-employment spell does not identify G. We
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then proceed to develop a novel strategy for inverting the distribution of the duration of

two completed spells in order to recover G. Our main result is Theorem 1, which states

that the joint distribution of the duration of two completed non-employment spells identifies

G if we know the sign of the drift in the underlying Brownian motion. Even though this

is an infinite dimensional problem, our proof does not require any other conditions on the

underlying parameters.

The lack of identification of the sign of the Brownian motion’s drift is closely related

to the fact that for some reduced-form parameters of the inverse Gaussian distribution, a

positive fraction of non-employment spells last forever, i.e. the non-employment duration

distribution is defective; see Proposition 4 characterizing the identified set of distributions.

When the non-employment duration distribution may be defective, we show that information

on the fraction of first and second non-employment spells which are completed provides

restrictions on the set of identified distributions. Finally, we consider the consequences of

defective employment duration distributions and of censoring of all durations. These further

enlarge the set of distributions that are consistent with the data. In particular, we define the

set Gχc of distributions that can be identified taking into account both defective duration

distributions and censoring.

Second, we prove two results for mixture models, which we use to evaluate our model.

The first is an exact statistical decomposition of the mixture hazard. The mixture hazard

can be expressed as the product of “the structural hazard,” whose change is equal to the

cross sectional average change in the hazard among surviving types, and “the heterogeneity

effect,” whose change is equal to minus the cross sectional variance of the hazards among the

surviving types. The heterogeneity effect, which accounts for the effect of dynamic selection

on the level of the mixture hazard, is decreasing with duration. This result generalizes the

decomposition in Lancaster (1992, Chapter 4) from the mixed proportional hazard (MPH)

model to an arbitrary mixture model. The second result states that in the MPH model, the

mixture hazard of the second spell at duration t2 for those with first spell duration t1, is

decreasing in t1 (Proposition 5). In contrast, our model does not imply this monotonicity

property. This prediction can easily be tested in the data without estimating a full model.

Finally, we show that we can use duration data as well as information about wage dy-

namics to infer the size of the fixed cost of switching employment status. Dixit (1991) and

Abel and Eberly (1994) show that even small fixed costs give rise to a large region of inaction

(i.e. an infinite derivative of the range of inaction with respect to the cost evaluated at zero

cost), which in turn affects the duration of non-employment spells. We also show how to

invert this relationship to recover the fixed costs.

We illustrate our theoretical results by estimating the model using data from the Austrian
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social security registry from 1986 to 2007 on more than one million workers who experience

at least two non-employment spells, as well as a number of other workers who experience

only one spell. We postulate a distribution G with a finite number of types, and estimate

it using a small modification of the standard EM algorithm. We find that a few types

account for most of the workers: 3 types account for two thirds, and ten types account for

99 percent. The estimated type distribution contrasts starkly with the MPH model, where

all these hazards would be proportional to each other. While the model fit is good, we also

highlight some limitations. For example, in the data many jobs start on the first day of the

month and end on the last day in the data, while there is no scope for this in the model.

While our model is only set identified, in practice we find that the quantitative answers to

the questions we posed above are almost the same for any distribution that is in the identified

set. For example, our estimates uncover evidence of substantial heterogeneity across workers,

and hence of dynamic sorting, which we quantify using our statistical decomposition of the

mixture hazard. We find that while the mixture hazard is hump-shaped with a peak at

around 10 weeks, the structural hazard increases until about 20 weeks and then declines by

much less. The heterogeneity effect is substantial: it reduces the mixture hazard during the

first half year of non-employment by about 65 percent, and by over 90 percent during the first

two years. Although observed worker characteristics account for some of these compositional

changes, the bulk are due to characteristics that are unobserved, at least in our data set.

We compute the mixture hazard for the second spell conditional on the duration of the

first. We find clear evidence against the MPH model’s predicted monotonicity. Instead,

we find that our estimated parameters reproduce the empirical non-monotonic relationship

quite well.

We also estimate small fixed costs. For the median worker, the total cost of taking a

job and later leaving it are approximately equal to five to ten minutes of leisure time. As a

result, the median newly employed worker leaves her job if she experiences a 1.3 percent drop

in the wage. We find that not only are the fixed costs small, but so is the region of inaction.

On the other hand, we also show that a model without fixed costs could not possibly fit our

data.

Related Literature. There are a few other papers that use the first passage time of a

Brownian motion to model duration dependence. Lancaster (1972) examines whether such a

model does a good job of describing the duration of strikes in the United Kingdom. He creates

8 industry groups and observes between 54 and 225 strikes per industry group. He then

estimates the parameters of the inverse Gaussian distribution under the assumption that they

are fixed within industry group but allowed to vary arbitrarily across groups. He concludes
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that the model does a good job of describing the duration of strikes, although subsequent

research armed with better data reached a different conclusion (Newby and Winterton, 1983).

In contrast, our identification results require only two observations per worker and allow for

arbitrary heterogeneity across workers.

Whitmore (1979) assumes that the duration of an employment spell is given by the first

passage time of a Brownian motion with drift. Shimer (2008) makes a similar assumption

about the duration of an unemployment spell. Neither paper allows for heterogeneity across

workers. Buhai and Teulings (2014) propose an economic model of the duration of job

spells characterized by the first passage time of a Brownian and estimate its parameters,

allowing for a parametric distribution of observed and unobserved heterogeneity. The first

passage time model has also been adopted in medical statistics, where the latent variable is a

patient’s health and the outcome of interest is mortality (Aalen and Gjessing, 2001; Lee and

Whitmore, 2006, 2010). The bio-statistics literature has so far not introduced unobserved

individual heterogeneity into the model, nor has it considered the identification of such a

model.

De Paula (2009) studies a game with multiple players where each player’s decision to

leave a certain state is given by the first passage time of a Brownian motion with drift. The

model captures interactions between players by allowing the drift to depend on how many

other players have already left the state. De Paula (2009) shows how to use data on exit dates

to test for the presence of endogenous interactions and studies identification of the model.

He shows that the full parameter vector is not identified but parametric identification can

be achieved if parameters are allowed to be functions of observables and there is “enough

variability” in covariates. He applies it to data on desertion in the Union Army during the

American Civil War. Our approach to identification is different. Like in De Paula (2009),

the full set of fundamental parameters is not identified from data we use, but we argue that

for duration analysis we only need to know two reduced form parameters for each worker

type, and prove that the distribution of those is set identified.

The most related paper to ours is Abbring (2012). He considers a more general model

than ours, allowing that the latent net benefit from employment is spectrally negative Lévy

process, e.g. the sum of a Brownian motion with drift and a Poisson process with negative

increments. On the other hand, he assumes that workers differ only along a single dimen-

sion, the distance between the barrier for stopping and starting an employment spell. In

contrast, we allow for two dimensions of heterogeneity, and so our approach to identification

is completely different.

Finally, some recent papers analyze duration dependence using models that are identi-

fied through assumptions on the extent of unobserved heterogeneity. For example, Krueger,
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Cramer and Cho (2014) argue that observed heterogeneity is not important in accounting for

duration dependence and so conclude that unobserved heterogeneity must also be unimpor-

tant. Schmieder, von Wachter and Bender (2016) reach a similar conclusion using German

data. Similarly, DellaVigna, Lindner, Reizer and Schmieder (2017) argue that selection on

observable characteristics is muted, and hence selection on unobservables likely follows a

similar pattern. Hornstein (2012) and Ahn and Hamilton (2020) both assume there are

two types of workers with different job finding hazards at all durations and estimate the

unobserved types using single-spell data.

The remainder of the paper proceeds as follows. In Section 2, we describe our economic

model. Section 3 shows that our model generates an inverse Gaussian distribution of duration

for each worker and contains our main theoretical results on duration analysis. This section

contains our main results on identification: the case of two completed spells, the case with

defective duration distributions, and the case with censored spells. In Section 4, we propose a

multiplicative decomposition of the mixture hazard into the portion attributable to structural

duration dependence and the proportion attributable to heterogeneity. Section 5 summarizes

the Austrian social security registry data. Section 6 presents our empirical results, including

estimates of the model, the decomposition of hazards, a comparison to the MPH model, and

inference of the distribution of fixed costs. Finally, Section 7 briefly concludes.

2 Theory

2.1 Economic Model of an Individual Worker

We consider the problem of a risk-neutral, infinitely-lived worker with discount rate r who

can either be employed, s(t) = e, or non-employed, s(t) = n, at each instant in continuous

time t. The worker earns a wage ew(t) when employed and gets flow utility eb(t) when non-

employed. Both w(t) and b(t) follow correlated Brownian motions with drift. The drift and

standard deviation of each, as well as the correlation between them, may depend on the

worker’s employment status:

db(t) = µb,s(t) dt+ σb,s(t) dBb(t) and dw(t) = µw,s(t) dt+ σw,s(t) dBw(t).

Bb(t) and Bw(t) are correlated Brownian motions, and we use ρs ∈ [−1, 1] to denote the

instantaneous correlation between dw and db in state s,

E [dw(t) db(t)] = σw,s(t)σb,s(t) ρs(t) dt.
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At time 0, the worker starts in an initial state (w(0), b(0), s(0)). At any date t ≥ 0 where

the worker is non-employed, she can become employed by paying a fixed cost ψee
b(t) for a

constant ψe ≥ 0. Likewise, the worker can switch from employment to non-employment by

paying a cost ψne
b(t) for a constant ψn ≥ 0. The worker decides optimally whether to change

her employment status at date t given her information set (w(τ), b(τ), s(τ)) for τ ∈ [0, t].

Let Ẽ(w, b) and Ñ(w, b) be the value functions of an employed and non-employed worker

with log wage w and log non-employment utility b, respectively. The value functions satisfy

a standard stopping time, i.e. state-dependent stopping rule, formulation; see Grossman and

Laroque (1990) or the textbook treatment in Stokey (2008):

Ẽ(w, b) = max
τe

E
[∫ τe

0

e−rtew(t)dt+ e−rτe
(
Ñ(w(τe), b(τe))− ψne

b(τe)
)
|w(0) = w, b(0) = b

]
(1)

Ñ(w, b) = max
τn

E
[∫ τn

0

e−rteb(t)dt+ e−rτn
(
Ẽ(w(τn), b(τn))− ψee

b(τn)
)
|w(0) = w, b(0) = b

]
.

(2)

An employed worker chooses a stopping time τe at which to switch to non-employment,

described by equation (1). This will be the first τ ≥ 0 with Ẽ(w(τ), b(τ)) ≤ Ñ(w(τ), b(τ))−
ψne

b(τ). Similarly in equation (2), a non-employed worker chooses the stopping time τn at

which to change her status to employment. The expectation operators in equations (1) and

(2) are taken with respect to the law of motion for w(t) and b(t).

To ensure the value functions are finite, we impose the following parameter restrictions:

r > µw,s +
1
2
σ2
w,s and r > µb,s +

1
2
σ2
b,s, for s ∈ {e, n}. (3)

The restriction that r > µw,s +
1
2
σ2
w,s guarantees that the value of being employed (non-

employed) forever is finite. Moreover, r > µb,s +
1
2
σ2
b,s ensures that the value of being non-

employed (employed) for T periods and then switching to employment (non-employment)

forever is also finite in the limit as T converges to infinity. All four conditions hold with a

sufficiently large discount rate.

This partial equilibrium model can capture a number of important phenomena. For

example, if µw,e > µw,n, the model picks up on-the-job learning and off-the-job forgetting,

emphasized by Ljungqvist and Sargent (1998), who explain the high duration of European

unemployment using “...a search model where workers accumulate skills on the job and

lose skills during unemployment.” Similarly, differential drifts in the flow utility from non-

employment, µb,e > µb,n, may capture declining wealth or unemployment income during
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non-employment.1 Finally, we can pick up seasonal work and recalls through a particular

pattern in b and w. In an extreme example, if w − b falls deterministically while employed

and rises deterministically while unemployed, the worker will follow a deterministic cycle of

employment and non-employment.

We have so far described a model of voluntary non-employment, in the sense that a

worker optimally chooses when to work. But a simple reinterpretation of the objects in the

model turns it into a model of involuntary unemployment. In this interpretation, the wage

is eb(t), while a worker’s productivity is ew(t). If the worker is employed by a monopsonist, it

earns flow profits ew(t)−eb(t). If the worker is unemployed, the firm may hire her by paying a

fixed cost ψee
b(t), and similarly the firm must pay ψne

b(t) to fire the worker. In this case, the

Bellman equations are interpreted as the firm’s value and it is the relevant decision-maker.

Bentolila and Bertola (1990) study the effect of hiring and firing costs on employment in a

closely related model.

2.2 Dimension Reduction: The net benefit to work

Because both benefits and costs are homogeneous of degree 1 in (ew, eb), and because w and

b follow Brownian motions, the value functions satisfy the following homogeneity property:

for any pair (w, b) and any constant a,

Ẽ(w + a, b+ a) = ea Ẽ(w, b) and Ñ(w + a, b+ a) = ea Ñ(w, b).

By choosing a = −b, we get

Ẽ(w, b) = eb Ẽ(w − b, 0) ≡ ebE(w − b) and Ñ(w, b) = eb Ñ(w − b, 0) ≡ ebN(w − b),

which implicitly defines E(·) and N(·) as a function of the scalar w − b. This motivates us

to define ω(t) ≡ w(t)− b(t), the log net benefit to work. This also follows a state-contingent

Brownian motion,

dω(t) = µs(t)dt+ σs(t)dB(t),

where {B} is a standard Brownian motion defined in terms of {Bb, Bw}, and the drift and

the diffusion coefficient are given by

µs = µw,s − µb,s and σ
2
s = σ2

w,s + σ2
b,s − 2σw,s σb,s ρs.

1Our model cannot capture finite duration unemployment benefits, which lead to a sudden and pre-
dictable drop in b. This in turn would lead to a jump in the reemployment hazard, which we do not see in
our dataset.
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Using this dimension reduction in the state space, we prove in Online Appendix H that

the optimal decision of switching from employment to non-employment and vice versa is

described by thresholds
¯
ω and ω̄ such that a non-employed worker chooses to become em-

ployed if the net benefit from working is sufficiently high, ω(t) > ω̄, and an employed worker

switches to non-employment if the benefit is sufficiently low, ω(t) <
¯
ω. Employment status

stays constant for ω(t) ∈ (
¯
ω, ω̄). We characterize the thresholds

¯
ω, ω̄ in terms of parameters

of the model in the online appendix.

3 Duration Analysis

In this section, we examine the implications of this economic model for duration data. We

first argue that in our model, the non-employment duration of any worker has an inverse

Gaussian distribution with two time-invariant reduced-form parameters, α and β, which

in turn are functions of the model’s structural parameters. We then imagine a population

which has an arbitrary mixture of heterogeneous workers described by an unknown joint

distribution G(α, β). We are interested in whether we can use non-employment duration data

to identify G. If the population is such that all employment and non-employment spells have

finite duration and we observe all workers for infinitely long, we prove that G is identified

using data on the completed duration of two spells for each worker. If the non-employment

duration distribution may be defective, we show that the same data, as well as information

on the frequency of incomplete spells, partially identifies G. If the employment duration

distribution may also be defective, our approach partially identifies a weighted distribution

Gχ, where weights χ(α, β) correspond to the probability that an employment spell for a

typical (α, β) worker ends in finite time. Finally, we show how this result generalizes to the

case where we observe each worker for a finite amount of time, so the relevant data may be

censored.

3.1 Duration Distribution for an Individual Worker

We use the economic model to determine the distribution of non-employment duration for

any single worker. We assume that we observe a worker at the moment she becomes non-

employed, and so know her state is w(0) − b(0) =
¯
ω and s(0) = n. We then observe the

worker forever, as she transitions back and forth between non-employment and employment.

We let t1 ≥ 0 denote the duration of the initial non-employment spell, with t1 = ∞ denoting

a spell that doesn’t end in finite time. Assuming t1 is finite, we let t
e ≥ 0 denote the duration

of the subsequent employment spell, with te = ∞ again denoting a spell that doesn’t end
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in finite time. And finally, if t1 and te are both finite, we let t2 ≥ 0 denote the duration of

the second non-employment spell, with the analogous interpretation of t2 = ∞. One could

similarly define the duration of subsequent spells, but we will not use them in our analysis.

The structure of the model implies that, conditional on the parameters of the model,

t1 is a random variable given by the first passage time of a Brownian motion with drift.

Moreover, if t1 and te are both finite, t2 is an independent random variable with the same

distribution as t1. In particular, each has an inverse Gaussian distribution with density

function at duration t

f(t;α, β) ≡ β√
2π t3/2

e−
(αt−β)2

2t , (4)

where α ≡ µn/σn and β ≡ (ω̄ −
¯
ω)/σn (see, for example, Karatzas and Shreve (1998),

equation (5.12)). We let F (t;α, β) be the cumulative distribution function associated with

f(t;α, β). Hence, even though each worker is described by a large number of structural

parameters, only two reduced-form parameters, α and β, determine how long a worker stays

without a job. Note β is nonnegative by assumption, while α may be positive or negative.

If α is nonnegative,
∫∞
0
f(t;α, β)dt = 1, so a worker almost surely returns to work. But if

α is negative, the probability of eventually returning to work is e2αβ < 1, so the duration

distribution is defective.2 That is, a non-employed worker with α negative faces a risk of

staying non-employed forever.

The inverse Gaussian distribution is flexible, but the model still imposes some restric-

tions on behavior. Figure 1 shows the hazard h(t;α, β) ≡ f(t;α, β)/(1 − F (t;α, β)) for

different values of α and β. It reveals that for the most part, β controls the shape of the

hazard and α controls its level. Assuming β is strictly positive, the hazard always satisfies

h(0;α, β) = 0, achieves a maximum value at some finite time t which depends on both α

and β, and then declines to a long run limit of limt→∞ h(t;α, β) = α2/2 if α is positive and

0 otherwise (Chhikara and Folks, 1977). If β = 0, the hazard is initially infinite and declines

monotonically towards its long-run limit.

If α is positive, the expected duration of a completed non-employment spell is β/α and

the variance of duration is β/α3, as can be confirmed directly from the functional form in

equation (4). As the duration of a spell goes to infinity, the expected residual duration

converges to 2/α2, which may be bigger or smaller than the initial expected duration β/α.

The model is therefore consistent with both positive and negative duration dependence in

2The usual definition of an inverse Gaussian distribution imposes α ≥ 0. Whitmore (1978) appears
to be the first to recognize that the case with α < 0 may be of interest and coined the name defective
inverse Gaussian distribution to handle this case. Whitmore (1979) shows that a defective inverse Gaussian
distribution fits the duration of employment spells at one firm. In the interest of brevity, we refer to both
positive and negative values of α as an inverse Gaussian distribution.

9



0 100 200 300 400
0

0.02

0.04

duration in weeks

h
az
ar
d

small β
medium β
large β

0 100 200 300 400

duration in weeks

small α
medium α
large α

Figure 1: Hazards h(t;α, β) implied by the inverse Gaussian distribution for different values
of α > 0 and β. The left panel shows hazards for α = 0.1 and three different values of β,
4, 10, and 30. The right panel shows hazards for three different values of α, 0.10, 0.18, and
0.27. We also adjust the value of β to keep the peak of the hazard at the same duration,
which gives β = 10, 9.5, and 9.2, respectively.

the exit rate from non-employment.

Our model implies that the duration of the intervening employment spell, te, is also

governed by the first passage time of a Brownian motion with drift. Recall that a worker

becomes employed when her net benefit from working hits the upper threshold ω̄ and stops

working when it hits the lower threshold
¯
ω. The net benefit from working when employed

has a drift µe and standard deviation σe, implying that the distribution of employment spells

is given by the inverse Gaussian distribution defined in (4) but with parameters αe ≡ −µe/σe

and βe ≡ (ω̄ −
¯
ω)/σe. The negative sign in the expression for αe reflects the fact that an

employment spell ends when ω travels from the upper barrier to the lower one.

3.2 Type Distribution G

We consider an economy populated by heterogeneous workers who all face the same economic

environment except for the value of their structural parameters. An individual worker is

described by a large number of structural parameters, including her discount rate r, her

fixed costs ψe and ψn, and all the parameters governing the joint stochastic processes for

her wage and unemployment utility, both while the worker is employed and while she is

non-employed. We denote the vector of these parameters as ϑ,

ϑ ≡ (µb,e, µb,n, µw,e, µw,n, σb,e, σb,n, σw,e, σw,n, ρe, ρn, r, ψe, ψn).

10



We impose the restrictions in (3), and also assume that σn is positive. Besides these con-

straints, we allow for an arbitrary distribution of these structural parameters in the popula-

tion. Since a worker’s non-employment duration only depends on the reduced-form parame-

ters α = a(ϑ) and β = b(ϑ), we focus our analysis on the joint distribution of these parameters

among workers who ever transition from employment to non-employment, G(α, β), and we

let Z(ϑ|α, β) denote the conditional distribution of ϑ among such workers, given α = a(ϑ)

and β = b(ϑ).3 A major goal of this paper is to recover G from data on the duration of

non-employment spells.4

As is common in the literature (Honoré, 1993, for example), we start by proving iden-

tification in an ideal environment where we observe two completed non-employment spells

for all workers. More precisely, we imagine an economy that runs forever and assume that

α and αe = ae(ϑ) are both nonnegative for all workers, so the completed duration of both

non-employment and employment spells is finite. This guarantees that we can measure the

completed duration of infinitely many non-employment spells for each worker. We prove in

Section 3.4 that the distribution G is identified using two such spells for each worker. We

sequentially relax the assumptions that α and αe are nonnegative in Sections 3.5 and 3.6,

respectively, leading to a partial identification result. Finally, in Section 3.7, we relax the

assumption that the economy runs forever to show how our approach handles censored data.

3.3 Intuition for Identification

We want to use data on the duration of completed non-employment spells to recover the

type distribution G. Below we give intuition for why observing one non-employment spell

per worker is insufficient, but observing two spells helps with identification.

Consider the following two data generating processes. In the first, there is a single type

of worker (ᾱ, β̄) with ᾱ > 0, giving rise to the duration density f(t; ᾱ, β̄) in equation (4).

In the second, there are many types of workers i who share a common and large value of

αi = α > 0 but differ in their value of the other parameter βi. Recall that the expected

duration for worker i is then βi/α. Assume that βi/α has population density f(t; ᾱ, β̄) and

take the limit as α goes to infinity holding the distribution of βi/α fixed. In the limiting

economy, each worker i has a deterministic duration for their jth spell tij = βi/α but the

population duration density is, by construction, the same as with the first data generating

process. There is no way to distinguish these two data generating processes using a single

3To say anything about workers who never exit employment or workers who never work, we would have
to make some untestable assumptions about their unobserved characteristics. Instead, as is standard in the
literature, we drop these workers from our analysis.

4Whitmore (1979, Section 3.2) fits a mixture of inverse Gaussian distributions to data on employment
duration but does not discuss identification.
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non-employment spell.5

With two completed spells for each worker, however, distinguishing these two data gen-

erating processes is trivial. With the first data generating process, the duration of a worker’s

first spell tells us nothing about the duration of her second spell. In particular, the cor-

relation between the durations of the two spells is zero. With the second data generating

process, the duration of a worker’s two spells is identical and so the correlation between the

durations of the two spells is one.

This simple example suggests the result in our main theorem, that the joint distribution

of the duration of two completed spells identifies the joint distribution of (α, β) when α and

αe are non-negative.

3.4 Proof of Identification

In this section, we establish our main identification result. We maintain the assumptions

that αe ≥ 0 and time runs forever throughout the section. We initially allow α to be positive

or negative, but later in the section we introduce the additional assumption α ≥ 0 with

G-probability 1.

Let T ⊆ R+ be a set of durations with a non-empty interior. Let ϕT : T2 → R+

denote the joint density of completed durations for the subset of our sample who have two

completed non-employment spells with durations (t1, t2) ∈ T2. We make two assumptions

when deriving ϕT. First, αe ≥ 0 so that all employment spells end in finite time with

probability one. Second, time runs forever. For an arbitrary type distribution G, the joint

density of two completed non-employment durations, conditional on these durations being

in the set T2, is

ϕT(t1, t2) =

∫
f(t1;α, β)f(t2;α, β)dG(α, β)∫

T2

∫
f(t′1;α, β)f(t

′
2;α, β)dG(α, β) d(t

′
1, t

′
2)

≡ VT(G|t1, t2), (5)

where f is the density function of the inverse Gaussian distribution, defined in equation (4).

Performing this operation for all (t1, t2) ∈ T2, this defines a mapping VT which, for the

given choice of T, takes a type distribution G and returns the density of the duration of two

completed spells ϕT = VT(G). Importantly for our analysis in Section 3.5, equation (5) holds

even if we do not assume that α is nonnegative with G-probability 1. We are interested

whether we can use ϕT, which we think of as observable to the econometrician, to uniquely

5Al-Hussaini and Ahmad (1981) prove that a finite mixture of inverse Gaussian distributions with non-
negative α is identified using a single non-employment spell. Our example does not contradict this result as
it requires continuum of types. Instead, our Theorem 1 establishes that an arbitrary mixture (including a
continuum) of inverse Gaussian distributions with non-negative α is identified using two-spell data.
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recover the unknown type distribution G.6 We prove that we can do so in Theorem 1 below,

which establishes that the mapping VT is injective under the restriction that α is nonnegative.

We prove the identification result through a series of Propositions. The first shows that

the partial derivatives of VT(G) exist almost everywhere:

Proposition 1 Take any (t1, t2) ∈ T2 with t1 > 0, t2 > 0 and t1 ̸= t2. For any type

distribution G, VT(G) is infinitely many times differentiable at (t1, t2).

We prove all the results in this subsection in Appendix A. The proof verifies the conditions

under which the Leibniz formula for differentiation under the integral is valid. This requires

us to bound the derivatives in appropriate ways, which we accomplish by characterizing the

structure of the partial derivatives of the product of two inverse Gaussian densities. Our

bound uses that t1 ̸= t2, and indeed Example 1 in Online Appendix C shows that VT(G) is

not necessarily differentiable at points where t1 = t2.

For the next Proposition, we look at the conditional distribution of (α, β) among workers

whose two non-employment spells last exactly (t1, t2) periods:

dG̃(α, β|t1, t2) ≡
f(t1;α, β) f(t2;α, β) dG(α, β)∫
f(t1;α′, β′) f(t2;α′, β′) dG(α′, β′)

, (6)

where again f is the density function of the inverse Gaussian distribution, defined in equa-

tion (4). For fixed (t1, t2) ∈ R2
+, this defines a mapping W which takes a type distribution G

and returns another type distribution G̃ = W (G|t1, t2). Notably, for any t1 > 0 and t2 > 0,

this mapping is bijective, with its inverse satisfying

dG(α, β) =
dG̃(α, β|t1, t2)

f(t1;α, β) f(t2;α, β)

(∫
1

f(t1;α′, β′) f(t2;α′, β′)
dG̃(α′, β′|t1, t2)

)−1

. (7)

We prove that the function ϕT identifies all the even moments of G̃ for any t1 ̸= t2. More

precisely, the partial derivatives of ϕT at (t1, t2) all exist and they jointly identify the even

moments of G̃(α, β|t1, t2).

Proposition 2 Take any (t1, t2) ∈ T2 with t1 > 0, t2 > 0 and t1 ̸= t2, and any strictly

positive integer m. Fix a type distribution G and let ϕT = VT(G). Any moment of the

distribution G̃ = W (G|t1, t2) of the form
∫
α2iβ2jdG̃(α, β|t1, t2) for i ∈ {0, 1, . . . ,m} and

j = m − i is a known function of the partial derivatives ∂i
′+j′ϕT(t1, t2)/∂t

i′
1∂t

j′

2 for all i′ ∈
{0, 1, . . . ,m} and j′ ∈ {0, 1, . . . ,m− i′}.

6The distribution ϕT is a non-trivial function of T, but one of the strengths of our identification result
is that we prove that the distribution G is identified for any choice of T. We discuss how we choose T when
we turn to estimation in Section 5.2.
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For convenience, let E(α2iβ2j|t1, t2) ≡
∫
α2iβ2jdG̃(α, β|t1, t2). The statement of the propo-

sition suggests a recursive structure, which we follow in our proof in Appendix A. In the

first step, set m = 1. The two first partial derivatives ∂ϕT(t1, t2)/∂t1 and ∂ϕT(t1, t2)/∂t2

determine the two first even moments, E(α2|t1, t2) and E(β2|t1, t2). In the second step, set

m = 2. The three second partial derivatives and the results from first step then determine

the three second even moments, E(α4|t1, t2), E(α2β2|t1, t2), and E(β4|t1, t2). In the mth step,

the m+1 mth partial derivatives and the results from the previous steps determine the m+1

mth even moments of G̃. Our proof gives explicit functions at each of these steps. It also

establishes that all the moments of G̃ exist and are finite for any type distribution G, even

one that does not itself have any finite moments; see Example 2 in Online Appendix C.

We now seek to use the even moments of the distribution G̃ = W (G|t1, t2) to recover the

entire distribution. Doing so requires the additional assumption that α is nonnegative, for

reasons that we return to in Section 3.5:

Proposition 3 Take any (t1, t2) ∈ T2 with t1 > 0, t2 > 0 and t1 ̸= t2. Let G be any type

distribution with α nonnegative with G-probability 1. Then G̃ = W (G|t1, t2), is uniquely

identified by the set of moments
∫
α2iβ2jdG̃(α, β|t1, t2) for all (i, j) ∈ {0, 1, . . .}2.

The proof of the proposition establishes a version of the Stieljes moment problem, that the

moments
∫
α2iβ2jdG̃(α, β|t1, t2), (i, j) ∈ {0, 1, . . .}2 uniquely determine the joint distribution

of (α2, β2) conditional on completed duration (t1, t2). For this we establish that the moments

do not grow too fast when G̃ = W (G|t1, t2). If α and β are both nonnegative, we can

trivially recover G̃(α, β|t1, t2) from the joint distribution of (α2, β2) conditional on completed

duration (t1, t2). The model implies β is nonnegative, while Proposition 3 imposes that α is

nonnegative with probability 1.

Our main identification result follows immediately from Propositions 1–3:

Theorem 1 Assume that α is nonnegative with G-probability 1. The function VT is injective.

Proof of Theorem 1. Proposition 1 shows that for any G, ϕT is infinitely many times

differentiable. Proposition 2 shows that for any (t1, t2) ∈ T2, t1 ̸= t2, t1 > 0, and t2 > 0,

there is one solution for the moments of (α2, β2) conditional on durations (t1, t2), given all

the partial derivatives of ϕT at (t1, t2). Proposition 3 shows that these moments uniquely

determine the distribution function G̃(α, β|t1, t2) with the additional assumption that α ≥ 0

with G-probability 1. Finally, G = W−1(G̃|t1, t2), defined in equation (7). Thus for any ϕT,

there is at most one such G satisfying ϕT = VT(G), i.e. VT is injective.

We stress that our result does not assume any auxiliary rank or completeness conditions

(Newey and Powell, 2003; Canay, Santos and Shaikh, 2013), even though this is an infinite
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dimensional problem. These conditions instead follow from the structure of our model.

An interesting question is whether the mapping VT is bijective when α is nonnegative

with G-probability 1, so every data set ϕT can be generated by some type distribution G. In

Online Appendix D, we develop a set of non-trivial restrictions that our model imposes on

ϕT, proving that VT is not bijective. Indeed, if the data generating process is a MPH model

with some restrictions on the frailty distribution, or if it is a mixture of log-normal duration

distributions, the resulting ϕT could not be generated by our stopping time model.

Finally, we note that Theorem 1 proves VT is injective when α is always nonnegative,

regardless of the sign of the corresponding parameter when employed, αe. The sign of αe

still plays a critical role in our analysis, however, since if αe can be negative, the employment

duration distribution may be defective; and if that were the case, the joint density of the

duration of two completed non-employment spells, ϕT, would no longer satisfy equation (5).

We address this issue in Section 3.6.

3.5 Bounds for the Share of Workers with Negative Drift

We now explore what happens if we allow for the possibility that α < 0 but still assume

that αe is nonnegative, so the non-employment duration distribution may be defective, but

the employment duration distribution is not.

When α < 0, there is a positive probability that a non-employment spell never ends.

Nevertheless, the joint density of completed durations for the subset of our sample who have

two completed non-employment spells with durations (t1, t2) ∈ T2, ϕT(t1, t2), still satisfies

ϕT = VT(G), defined in equation (5), since all workers with t1 ∈ T experience a second

non-employment spell. The issue that arises when α may be positive or negative is that the

mapping ϕT = VT(G) is not injective.

To understand the failure of invertibility, observe that the functional form of the (defec-

tive) inverse Gaussian distribution in equation (4) implies

f(t;α, β)

f(t;−α, β) = e2αβ (8)

for all (α, β, t) ∈ R3
+. Proportionality of f(t;α, β) and f(t;−α, β) implies that the probability

distribution over completed durations ϕT is the same if a worker is described by reduced-form

parameters (α, β), α > 0, or if there are e4αβ times as many workers in the sample described

by reduced-form parameters (−α, β); see equation (5). The consequence is that completed

spell data can never help us recover the sign of α:

Proposition 4 Take any two distributions G1 and G2. VT(G1) = VT(G2) if and only if there
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exists functions γ1, γ2 : R2
+ → [0, 1] and a distribution G+ : R2

+ → [0, 1] such that for all

α > 0 and β ≥ 0 and i = 1, 2,

dGi(α, β) =
γi(α, β)dG

+(α, β)∫ (
γi(α′, β′) + e4α′β′(1− γi(α′, β′))

)
dG+(α′, β′)

, (9)

dGi(−α, β) =
e4αβ(1− γi(α, β))dG

+(α, β)∫ (
γi(α′, β′) + e4α′β′(1− γi(α′, β′))

)
dG+(α′, β′)

,

and for all β ≥ 0 and i = 1, 2,

dGi(0, β) =
dG+(0, β)∫ (

γi(α′, β′) + e4α′β′(1− γi(α′, β′))
)
dG+(α′, β′)

.

The proof in Appendix A establishes the “if” part by showing that when Gi is given by

equation (9), the distribution of the duration of two completed spells ϕT, defined in equa-

tion (5), does not depend on γi. The “only if” part constructs the unique γ and G+ for any

distribution G such that VT(G) = VT(G
+), proving that equation (9) must hold.

This limitation on identification could matter for economically interesting environments.

The reduced-form parameter α is negative whenever the drift in the net benefit from em-

ployment while non-employed is negative. With the reweighting in equation (9), this does

not affect the joint distribution of the duration of two completed non-employment spells,

but it does affect the fraction of spells that are completed and hence the hazard of exiting

non-employment. This insight motivates our approach to partially identifying G when α can

be negative: we use data on incomplete spells.

We proceed in two steps. First we use the distribution of the duration of two completed

non-employment spells, ϕT, to identify a candidate type distribution G+(α, β) with support

R2
+. Theorem 1 tells us that if ϕT = VT(G

+) for some such G+, then G+ is unique. Proposi-

tion 4 and equation (9) then tell us how to construct all the type distributions G such that

ϕT = VT(G), one type distribution for each function γ : R2
+ → [0, 1].

In the second step, we restrict the set of distributions G by bringing in two additional

pieces of information, which we again think of as observable data when the economy runs

forever and αe is nonnegative. The first, p1,T ∈ [0, 1], is the fraction of workers whose first

non-employment spell has completed duration t1 ∈ T. According to the model, this satisfies

p1,T =

∫
T

∫
f(t1;α, β)dG(α, β) dt1 (10)

The second, p2,T ∈ [0, 1], is the fraction whose second non-employment spell has completed
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duration t2 ∈ T conditional on t1 ∈ T. According to the model, this satisfies

p2,T =

∫
T2

∫
f(t1;α, β)f(t2;α, β)dG(α, β) d(t1, t2)∫

T

∫
f(t1;α, β)dG(α, β) dt1

. (11)

We look for distributions G that are consistent with equations (9), (10), and (11). We call

the set of such distributions G. We discuss the construction and interpretation of G at the

end of the next subsection.

3.6 Weighted Type Distribution Gχ

Now we relax the assumption that all employment spells have a finite duration, allowing

for the possibility that αe < 0 (as well as α < 0). Our model allows for an arbitrary

relationship between the reduced-form parameters (α, β) and (αe, βe), creating a new issue

for identification. For example, we cannot identify the joint distribution of (α, β) for those

workers who find a job that they never lose, since we only observe a single non-employment

spell. Nevertheless, we show how to build on our previous analysis to identify a set of

weighted distributions Gχ, still for workers who ever transition from employment to non-

employment, but now with weights χ(α, β) corresponding to the probability that a typical

employment spell ends in finite time for a worker with type (α, β).

We start by constructing the weights. For a worker with reduced-form parameters (αe, βe)

while employed, the inverse Gaussian distribution implies that a typical employment spell

ends in finite time, te <∞, with probability 1− 1αe<0

(
1− e2αeβe

)
, where 1 is the indicator

function. Now let ae(ϑ) and be(ϑ) be functions which take the vector of parameters ϑ and

return the reduced-form parameters αe and βe, respectively. Then the weight we attach to

a typical (α, β) worker is

χ(α, β) ≡ 1−
∫
1ae(ϑ)<0

(
1− e2ae(ϑ)be(ϑ)

)
dZ(ϑ|α, β), (12)

where Z(ϑ|α, β) is the conditional distribution of ϑ. This is the probability that an (α, β)

worker has an employment spell that ends in finite time. We are then able to partially

identify the weighted type distribution

dGχ(α, β) ≡
χ(α, β)dG(α, β)∫
χ(α′, β′)dG(α′, β′)

. (13)

Note that if the type while employed (ae(ϑ), be(ϑ)) is independent of the reduced-form pa-

rameters (α, β), equation (12) implies χ is constant and so Gχ = G. Otherwise Gχ puts
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more weight onto individuals who are more likely to become non-employed. While we did not

choose the weights χ for this reason, it seems natural to focus an analysis of non-employment

duration on such individuals.

Identification of Gχ proceeds in two steps, similarly to Section 3.5. In the first step,

we use ϕT(t1, t2), the density of the duration of two completed non-employment spells with

(t1, t2) ∈ T2, to identify a candidate type distribution G+
χ (α, β) with support R2

+. Our model

implies that this satisfies a generalized version of equation (5),

ϕT(t1, t2) =

∫
f(t1;α, β)f(t2;α, β)dGχ(α, β)∫

T2

∫
f(t′1;α, β)f(t

′
2;α, β)dGχ(α, β) d(t′1, t

′
2)

= VT(Gχ|t1, t2) (14)

where we recognize that a necessary condition for observing two completed non-employment

spells is that the duration of the intervening employment spell is finite, an event with prob-

ability χ(α, β) for an (α, β) worker. It follows from Theorem 1 that using data on the

distribution of the duration of two completed non-employment spells for only those workers

who have two completed non-employment spells, we can uniquely recover a candidate dis-

tribution G+
χ with support R2

+. Proposition 4 then tells us how to construct all the type

distributions Gχ such that ϕT = VT(Gχ) = VT(G
+
χ ).

In the second step, we restrict the set of distributions by using additional information.

According to the model, the fraction of workers whose first non-employment spell has com-

pleted duration t1 ∈ T under the weighted distribution Gχ is

p1,T =

∫
T

∫
f(t1;α, β)dGχ(α, β) dt1 ≡ P1,T(Gχ). (15)

When αe may be negative, we can no longer measure p1,T, since we do not know whether a

worker whose first non-employment spell lasts forever would have had an employment spell

that ended in finite time.7 However, we can observe how many workers’ first non-employment

spell lasts forever and can then bound p1,T through the restriction that the weight χ for such

workers lies between 0 and 1. This gives us p1,T ∈ [
¯
p1,T, p̄1,T].

The model also implies that the probability that a worker has two non-employment spells

with completed durations (t1, t2) ∈ T2 conditional on having one such spell and starting a

second spell (i.e. having a finite duration employment spell) is

p2,T =

∫
T2

∫
f(t1;α, β)f(t2;α, β)dGχ(α, β) d(t1, t2)∫

T

∫
f(t1;α, β)dGχ(α, β) dt1

≡ P2,T(Gχ). (16)

7We could measure p1,T satisfying equation (10) when αe may be negative; however, this tells us about
the unweighted distribution G rather than the weighted distribution Gχ which appears in equation (14).
Without auxiliary assumptions, e.g. on the relationship between (αe, βe) and (α, β), this is not useful for us.
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We can measure p2,T directly in the data using the distribution of the duration of non-

employment spells.

We look for the set of distributions

Gχ ≡
{
Gχ|VT(Gχ) = VT(G

+
χ ), P1,T(Gχ) ∈ [

¯
p1,T, p̄1,T], and P2,T(Gχ) = p2,T

}
. (17)

This set is defined for a given distribution function G+
χ , and scalars

¯
p1,T, p̄1,T, and p2,T. In

practice, we first find G+
χ and then construct Gχ for an arbitrary function γ using equa-

tion (9), which ensures that VT(Gχ) = VT(G
+
χ ). We then find the implied p1,T and p2,T from

equations (15) and (16) and check whether p1,T ∈ [
¯
p1,T, p̄1,T] and p2,T has the correct value.

3.7 Censored Data

Finally, we relax the assumption that we observe all workers forever, allowing for censored

data. We also do not restrict the sign of α or αe. We find that censoring changes the weights

χ but otherwise does not affect our analysis.

Consider a worker with parameter vector ϑ and hence type (α, β) = (a(ϑ), b(ϑ)). That

is, the uncensored duration of the worker’s jth non-employment spell tj has density f(α, β)

defined in equation (4). When we first observe a worker, they may be employed or non-

employed. We focus on the T > 0 periods after we observe the worker transitioning from

employment to non-employment and before they exit the data set. As before, we let G

denote the distribution of (α, β) among such workers. There are also some workers whom

we never observe becoming non-employed, either because they never work or never lose their

job. We set T = 0 for those workers.

Since T is finite, some employment or non-employment spell durations are censored.

We place no restrictions on the joint distribution of T and the parameter vector ϑ and let

Z(ϑ, T |α, β) denote their joint distribution conditional on α and β and on T > 0.

Next, set the observation window for complete spells to T = [0, T̄ ] for some fixed T̄ > 0.

We weight type (α, β) workers by the probability that the difference between the censoring

time T and the uncensored duration of a typical employment spell te is strictly more than

2T̄ :

χc(α, β) ≡
∫

Pr(T − te > 2T̄ |ϑ, T )dZ(ϑ, T |α, β), (18)

where te has a (possibly defective) inverse Gaussian distribution that depends on ae(ϑ) and

be(ϑ).
8 We are then able to partially identify the weighted type distribution Gχc defined as

8If we consider a sequence of economies with fixed ϑ and increasingly and unboundedly long observation
times T , χc → χ, the probability that a typical employment spell has finite duration for a type (α, β) worker.
Thus χc is a natural extension of the weights χ in Section 3.6.
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in equation (13). Note that if the type while employed (ae(ϑ), be(ϑ)) and censoring time T

are independent of the reduced-form parameters (α, β) conditional on T > 0, equation (18)

implies χc is constant and so Gχc = G. Otherwise Gχc puts more weight onto individuals

who have shorter employment spells and who stay in the sample for longer after we observe

them becoming non-employed.

Identification proceeds in two steps as in Section 3.6. In both steps, we focus on workers

with censoring time T and employment duration te satisfying T − te > 2T̄ . In the first step,

we use the joint density of two completed non-employment spells with duration shorter than

T̄ , ϕ[0,T̄ ](t1, t2), to recover a candidate distribution G+
χc , following the logic in Theorem 1. In

the second step, we use data on p1,[0,T̄ ], the fraction of the population with T −te > 2T̄ which

has completed duration t1 < T̄ , and p2,[0,T̄ ], the fraction of the population with T − te > 2T̄

and t1 ≤ T̄ which has t2 < T̄ , to set-identify distributions Gχc consistent with available data

on both complete and incomplete spells.

For any worker for whom we observe two completed non-employment spells with (t1, t2) ∈
[0, T̄ ]2, we can observe if T − te > 2T̄ . This means that we can measure ϕ[0,T̄ ](t1, t2) and

so invert equation (14) to recover Gχ+ . Similarly, we can always observe if a worker with

t1 ≤ T̄ has T − te > 2T̄ ; in this event, he must start a second non-employment spell and

we can tell whether he has t2 ∈ [0, T̄ ]. This means that we can measure p2,[0,T̄ ] and so use

equation (16) to get a restriction on the set Gχc . However, censoring does affect our ability

to observe if a worker with t1 > 2T̄ satisfies T − te > 2T̄ , either because we do not observe

any employment spell (T = t1) or because the employment spell is censored (T − te ≤ t1).

We thus bound p1,[0,T̄ ] through the restriction that the weight χ for such workers lies between

0 and 1, giving us p1,[0,T̄ ] ∈ [
¯
p1,[0,T̄ ], p̄1,[0,T̄ ]]. Thus equation (15) also gives us a restriction on

the set Gχc . Putting this together, we can use the distribution Gχ+ and the scalars
¯
p1,[0,T̄ ],

p̄1,[0,T̄ ], and p2,[0,T̄ ] to recover Gχc from equation (17).

The fact that Gχc can have multiple elements means that our model is generally partially

identified. Whether this partial identification result is useful is an empirical issue and may

depend on the question we are interested in answering.

4 Decomposition of the Hazard

Suppose we know the type distributionG. This section discusses how to use that information,

together with the known functional form of the inverse Gaussian distribution, to understand

duration dependence in the hazard of exiting non-employment. Towards that end, we propose

a multiplicative decomposition of the mixture hazard into two components, one measuring

the average hazard for a typical worker and the other measuring the impact of heterogeneity
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on the mixture hazard.

Our decomposition can be applied in any model in which we know distribution of types

and hazard conditional on type; that is, nothing in the decomposition relies on the assump-

tion of the inverse Gaussian distribution of non-employment duration. To emphasize this,

in this section (with some abuse of notation) we denote a worker type as ζ with (possibly

defective) duration distribution F (t; ζ) and duration density f(t; ζ). We also let G denote

the cumulative distribution of ζ in the newly non-employed population. In our structural

model, ζ = (α, β) and F is an inverse Gaussian distribution. Here we only impose that f is

everywhere differentiable with respect to t.

Let h(t; ζ) ≡ f(t; ζ)/(1−F (t; ζ)) denote the hazard for type ζ at duration t. With some

abuse of notation, let G(ζ; t) denote the type distribution among workers whose duration

exceeds t periods. The mixture hazard at duration t, H(t), is an average of individual

hazards weighted by their share among workers with duration t,

H(t) =

∫
f(t; ζ)dG(ζ)∫

(1− F (t; ζ))dG(ζ)
=

∫
h(t; ζ)dG(ζ; t), (19)

where the integrals are taken with respect to ζ. The second equality uses the definition of

h(t; ζ) and the fact that duration-t type distribution reflects the survival probability of each

type:

dG(ζ; t) ≡ (1− F (t; ζ))dG(ζ)∫
(1− F (t; ζ ′))dG(ζ ′)

. (20)

We propose an exact multiplicative decomposition of the mixture hazard,H(t) = Hs(t)Hh(t),

based on a Divisia index:

d logHs(t)

dt
≡
∫
ḣ(t; ζ)dG(ζ; t)

H(t)
and

d logHh(t)

dt
≡
∫
h(t; ζ)dĠ(ζ; t)

H(t)
(21)

with the normalization Hs(0) = H(0) and Hh(0) = 1. Here ‘dots’ represent time-derivatives,

i.e. ḣ(t; ζ) ≡ ∂h(t; ζ)/∂t and dĠ(ζ; t) ≡ ∂dG(ζ; t)/∂t. That this is an exact decomposition

follows immediately from time differentiating H(t) =
∫
h(t; ζ)dG(ζ; t) and dividing through

by H(t):

d logH(t)

dt
=
Ḣ(t)

H(t)
=

∫
ḣ(t; ζ)dG(ζ; t) +

∫
h(t; ζ)dĠ(ζ; t)

H(t)
=
d logHs(t)

dt
+
d logHh(t)

dt
.

We interpret Hs(t) as the contribution of structural duration dependence, since its change is

equal to the average change in the hazard of workers who are still non-employed at duration

t. If each worker had a constant hazard, this term would be constant and we would conclude
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that there is no structural duration dependence. The remaining term Hh(t) represents the

heterogeneity effect, because it captures how the mixture hazard changes due to changes in

the distribution of types at a particular duration.

The structural hazard Hs(t) can be either increasing or decreasing, but the heterogeneity

effect Hh(t) is a non-increasing function:

d logHh(t)

dt
= −

∫
(h(t; ζ)−H(t))2dG(ζ; t)

H(t)
≤ 0. (22)

See the proof in Appendix Online E. The numerator is just the cross-sectional variance of

the hazard at duration t, and so this result generalizes the fundamental theorem of natural

selection (Fisher, 1930), which states that “The rate of increase in fitness of any organism

at any time is equal to its genetic variance in fitness at that time.”9 Intuitively, types with

a higher than average hazard are always declining as a share of the population.

These results generalize equation (3.7) in Lancaster (1992, Chapter 4) beyond the MPH

model, the special case where we can write h(t; ζ) ≡ ζh̄(t) for all ζ and t. Then equation (21)

implies that the structural hazard is Hs(t) = h̄(t), as in his book. Lancaster (1992, Chapter

4) also shows in his equation (3.5) that the term we call the heterogeneity effect is always

decreasing with duration. Equation (22) generalizes that result to an arbitrary mixture

model.

5 Austrian Data

We estimate our model and decompose duration dependence using data from the Austrian

social security registry (Zweimuller, Winter-Ebmer, Lalive, Kuhn, Wuellrich, Ruf and Buchi,

2009). The data set covers the universe of private sector workers over the years 1986–2007.

It contains information on workers’ employment, registered unemployment, maternity leave,

and retirement, with the exact begin and end date of each spell.10 Online Appendix J

discusses relevant properties of the Austrian labor market in more detail.

5.1 Definition of Spell Duration

Our model features two labor market states, employment and non-employment, while the

data have some other states, including maternity leave, registered unemployment, marginal

jobs, out of the labor force, and retirement. We first explain how we map those states into

9We are grateful to Jörgen Weibull for pointing out this connection to us.
10We have data available back to 1972, but can only measure registered unemployment after 1986.
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our two states. To start, we truncate the worker’s labor market history to focus only on

the time when she is at least 25 years old and less than 60 years old. The age restrictions

mitigate issues related to schooling and retirement. We then define an employment spell to

be the time spent working in a non-marginal job in a private sector firm. Next, we drop dates

with employment, maternity leave, or retirement to get spells when the worker is potentially

non-employed. If the worker is registered as unemployed for at least one day during such

a spell, we call it a non-employment spell. Otherwise, we drop the spell.11 This gives us

non-overlapping spells of employment and non-employment with some breaks in between.

We use both complete and incomplete spell data. A non-employment spell starts when

a worker transitions from employment to non-employment and is complete if it ends with

worker starting another employment spell. Otherwise it is incomplete. We similarly measure

the duration of each complete or incomplete employment spell. Although in principle we

could measure non-employment duration in days, disproportionately many jobs start on

Mondays and end on Fridays, and so we focus on weekly data.12

Now consider a segment of the worker’s history consisting of alternating non-employment

and employment spells, with two segments separated by a period that we have labeled as

neither employment nor as non-employment, e.g. by a maternity leave. For each segment, we

compute the censoring time as the number of weeks from the worker’s first transition from

employment to non-employment until the end of the segment. If the worker never makes

such a transition during that segment, the censoring time is zero. We then focus our analysis

for each worker on the segment with the longest censoring time, and denote the censoring

time as T .

5.2 Sample Selection and Estimation

We estimate our model in two steps, following our identification proof. In the first step,

we use the joint distribution of two completed non-employment spells to estimate G+
χc , in

line with the identification result established in Theorem 1. The weights χc are defined

in equation (18) and the weighted distribution is defined in equation (13). We obtain the

estimate Ĝ+
χc using the Expectation-Maximization (EM) algorithm,13 taking the distribution

11If a worker spends less than two months between jobs and is never registered as unemployed, on
maternity leave, or retired during those intervening days, we consider that to be part of an employment
spell. This allows us to account for job-to-job transitions where, for example, one job ends on Friday and
the new job starts on Monday.

12We measure spells in calendar weeks. A calendar week starts on Monday and ends on Sunday. If a
worker starts and ends a spell in the same calendar week, we code it as duration of 0 weeks. Duration of 1
week means that the spell ended in the calendar week following the calendar week it has started, and so on.

13The EM algorithm is commonly used for estimating mixture models, see for example Heckman and
Singer (1984) or Lindsay (1995). We modify the usual EM algorithm to our setting. In particular, we use
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to be discrete with weight on a finite number K of positive-valued pairs (α, β), where K

is determined by the Akaike Information Criterion. In the second step, we use data on

incomplete spells to bound the distribution of workers with α < 0, estimating the set of

admissible distributions Ĝχc . Details of estimation, including the procedure for choosing the

number of types, are in Online Appendix M.

We choose T̄ = 104 weeks and so our estimates weight worker i by the probability that

T i− te,i > 208, where T i is the censoring time and te,i is the duration of the first employment

spell; see equation (18).

Appendix B shows that the workers for whom we cannot tell whether T i − te,i > 208

create a bound on the size of the population described by the estimated distribution Ĝχc ,

between 959,623 and 1,124,833 workers, out of a sample of 1,543,609 workers with T i > 208.

Most of the workers we lose from the sample had one non-employment spell with ti1 ≤ 104,

returned to work, and never lost their job again.

The definition of χc in equation (18) clarifies the tradeoff in our choice of T̄ . If we set

a larger value, we have more variation in the duration of completed spells, but a smaller

fraction of our population has T i − te,i > 2T̄ .14 In Online Appendix K we show that our

results are robust to setting T̄ = 260.

5.3 Description of Completed Spell Data

There are 783,810 individuals whose first two non-employment spells are completed in less

than 104 weeks. For such workers, the average duration of a non-employment spell is 19

weeks, and the average employment duration between these two spells is 71 weeks. Figure

2 depicts the marginal densities of the duration of the first two completed non-employment

spells for these workers. The densities are very similar, rising sharply during the first five

weeks, hovering near 4.5 percent for the next seven weeks, and then gradually starting to

decline. First spells last two weeks longer than second spells on average, a difference we

suppress in our analysis.

The correlation between the duration of the first two spells is 0.24 for these workers. As

we discussed in Section 3.3, this correlation is informative about the extent of heterogeneity,

since a mixture model with no heterogeneity produces zero correlation, while a model with a

degenerate duration for each worker produces a correlation of one. In the Online Appendix,

the likelihood of two spells for each type, and we condition on these two spells being in the set T2 as in
equation (14).

14Additionally, at short durations, expiration of unemployment benefits at 20, 30, 39, and 52 weeks may
influence the transition rate from non-employment to employment, which would mean that our model would
be misspecified around those durations. We stress that we do not observe unusual spikes at these durations
in our data; see Figure 2.
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Figure 2: Density of non-employment spell duration. The figures show the density of the
duration of the first and second spell in our sample of workers with two completed spells, both
with duration less than T̄ = 104 weeks, and with enough time in the sample, T i − te,i > 2T̄ ,
as discussed in the text. The two panels show the same data, but the right hand panel has
a log scale.

we show additional aspects of the joint distribution. Figure 9 depicts the joint density of the

duration of the first two spells, while Figure 10 shows the marginal density of the duration

of the second non-employment spell conditional on the duration of the first non-employment

spell. Figure 7 shows the hazard of the second spell conditional on the duration of the

first spell. We observe that the hazard of workers with a short first spell peaks at a shorter

duration than the hazard of workers with a longer first spell, consistent with different workers

having different shaped hazards. This is something we will find in our estimated model.

6 Results

6.1 Estimation of G+
χc

We start by estimating the type distribution under the assumption that α is nonnegative,

calling our estimate Ĝ+
χc . Our parameter estimate places a positive weight on K = 22

different types (α, β). Figure 3 shows the weekly hazard for the ten types with the highest

shares in Ĝ+
χc , accounting for 99 percent of the population. The figure shows that we have

uncovered a lot of heterogeneity, with the shape of hazards differing substantially across

types. Compare, for example, the three most common types, depicted in the left panel.

The most common type (α = 0.205, β = 3.638) has a higher hazard than the other two
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Figure 3: Hazards h(t;α, β) of the three types with the highest share in Ĝ+ (left panel) and
next seven highest shares (right panel); numbers indicate the share of each type. Together
these account for 99 percent of workers in Ĝ+

χc .

at intermediate durations. The second most common type (α = 0.264, β = 8.746) has the

highest hazard at durations exceeding 33 weeks. The third most common type (α = 0.132,

β = 1.441) has a very high hazard at short durations but has the lowest of the three hazards

after 23 weeks. Thus workers who are likely to find a job at short durations may be unlikely

to find one at long durations if they were unsuccessful, while other workers predominately

find a job at longer durations. The right panel depicts the next seven most common types.

Many of these have a low hazard initially that then suddenly jumps up, resulting in little

uncertainty about the duration of their non-employment spells. For example, the standard

deviation of log duration is only 0.14 for the type with the highest hazard. Figure 3 contrasts

with the MPH model, a common specification in the literature, where all these hazards would

be proportional to each other.

Table 1 summarizes our estimates. We report the mean, minimum, and standard devia-

tion of α and β, as well as the drift and standard deviation of the net benefit from employment

relative to the width of the inaction region, µn/(ω̄ − ω) = α/β and σn/(ω̄ − ω) = 1/β. All

these parameters are measured on a weekly time scale. Our estimates uncover a consider-

able amount of heterogeneity. For example the cross-sectional standard deviation of α and

β are of the same order as their corresponding cross-sectional means. Moreover, α and β are

positively correlated in the cross-section, with correlation 0.823.

The last three rows of Table 1 show other moments. Recall that for positive α, the

expected duration of a completed non-employment spell is β/α. In the data, the mean non-
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mean st. dev min
α 0.435 0.495 0.132
β 7.888 8.953 1.441

µn/(ω̄ − ω) 0.060 0.023 0.015
σn/(ω̄ − ω) 0.235 0.163 0.013

β/α 20.069 10.360 9.010
2/α2 39.265 28.750 0.314
(β/α)3 17,194 45,391 732

Table 1: Summary statistics for Ĝ+
χc . Note that all parameters are measured in weekly time

units. See the text for the interpretation of the different moments.

employment duration among workers with two completed spells shorter than 104 weeks is 19

weeks, which is in line with mean of expected duration of estimated types. For α > 0, 2/α2

is the expected residual duration for a worker with a long current non-employment duration.

Our estimates indicate that the expected duration of an “average” worker at the beginning

of the non-employment spell is 20 weeks (mean of β/α), while the expected duration of

such worker doubles to 39 weeks if she stays non-employed for a long time (mean of 2/α2).

Since expected residual duration increases with the current non-employment duration for an

“average” worker, we expect that structural duration dependence will be important.

The last row of Table 1 shows the distribution of (β/α)3, an object which plays a role

in estimating fixed costs of switching from non-employment to employment. We describe in

detail how we estimate these costs in Section 6.6.

The smooth red line in Figure 4 shows the fitted marginal distribution of the duration of

a non-employment spell conditional on completed duration t ∈ [0, 104]. The model matches

the initial increase in the density during the first ten weeks, as well as the gradual decline

the subsequent two years. We miss the distribution at long durations above 80 weeks,

where there are very few observations, as well as the high-frequency wiggles in the duration

distribution.15

Finally, we do a good job of matching the joint density of the duration of the first two

spells. Let ϕ̂T ≡ VT(Ĝ
+
χc) be the model-implied distribution of two completed spells shorter

than 104 weeks, while ϕT is what we measure. Let

F(ϕT, ϕ̂T) ≡ 1− var
(
ϕT − ϕ̂T

)
var(ϕT)

measure the goodness of fit. We find that our model explains 95.1 percent of variation in

15The confidence interval for the estimated distribution is very tight, and so we do not show it here. We
plot confidence interval once we turn to the decomposition of the hazard.
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Figure 4: The blue line shows the marginal distribution of the duration of a non-employment
spell for the sample of workers with two completed spells, both with duration less than
T̄ = 104 weeks, and with enough time in the sample, T i ≥ te,i + 2T̄ , i.e. the average of the
two lines in Figure 2. The red line shows the corresponding distribution from the model.
The two panels show the same data, but the right hand panel has a log scale.

the joint density and we are thus confident that our model provides a useful tool to analyze

the data. Part of the remaining noise has to do with the fact that months play a significant

role in the data, but not in our model. Additionally, ϕT has randomness coming from the

fact that the data set is finite.

6.2 Estimation of the Set Gχc

In the second step, we use data on incomplete spells to estimate the set Gχc defined in

equation (17), calling our estimate Ĝχc . We first check whether Ĝ+
χc ∈ Ĝχc . Using the

notation from equations (15) and (16), we find that P1,T(Ĝ
+
χc) = 0.99 and P2,T(Ĝ

+
χc) = 0.99,

while in the data p̂1,T ∈ [0.76, 0.89] and p̂2,T = 0.92. That is, spells lasting longer than 104

weeks are far more common in the data than in the model where all workers have a positive

drift in the net benefit to work while non-employed. We hence reject that model, Ĝ+
χc /∈ Ĝχc .

We then look at distributions Ĝχc where some workers have α < 0, estimating Ĝχc using

the numerical procedure described in Online Appendix M.6. We find that between 31.2

and 35.6 percent of workers have α < 0, where the interval reflects our partial identification

result. Allowing for workers with a defective non-employment duration distribution is critical

to our hazard decomposition, which we turn to next.
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6.3 Hazard Decomposition

We now use our estimated set of type distributions to evaluate the importance of hetero-

geneity in shaping the mixture hazard. We present our results for all distributions in the

identified set Ĝχc . Take a particular distribution function Ĝχc ∈ Ĝχc . Since the hazard for

each type (α, β) is known from the functional form of the inverse Gaussian distribution, we

can construct the mixture hazard Ĥ using equation (19) and find the structural hazard Ĥs

and the heterogeneity effect Ĥh by integrating equation (21). We do this decomposition for

all such distributions Ĝχc ∈ Ĝχc , which gives us a region for Ĥ(t), Ĥs(t), and Ĥh(t) for each

t. We plot these as shaded regions in Figure 5.16

The purple region in the left panel of Figure 5 shows the set of estimated mixture hazards

Ĥ(t). The mixture hazard peaks at between 4.5 to 5.0 percent after 9.5 weeks, declines to

between 0.8 to 1.0 percent at a year’s duration and to between 0.1 and 0.2 percent at two

years’ duration. In contrast, the blue region shows the corresponding structural hazard

Ĥs(t). This increases for about 19 weeks, peaking at between 7.0 and 7.7 percent. It then

falls to between 3.9 and 4.6 percent at a year’s duration and further declines to between

1.4 and 1.7 percent at two years’ duration. The non-employment duration of an individual

worker thus has a significant effect on her future prospects for finding a job, but less than the

mixture hazard indicates. After two years of non-employment, the structural hazard rate is

less than a quarter of what it was at the peak.

The ratio of the structural and mixture hazards, Ĥh(t) ≡ Ĥ(t)/Ĥs(t), is the heterogeneity

effect, shown in the right panel of Figure 5. Recall from equation (22) that the heterogeneity

effect is necessarily decreasing in duration, since high hazard workers always find jobs faster

than those with low hazards. We find strong evidence of this channel. The heterogeneity

effect initially declines sharply, and after half a year of non-employment it is only between 34

to 35 percent of its initial value. Sorting continues at a slower, yet still high, rate thereafter.

Even after a year of non-employment, the group of workers is still heterogenous and the

heterogeneity effect deteriorates further. After two years, the heterogeneity effect is only 8

to 9 percent as high as at the start of a spell.

The choice of the type distribution from the identified set Ĝχc affects the hazard decom-

position for two reasons. First, the mixture hazard directly depends on the sign of α. The

16The dotted lines in Figure 5 show bootstrapped 95 percent confidence intervals. See Online Appendix N
for details on their construction. Due to non-negativity constraints on the parameters, the bootstrap is not
guaranteed to give valid confidence interval; see Andrews (2000) and Fang and Santos (2018). Our under-
standing of the literature is that there is no generally-accepted, computationally-feasible way of constructing
valid confidence interval that can be applied to our setting. The applied literature proceeds to use bootstrap
in these settings, for example Nevo, Turner and Williams (2016), and we follow that literature. We have also
tried two other methods, subsampling and parametric bootstrap, and found a narrow confidence interval in
all cases.
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Figure 5: Hazard decomposition under distributions in Ĝχc . The purple region in the left

figure shows the mixture hazard Ĥ(t). The blue region in the left figure shows the structural
hazard Ĥs(t). The ratio of them is the heterogeneity effect, plotted as the red region in the
right figure. The dotted lines show bootstrapped 95% confidence interval.

mixture hazard for a given α > 0 is higher than for −α < 0, and only the latter converges

to zero at long durations. Second, the weight we attribute to a type (|α|, β) depends on the

sign of α. The structural hazard thus tends to be lower for distributions which have a higher

share of workers with negative α. In general, there is no reason to think that one distribution

will attribute a bigger role to heterogeneity than another. Despite this, we find that there is

no economically interesting differences in the hazard decomposition across elements of the

identified set Ĝχc for our estimated model.

6.4 Hazard Decomposition with Observables

Our results indicate that heterogeneity explains an important part of the decline in the

job finding probability during the first year of non-employment. We further investigate

whether some of this heterogeneity can be attributed to observable characteristics. In On-

line Appendix G.1, we propose a within-between decomposition of the heterogeneity effect,

Hh(t) = Hb(t)Hw(t). The between component Hb(t) captures changes in the shares of

workers with different observable characteristics and hazards; and the within component

Hw(t) captures the average change in the hazard for workers with different observable char-

acteristics, i.e. it is a weighted average of Hw
k (t), the hazard for workers with observable

characteristic k at duration t.
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Figure 6: Decomposition of Ĥh(t) (red line) with observable characteristics. The green lines
show the between-group heterogeneity effect, Ĥb(t), while other lines show the heterogeneity
effect within a group of workers with observable characteristic k, Ĥw

k (t). The solid lines show
the average of the upper and lower bound of the region, depicted in light colors. The left
panel creates groups based on gender, the right panel based on probability of being recalled
to the same employer after the first non-employment spell.

In Figure 6, we present hazard decompositions conditional on two different characteristics,

gender and probability of being recalled. See Online Appendix G.2 for other characteristics.

We again show results for the identified set Ĝχc . To make figures legible, we plot the mean

value of each component in the decomposition and show the corresponding region in light

colors. We break the within component into that for each observable characteristic, Ĥw
k (t),

as well as the between component, Ĥb(t).17

The left panel in Figure 6 shows the within heterogeneity effect Ĥw
k (t) for men and women,

the between heterogeneity effect Ĥb(t), as well as the total heterogeneity effect, Ĥh(t). The

lines for men and women are very similar, suggesting that there is a similar amount of

heterogeneity within each group of workers. Moreover, between-group heterogeneity Ĥb(t)

is essentially constant at 1, suggesting that gender itself does not contribute to dynamic

sorting.

The right panel distinguishes workers based on their probability of being recalled back to

17For each worker with realized duration (t1, t2), we use the distribution Ĝχc ∈ Ĝχc and the model to

construct the posterior distribution of (α, β), say G̃, from equation (6). The type-contingent distribution
Ĝk is then the average of these posterior distributions among all workers with characteristic k. This ensures
that the decomposition is consistent with the aggregate data.
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the same employer.18 We estimate the probability of being recalled after a non-employment

spell, p̂rec, as a function of gender, industry dummies, regional dummies, and calendar month

dummies for the start of the non-employment spell using a logit specification.19 We then

create three groups based on the predicted recall probability: workers with p̂rec ≤
¯
p, workers

with
¯
p < p̂rec ≤ p̄, and workers with p̂rec > p̄. In the text, we set the thresholds at

¯
p = 0.25

and p̄ = 0.75, but show results for other thresholds in Online Appendix G.2.

We observe some differences across groups, indicating that the distribution of unobserv-

able characteristics among workers with a high probability of being recalled is different than

among those who are unlikely to be recalled. The heterogeneity effect is stronger among

those likely to be recalled, especially in the first 25 weeks of non-employment, possibly re-

flecting the fact that this group disproportionately consists of seasonal workers with different

layoff durations. Another explanation is that an employer knows the quality of workers who

are (temporarily) displaced and recalls back workers with the highest quality first. We fur-

ther observe that there is substantial heterogeneity even among workers who are unlikely

to be recalled. After one year of non-employment, the change in the heterogeneity effect is

similar in all these groups. Between-group heterogeneity again does not contribute to the

heterogeneity effect.

The results for other observable characteristics presented in Online Appendix G.2 send a

similar message. We do not find evidence of dynamic selection based on observable charac-

teristics. This is in line with the conclusion of other studies, such as Krueger, Cramer and

Cho (2014), Schmieder, von Wachter and Bender (2016), and DellaVigna, Lindner, Reizer

and Schmieder (2017). On the other hand, we argue that dynamic sorting based on un-

observable characteristics is very important for the shape of the mixture hazard. Another

conclusion we draw is that dynamic sorting on unobservables appears to be similar condi-

tional on most observable characteristics. Two notable exceptions to this are workers with

a high probability of being recalled to the same employer and workers older than 55 (see

Figure 11).

6.5 Comparison to the Mixed Proportional Hazard Model

A large literature assumes a MPH structure, i.e. that individual hazards have the form

h(t; ζ) = ζh̄(t), where ζ is a fixed worker characteristic and h̄(t) is the unknown baseline

hazard of a spell ending at duration t. The parameter ζ, which may be unobserved, captures

heterogeneity, while the baseline hazard h̄(t) is assumed to be identical across workers.

18We thank a referee for suggesting that we use the predicted probability of being recalled to classify
workers, rather than the actual realization of returning back to the employer.

19Estimating probit instead of logit does not make any difference.
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Lancaster (1992) analyzes the MPH model in detail. For a discussion of identification and

estimation using multi-spell data, see Honoré (1993), Horowitz and Lee (2004) Alvarez,

Borovičková and Shimer (2021).

While the MPH model is a convenient statistical representation of the data, this specifica-

tion is restrictive in the sense that it has testable implications. In particular, let H2(t2|[
¯
t1, t̄1])

denote the mixture hazard during the second spell at duration t2 for all workers whose first

spell ends during the interval [
¯
t1, t̄1]. This is monotonic in first spell duration:

Proposition 5 Consider a large population of individuals described by the MPH model.

Take two intervals [
¯
t1, t̄1] and [

¯
t′1, t̄

′
1] with ¯

t1 ≥
¯
t′1 and t̄1 ≥ t̄′1, at least one of which is strict.

For fixed t2, H2(t2|[
¯
t1, t̄1]) < H2(t2|(

¯
t′1, t̄

′
1]).

The proof is in Online Appendix L. First we prove that, due to dynamic selection, the

distribution of ζ among workers with a shorter t1 first order stochastically dominates the

distribution among workers with a longer t1. We then prove that this implies the desired

property for the mixture hazard during the second spell. Intuitively, this conditional hazard

rate dominance is a consequence of the proportionality of hazards, which in particular implies

that all hazards peak at the same duration.

This condition can be tested in the data. We illustrate this with four non-overlapping

intervals for the duration of the first spell, 0–4 weeks, 10–14 weeks, 20–24 weeks, 35–39

weeks, and plot the mixture hazard for the second spell for each interval in the left panel of

Figure 7. We see a clear violation of monotonicity. For example, the hazard for the second

spell for those who first spell lasts 10–14 weeks exceeds the hazard for the second spell for

those whose first spell lasts 0–4 weeks at second spell durations 10–25 weeks. The right

panel of Figure 7 shows that our estimated model captures the non-monotone conditional

hazards, which is perhaps not surprising in light of the fact that our estimated model is very

different from the proportional hazard structure; see Figure 3.

6.6 Estimated Switching Costs

In Online Appendix H.5, we prove that knowledge of α and β, together with four other

parameters of the model, pins down the magnitude of the fixed costs of switching employment

status. Here we use the estimated set Ĝχc as well as other parameter values of the model to

find the implied distribution of the fixed costs in the population. For plausible parameter

values, the implied fixed costs are small. Given that, our strategy is to choose parameters

to make the fixed costs as large as possible while still staying within a range that can be

supported empirically.
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Figure 7: Mixture hazard for the second spell conditional on the duration of the first spell.
The left panel shows the conditional hazard in the data for different values of the duration of
the first spell. The right panel shows the conditional hazard rates under distributions Ĝχc ,
for the same intervals of t1 as in the left panel.

We assume that utility from non-employment is constant and equal to 1, i.e. b(t) = 0 for

all t. Rewriting equation (O.37) in terms of α and β, we get an expression for the sum of

fixed costs without reference to ω̄ −
¯
ω or σ2

w,n:

ψe + ψn ≈ (µw,e +
√
µ2
w,e + 2rσ2

w,e)(−α +
√
α2 + 2r)β3µ2

w,n

12 r α2 σ2
w,e

. (23)

To back out the magnitude of switching costs, we need to choose values for parameters µw,n,

µw,e, σw,e, and r.

Equation (23) implies that for given value of α and β, higher µw,e and |µw,n| increase the
implied fixed costs, while higher σw,e and r reduce the implied fixed cost. We keep that in

mind and calibrate these parameters to find an upper bound on the fixed costs. First, we

set the drift in employed workers’ wages at µw,e = 0.01 at an annual frequency. Estimates of

the average wage growth of employed workers are often higher than one percent, but this is

for workers who stay employed, a selected sample. The parameter µw,e governs wage growth

for all workers without selection, and thus we view µw,e = 0.01 as a large number. We set

the standard deviation of log wages at σw,e = 0.05, again at an annual frequency. This is

lower than typical estimates in the literature, which are closer to ten percent.

We cannot observe the drift of latent wages when non-employed, µw,n, but we can infer

its value relative to µw,e from the duration of completed employment and non-employment
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Figure 8: Distribution of estimated fixed costs and the width of inaction region. Fixed costs
are expressed in units of annual wages, the width of inaction region is in log differences of
wages.

spells. The expected duration of completed employment and non-employment spells are

(ω̄ −
¯
ω)/|µw,e| and (ω̄ −

¯
ω)/|µw,n|, respectively, and thus |µw,n|/|µw,e| determines their rela-

tive expected duration. In our sample, the average duration of completed non-employment

spells is 19.0 weeks, while the average duration of completed employment spells is 71 weeks,

implying that |µw,n| = 3.7|µw,e|.
Finally, we choose a low value for r. Since workers in the model are infinitely lived, we

think of this as the sum of workers’ discount rate and their death probability. A lower bound

on this is 0.02, consistent with no discounting and a fifty year working lifetime.

Given this calibration, we estimate the distribution of fixed costs under type distributions

in Ĝχc . The left panel of Figure 8 shows the region for the cumulative distribution function

of fixed costs. Since we choose the parameter values to make fixed costs as high as possible,

we again focus on the upper bound of the fixed costs distribution. There, the median value

of the fixed costs are only 0.004–0.010 percent of the annual non-employment flow value, or

about 4.8–10 minutes, assuming a 2,000 hours of work per year. The reported intervals are

due to partial identification. The costs vary across types, ranging from 1.2–2.4 minutes in

the bottom decile to 4.5–19.2 hours of time in the top decile. Silva and Toledo (2009), Table

1, row (6), report still higher costs, about 13 hours per new hire. Thus, our median costs

are an order of magnitude lower.

To understand which moments of the estimated distribution drive the fixed costs distri-
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bution, it is useful to approximate equation (23) for a very small r. We get

ψe + ψn ∼


µw,e µ2

w,n

6σ2
w,e

β3

|α|3 if α > 0

µw,e µ2
w,n

3σ2
w,e

β3

|α|3
α2

r
if α < 0

(24)

where ∼ means that the ratio of the two functions converges to one as r converges to 0.

Thus, for α > 0, the distribution of (β/α)3 drives the results, while changes in the value of

the parameters µw,e, µw,n, σw,e, and r affect costs only proportionally.

Even though the magnitudes are very small, strictly positive switching costs are important

for our results. If switching cost were zero for someone, their region of inaction would be

degenerate. As the switching costs converge to zero we prove in Online Appendix I that the

mean duration of spells in the interval [1, 104] cannot exceed
√
104 ≈ 10.2 weeks. In the

data, we find that the mean duration of these spells is 19 weeks, which requires that there

be some switching cost.

Previous work by Mankiw (1985), Dixit (1991), Abel and Eberly (1994), and others has

shown that even small fixed costs can generate large regions of inaction. To see the size of

the region of inaction in our model, recall that α = µw,n/σw,n and β = (ω̄ −
¯
ω)/σw,n, and

hence ω̄ −
¯
ω = (β/|α|)|µw,n|. This formula is intuitive: the distance between the barriers of

the inaction region is the product of time (expected non-employment duration β/|α|) and

velocity (drift of the underlying Brownian motion |µw,n|). The right panel of Figure 8 shows

the distribution of the width of inaction region for distributions in Ĝχc . The mean width

is 0.014–0.015, and the median is 0.013. That is, the median worker who has just started

working will quit if she experiences a 1.3 percent decline in her wage, holding fixed the value

of non-employment. A similar wage increase will induce her to return to work.

We are unaware of other papers that study the cost of switching between employment

and non-employment at the level of an individual worker. In other areas, empirical results

on the size of fixed costs are mixed. Cooper and Haltiwanger (2006) find a large fixed cost

of capital adjustment, around 4 percent of the average plant-level capital stock. Nakamura

and Steinsson (2010) estimate a multisector model of menu costs and find that the cost of

adjusting prices is less than 1 percent of firms’ annual revenue. In a model of house selling,

Merlo, Ortalo-Magné and Rust (2015) find a very small fixed cost of changing the listing

price of a house, around 0.01 percent of the house value.
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7 Conclusion

In this paper we propose a model where optimal behaviour gives rise to infrequent switches

between employment and non-employment. We allow for an unrestricted distribution of the

fundamental parameters for each worker and discuss how to use duration data to recover the

distribution of related reduced-form parameters.

On the empirical side, we estimate substantial heterogeneity in the job finding hazard

in Austria, as summarized by our decomposition of the mixture hazard rate. Some workers

typically take a long time to find a job, but face little risk of permanent joblessness. Others

typically find a job quickly, but when they do not, they face a heightened risk of never re-

turning to work. This heterogeneity is important for the impact of unemployment benefits

on unemployment duration, as well as for the distributional impact of the unemployment

benefit system. For example, Shimer and Werning (2006) show that how we model hetero-

geneity and structural duration dependence affects optimal unemployment insurance, e.g.

whether unemployment benefits should increase or decrease during an unemployment spell.

On the theoretical side, we have concentrated on identification of such model, and on

its characterization and comparisons with other duration models. We leave for future work

the development of estimation and inference with a continuum of types, something that our

identification result permits. A second topic for future research is to extend the model,

and the identification argument, to allow for additional realistic features such as aggregate

fluctuations, finite duration unemployment benefits, and time varying individual parameters.

8 Data Availability

The replication package is available at https://doi.org/10.5281/zenodo.8370851.
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Appendix

A Proof of Identification

We start by proving a preliminary lemma that describes the structure of the partial deriva-

tives of the product of two inverse Gaussian distributions.

Lemma 1 Let m be a nonnegative integer and i = 0, . . . ,m. The partial derivative of the

product of two inverse Gaussian distributions at (t1, t2) is:

∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

= f(t1;α, β) f(t2;α, β)

(
r+s≤m∑
r,s=0

κr,s(t1, t2; i,m− i)α2rβ2s

)
(25)

where κr,s(t1, t2; i,m− i) are polynomials functions of (t1, t2),

κr,s(t1, t2; i,m− i) =
2i∑

k=0

2(m−i)∑
ℓ=0

θk,ℓ,r,s(i,m− i)t−k
1 t−ℓ

2 , (26)

and the coefficients θk,ℓ,r,s(i,m− i) are independent of t1, t2, α, and β.

Proof of Lemma 1. The lemma holds trivially when m = i = 0, with κ0,0(t1, t2, 0, 0) = 1.

We now proceed by induction. Assume equation (25) holds for some m ≥ 0 and all i ∈
{0, . . . ,m}. We first prove that it holds for m+1 and all i+1 ∈ {1, . . . ,m+1}, then verify

that it also holds for i = 0. We start by differentiating the key equation:

∂m+1
(
f(t1;α, β) f(t2;α, β)

)
∂ti+1

1 ∂tm−i
2

=
∂

∂t1

(
∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

)

= f(t1;α, β) f(t2;α, β)

(
β2

2t21
− 3

2t1
− α2

2

)(r+s≤m∑
r,s=0

κr,s(t1, t2; i,m− i)α2rβ2s

)

+ f(t1;α, β) f(t2;α, β)

(
r+s≤m∑
r,s=0

∂κr,s (t1, t2; i,m− i)

∂t1
α2rβ2s

)
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or

1

f(t1;α, β) f(t2;α, β)

∂m+1
(
f(t1;α, β) f(t2;α, β)

)
∂ti+1

1 ∂tm−i
2

= −1

2

r+s≤m∑
r,s=0

κr,s(t1, t2; i,m− i)α2(r+1)β2s

+
1

2t21

r+s≤m∑
r,s=0

κr,s(t1, t2; i,m− i)α2rβ2(s+1)

+

r+s≤m∑
r,s=0

(
− 3

2t1
κr,s(t1, t2; i,m− i) +

∂κr,s (t1, t2; i,m− i)

∂t1

)
α2rβ2s.

This expression defines the new functions κr,s(t1, t2; i,m+ 1− i), and it can be verified that

they are polynomial functions by induction. Finally, an analogous expression obtained by

differentiating with respect to t2 gives the result for m+ 1 and i = 0.

Proof of Proposition 1. We seek conditions under which we can apply Leibniz’s rule

and differentiate equation (5) under the integral sign:

∂mϕ(t1, t2)

∂ti1∂t
m−i
2

=

∫
∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

dG(α, β)

for m > 0 and i ∈ {0, . . . ,m}. Let B represent a bounded, non-empty open neighborhood

of (t1, t2) and let B̄ denote its closure. Assume that there are no points of the form (t, t),

(t1, 0), or (0, t2) in B̄. In order to apply Leibniz’s rule, we must check two conditions:

1. The partial derivative ∂m
(
f(t1;α, β) f(t2;α, β)

)
/∂ti1 ∂t

m−i
2 exists and is a continuous

function of (t′1, t
′
2) for every (t′1, t

′
2) ∈ B and G-almost every (α, β); and

2. There is a G−integrable function hi,m−i : R2
+ → R+, i.e. a function satisfying∫

hi,m−i(α, β) dG(α, β) <∞

such that for every (t′1, t
′
2) ∈ B and G-almost every (α, β)∣∣∣∣∣∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

∣∣∣∣∣ ≤ hi,m−i(α, β) .

Existence of the partial derivatives follows from Lemma 1. The bulk of our proof establishes
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that the constant

hi,m−i ≡ max
(t1,t2)∈B̄

r+s≤m∑
r,s=0

2i∑
k=0

2(m−i)∑
ℓ=0

∣∣θk,ℓ,r,s(i,m− i)
∣∣

2π
t
−k− 3

2
1 t

−ℓ− 3
2

2

(
r + s+ 1

τ(t1, t2)

)r+s+1

e−(r+s+1),

(27)

where

τ(t1, t2) =
(t1 − t2)

2

2
(
t1(1 + t2)2 + t2(1 + t1)2

) , (28)

is a suitable bound. Note that hi,m−i is well-defined and finite since it is the maximum of

a continuous function on a compact set; the exclusion of points of the form (t, t), (t1, 0),

or (0, t2) is important for this continuity. This bound on the (i,m − i) partial derivatives

ensures that the lower order partial derivatives are continuous.

We now prove that hi,m−i is an upper bound on the magnitude of the partial deriva-

tive. Using Lemma 1, the partial derivative is the product of a polynomial function and an

exponential function:

∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

=

r+s≤m∑
r,s=0

2i∑
k=0

2(m−i)∑
ℓ=0

θk,ℓ,r,s(i,m− i)

2π
t
−k− 3

2
1 t

−ℓ− 3
2

2 α2r β2(s+1)


× exp

(
−(αt1 − β)2

2t1
− (αt2 − β)2

2t2

)
.

Only the constant terms θ may be negative.

To bound the partial derivative, first note that for any nonnegative numbers β, r, and s,

and any α,

(|α|+ β)2(r+s+1) ≥ |α|2r β2(s+1) = α2r β2(s+1) (29)

as directly follows from the binomial formula, because the right hand side is smaller than

one of the terms in the expansion, and all other terms are positive. Next note that

exp
(
−(|α|+ β)2τ(t1, t2)

)
≥ exp

(
−(αt1 − β)2

2t1
− (αt2 − β)2

2t2

)
(30)

This can be shown in two steps. For α > 0, we establish that

exp
(
−(α + β)2τ(t1, t2)

)
≥ exp

(
−(αt1 − β)2

2t1
− (αt2 − β)2

2t2

)
by finding a maximum of the right hand side of (30) with respect to α, β subject to the
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constraint that α + β = K for some K > 0. In the second step, we establish that

exp

(
−(|α|t1 − β)2

2t1
− (|α|t2 − β)2

2t2

)
≥ exp

(
−(αt1 − β)2

2t1
− (αt2 − β)2

2t2

)
which follows from the fact that for β ≥ 0 and t > 0, it holds (|α|t− β)2 ≤ (αt− β)2. These

two steps together imply (30).

Next, consider the function ax exp(−ay) for a and x nonnegative and y strictly positive.

This is a single-peaked function of a for fixed x and y, achieving its maximum value at

a = x/y. Letting (|α|+ β)2 play the role of a, this implies in particular that(
r + s+ 1

τ(t1, t2)

)r+s+1

e−(r+s+1) ≥ (|α|+ β)2(r+s+1) exp
(
−(|α|+ β)2τ(t1, t2)

)
(31)

for all α and all nonnegative r, s, and β, as long as τ(t1, t2) ̸= 0, i.e. t1 ̸= t2. Finally, combine

inequalities (29)–(31) to verify the bound on the partial derivative,

hi,m−i ≥
∣∣∣∣∣∂m

(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

∣∣∣∣∣ ,
where hi,m−i is defined in equation (27).

Proof of Proposition 2. Start with m = 1. Using the functional form of f(t;α, β) in

equation (4), the partial derivatives satisfy

∂ϕ(t1, t2)

∂ti
=

∫ (
β2

2t2i
− 3

2ti
− α2

2

)
f(t1;α, β)f(t2;α, β)dG(α, β)∫

T2

∫
f(t1;α, β)f(t2;α, β)dG(α, β) d(t1, t2)

or
2t2i

ϕ(t1, t2)

∂ϕ(t1, t2)

∂ti
= E(β2|t1, t2)− 3ti − t2iE(α2|t1, t2),

where

E(α2|t1, t2) ≡
∫
α2dG̃(α, β|t1, t2) and E(β2|t1, t2) ≡

∫
β2dG̃(α, β|t1, t2).

For any t1 ̸= t2, we can solve these equations for these two expected values as functions of

ϕ(t1, t2) and its first partial derivatives.

For higher moments, the approach is conceptually unchanged. First express the (i, j)th
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partial derivatives of ϕ(t1, t2) as

2i+jt2i1 t
2j
2

ϕ(t1, t2)

∂i+jϕ(t1, t2)

∂ti1∂t
j
2

= E
(
(β2 − α2t21)

i(β2 − α2t22)
j|t1, t2

)
+ vij(t1, t2)

=

i+j∑
x=0

min{x,i}∑
y=max{0,x−j}

i!j!(−t1)y(−t2)x−yE(α2xβ2(i+j−x)|t1, t2)
y!(x− y)!(i− y)!(j − x+ y)!

+ vij(t1, t2), (32)

where vij depends only on lower moments of the conditional distribution. The first line can be

established by induction. Express ∂i+jϕ(t1,t2)

∂ti1∂t
j
2

from the first line and differentiate with respect

to t1. One can realize that all terms except one contain conditional expected moments of

order lower than i + j and thus could be grouped into the term vi+1,j. The only term of

order m + 1 has a form E
(
(β2 − α2t21)

i+1(β2 − α2t22)
j|t1, t2

)
which follows directly from the

derivative of f(t1;α, β) with respect to t1. The second line of (32) follows from the first by

expanding the power functions.

Now let i = {0, . . . ,m} and j = m − i. As we vary i, equation (32) gives a system of

m + 1 equations in the m + 1 mth moments of the joint distribution of α2 and β2 among

workers who find jobs at durations (t1, t2), as well as lower moments of the joint distribution.

These functions are linearly independent, which we show by expressing them using an LU

decomposition:

2mt2m1
ϕ(t1,t2)

∂mϕ(t1,t2)
∂tm1

2mt
2(m−1)
1 t22

ϕ(t1,t2)
∂mϕ(t1,t2)

∂tm−1
1 ∂t2

2mt
2(m−2)
1 t42

ϕ(t1,t2)
∂mϕ(t1,t2)

∂tm−2
1 ∂t22

...
2mt2m2
ϕ(t1,t2)

∂mϕ(t1,t2)
∂tm2


= L(t1, t2) · U(t1, t2) ·



E(α2m|t1, t2)
E(α2(m−1)β2|t1, t2)
E(α2(m−2)β4|t1, t2)

...

E(β2m|t1, t2)


+ vm(t1, t2), (33)

where L(t1, t2) is a (m + 1) × (m + 1) lower triangular matrix with element (i + 1, j + 1)

equal to

Lij(t1, t2) =
(m−j)!

(m−i)!(i−j)!
(−t2)2(i−j)(t22 − t21)

j/2

for 0 ≤ j ≤ i ≤ m and Lij(t1, t2) = 0 for 0 ≤ i < j ≤ m; U(t1, t2) is a (m + 1) × (m + 1)

upper triangular matrix with element (i+ 1, j + 1) equal to

Uij(t1, t2) =
j!

i!(j−i)!
(t22 − t21)

i/2

for 0 ≤ i ≤ j ≤ m and Uij(t1, t2) = 0 for 0 ≤ j < i ≤ m; and vm(t1, t2) is a vector that

depends only on (m − 1)st and lower moments of the joint distribution, each of which we
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have found in previous steps.20 It is easy to verify that the diagonal elements of L and U are

nonzero if and only if t1 ̸= t2. This proves that the mth moments of the joint distribution

are uniquely determined by the mth and lower partial derivatives. The result follows by

induction.

Before proving Proposition 3, we state a preliminary lemma, which establishes sufficient

conditions for the moments of a function of two variables to uniquely identify the function.

Our proof of Proposition 3 shows that these conditions hold in our environment.

Lemma 2 Let G denote the cumulative distribution of a pair of arbitrary nonnegative ran-

dom variables (α, β) and let E(α2iβ2j) ≡
∫
α2iβ2jdG(α, β) denote its (i, j)th even moment.

For any m ∈ {1, 2, . . .}, define

Mm = max
i=0,...,m

E(α2iβ2(m−i)). (34)

Assume that

lim
m→∞

[Mm]
1
m

m
= λ <∞. (35)

Then all the moments of the form E (α2iβ2j), (i, j) ∈ {0, 1, . . .}2 uniquely determine the

cumulative distribution G of (α, β).

Proof of Lemma 2. We proceed in two steps. In the first step, we recall sufficient

conditions in the one-dimensional Stieltjes moment problem for a non-negative variable.

In the second step, we combine it with the Cramér-Wold theorem which states that the

distribution of a random vector is determined by all its one-dimensional projections.21

Let’s start with the first step and recall sufficient conditions for uniqueness in the Stieltjes

moment problem. For a non-negative random variable u ∈ R+, its distribution is uniquely

determined by its moments {E[um]}∞m=1 if the following condition holds:

lim sup
m→∞

(E[um])
1
m

m
≡ λ′ <∞, (36)

as shown in the Appendix of Feller (1966) chapter XV.4.

Before we move to the second step, define variables a ≡ α2, b ≡ β2 and denote their

distribution Ǧ(a, b). Since α, β are nonnegative, the mapping from (α, β) to (a, b) is one-to-

20If t2 > t1, the elements of L and U are real, while if t1 > t2, some elements are imaginary. Nevertheless,
L.U is always a real matrix. Moreover, we can write a similar real-valued LU decomposition for the case
where t1 > t2. Alternatively, we can observe that G̃(α, β|t1, t2) = G̃(α, β|t2, t1) for all (t1, t2), and so we
may without loss of generality assume t2 ≥ t1 throughout this proof.

21One can prove this lemma by applying a more elegant yet more abstract result in Petersen (1982). We
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one and onto. Hence, the distribution G(α, β) uniquely determines Ǧ(a, b) and vice-versa.

Also, define M̌m as

M̌m = max
i=0,...,m

E(aibm−i), (37)

and observe that M̌m =Mm for all m = 0, 1, . . .

The Cramér-Wold theorem states that the distribution of a random vector, say (a, b),

is determined by all its one-dimensional projections. In particular, the distribution of the

sequence of random vectors (am, bm) converges to the distribution of the random vector (a, b)

if and only if the distribution of the scalar x1am + x2bm converges to the distribution of the

scalar x1a+ x2b for all vectors (x1, x2) ∈ R2.

We take a degenerate sequence (am, bm) = (a, b) for all m ≥ 0 and verify that for any

(x1, x2) the distribution of x1a + x2b is determined by its moments. For this we check the

condition in equation (35) for u(x) ≡ x1a+ x2b. We note that

E [u(x)m] = E [(x1a+ x2b)
m] =

m∑
i=0

m!

i!(m− i)!
xi1x

m−i
2 E

[
aibm−i

]
≤

m∑
i=0

m!

i!(m− i)!
|x1|i|x2|m−iE

[
aibm−i

]
≤ M̌m

m∑
i=0

m!

i!(m− i)!
|x1|i |x2|m−i

= M̌m(|x1|+ |x2|)m,

where we use that (a, b) are non-negative random variables and M̌m is defined in equation

(37). Since M̌m = Mm for each m = 0, 1, . . ., then assumption (35) implies that sufficient

conditions in Stieljes’s moment problem (36) are satisfied, and hence the distribution of

each linear combination x1a + x2b is determined. Hence, the joint distribution of (a, b) is

determined and so is the distribution of (α, β).

Proof of Proposition 3. The structure of the proof is as follows. We first find an upper

bound for conditional moments E(α2iβ2(m−i)|t1, t2). We then apply of Lemma 2 to obtain

the main result.

For the first step, we write the conditional moments as

E(α2iβ2(m−i)|t1, t2) =
∫
α2iβ2(m−i)dG̃(α, β|t1, t2) =

∫
q(α, β, i,m; t1, t2)dG(α, β)∫
f(t1;α, β)f(t2;α, β)dG(α, β)

,

where

q(α, β, i,m; t1, t2) ≡ α2iβ2(m−i)f(t1;α, β)f(t2;α, β).

thank our referee for pointing this out.
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Using the definition of f , we have

q(α, β, i,m; t1, t2) =
α2iβ2(m+1−i)

2πt
3/2
1 t

3/2
2

exp

(
−(αt1 − β)2

2t1
− (αt2 − β)2

2t2

)
≤ 1

2πt
3/2
1 t

3/2
2

(
m+ 1

τ(t1, t2)

)m+1

exp(−(m+ 1)),

where τ(t1, t2) is defined in equation (28) and the inequality uses the same steps as the proof

of Proposition 1 to bound the function. In the language of Lemma 2, this implies

Mm =
((m+ 1)/τ(t1, t2))

m+1 exp(−(m+ 1))

2πt
3/2
1 t

3/2
2

∫
f(t1;α, β)f(t2;α, β)dG(α, β)

. (38)

We use this to verify condition (35) in Lemma 2.

Taking the log transformation of (1/m) (Mm)
1/m and using the expression (38) we get:

log

(
(Mm)

1
m

m

)
= 1

m
φ(t1, t2)− m+1

m
log τ(t1, t2)

+m+1
m

log(m+ 1)− m+1
m

− logm

where φ is independent of m. We argue that the limit of this expression as m → ∞ is at

most − log(τ(t1, t2)) − 1. To see this, use that log(1 + m) ≤ log(m) + 1/m in the above

expression,

log

(
(Mm)

1
m

m

)
≤ 1

m
φ(t1, t2)−

m+ 1

m
log τ(t1, t2)

+
m+ 1

m

(
logm+

1

m

)
− m+ 1

m
− logm

=
1

m
φ(t1, t2)−

m+ 1

m
log τ(t1, t2) +

1

m
logm+

m+ 1

m2
− m+ 1

m

lim
m→∞

log

(
(Mm)

1
m

m

)
≤ − log τ(t1, t2)− 1.

Hence, limm→∞(1/m)(Mm)
1/m < exp(− log τ(t1, t2)− 1) <∞, the desired result.

Proof of Proposition 4. “If” part: Let γ1, γ2, G
+ satisfy (9). We show that G1 and G2

generate the same ϕT(t1, t2). To simplify the notation, denote the denominator of (9) as Ki,

Ki =

∫ (
γi(α

′, β′) + e4α
′β′
(1− γi(α

′, β′))
)
dG+(α′, β′),
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and the numerator of (5) as Zi(t1, t2) for some t1, t2:

Zi(t1, t2) =

∫
f(t1;α, β)f(t2;α, β)dGi(α, β)

Then we get

KiZi(t1, t2) =Ki

∫
f(t1;α, β)f(t2;α, β)dGi(α, β)

=

∫
α>0

f(t1;α, β)f(t2;α, β)γi(α, β)dG
+(α, β

+

∫
α<0

f(t1;α, β)f(t2;α, β)e
4|α|β(1− γi(|α|, β))dG+(|α|, β)

+ f(t1; 0, β)f(t2; 0, β)dG
+(0, β)

=

∫
α>0

f(t1;α, β)f(t2;α, β)γi(α, β)dG
+(α, β)

+

∫
α<0

e−4|α|βf(t1; |α|, β)f(t2; |α|, β)e4|α|β(1− γi(|α|, β))dG+(|α|, β)

+ f(t1; 0, β)f(t2; 0, β)dG
+(0, β)

=

∫
α≥0

f(t1;α, β)f(t2;α, β)dG
+(α, β),

where the first equation is the definition of Z, the second uses equation (9) to replace Gi,

the third uses the property of f noted in equation (8), and the fourth combines terms.

This proves that Zi(t1, t2)Ki depends only on dG+ but not γi itself. It then follows the

denominator of (5) is proportional to Ki but otherwise does not depend on γi. Therefore,

G1 and G2 generate the same ϕT(t1, t2), and hence VT(G1) = VT(G2).

“Only if” part. Suppose that VT(G1) = VT(G2). We will find γi and dG+ such that

equation (9) holds. For α > 0 and β ≥ 0 such that dGi(α, β) > 0 or dGi(−α, β) > 0, define

γi(α, β) =
dGi(α, β)

e−4αβdGi(−α, β) + dGi(α, β)
∈ [0, 1],

and

dG+
i (α, β) = Ki

dGi(α, β)

γi(α, β)
= Ki

(
e−4αβdGi(−α, β) + dGi(α, β)

)
, (39)

with γi(0, β) = 1 and dG+
i (0, β) = KidGi(0, β) for all β, where Ki is a constant of propor-

tionality which guarantees that dG+
i integrates to 1. It is straightforward to verify that

VT(G
+
i ) = VT(Gi) by directly plugging the definition of dG+

i into equation (5). Since

by assumption VT(G1) = VT(G2), we have VT(G
+
1 ) = VT(G

+
2 ), and so Theorem 1 implies
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G+
1 = G+

2 = G+. This means that we have found the distribution G+ common to both G1

and G2. Equation (39) implies that for α > 0 and β ≥ 0,

dGi(α, β) =
γi(α, β)dG

+(α, β)

Ki

,

dGi(−α, β) = e4αβ
(
dG+

i (α, β)

Ki

− dGi(α, β)

)
= e4αβ(1− γi(α, β))

dG+
i (α, β)

Ki

,

and so equation (9) holds for all α > 0 and β ≥ 0. It is also immediate to show that it holds

at α = 0 and β ≥ 0.

B Data

Table 2 shows a detailed split of the data. We start with 2,303,698 workers with at least one

non-employment spell which started after age of 25 but before age 60. We then drop those

workers whom we observe for 2T̄ or fewer periods after they become non-employed, leaving

us with 1,543,609 workers. For all these workers, let T i denote the amount of time that the

worker is in the survey after becoming non-employed,22 ti1 and t
i
2 denote the duration of the

first two non-employment spells, and te,i denote the duration of the intervening employment

spell. Each of ti1, t
i
2, and t

e,i may be censored in the data set. Additionally, te,i and ti2 may

be unobserved, e.g. if ti1 is censored.

Our data set includes 783,810 workers whose first two complete non-employment spells

have duration less than T̄ , (ti1, t
i
2) ∈ T2, and whom we observe for sufficiently long, T i−te,i >

2T̄ . We use these workers to estimate G+
χc . We also use these workers to estimate the shares

p1,T and p2,T.

Our data set also includes 71,844 workers whose first complete non-employment spell

has duration less than T̄ , ti1 ∈ T, second non-employment spell has duration in excess of T̄ ,

ti2 /∈ T, yet still has a sufficiently long observation window to see the worker for T̄ periods

after the second non-employment spell starts, T i − te,i > 2T̄ . Note that for some of these

workers, the second non-employment spell is censored, but for those we know that ti2 > T̄ . We

use these workers to estimate p1,T and p2,T. In particular, p̂2,T = 783,810
783,810+71,844

= 0.916 is the

conditional probability of completing the second spell in under T̄ weeks given T i − 2T̄ ≥ te,i

and ti1 ≤ T̄ .

Next, our data set also includes three groups of workers whom we use to bound our

estimate of p1,T. First, there are 103,969 workers whose first non-employment spell has

22We cannot tell whether a worker’s spell ends during the final week in the sample since we do not know
her employment status in week T i + 1.
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Description Number Used For
has non-employment spell, T i > 0 2,303,698

I. long time in sample, T i > 2T̄ 1,543,609

I.A. short first non-employment spell, ti1 ≤ T̄ 1,244,314

I.A.1. short uncensored employment spell, T i − 2T̄ >
¯
te,i = te,i 855,654

I.A.1.a. short second non-employment spell, ti2 ≤ T̄ 783,810 Ĝ+
χc , p̂1,T, p̂2,T

I.A.1.b. long second non-employment spell, ti2 > T̄ 71,844 p̂1,T, p̂2,T
I.A.2. long uncensored employment spell, T i − 2T̄ ≤

¯
te,i = te,i 113,608 —

I.A.3. censored employment spell, T i = ti1 +¯
te,i,

¯
te,i ≤ te,i 275,052 —

I.B. long first non-employment spell, ti1 > T̄ 299,295

I.B.1. short uncensored employment spell, T i − 2T̄ >
¯
te,i = te,i 103,969 p̂1,T

I.B.2. long uncensored employment spell, T i − 2T̄ ≤
¯
te,i = te,i 4,625 —

I.B.3. censored employment spell, T i = ti1 +¯
te,i,

¯
te,i ≤ te,i 68,118

I.B.3. a. very long first non-employment spell ti1 > 2T̄ 42,627 p̂1,T?

I.B.3. b. medium first non-employment spell ti1 ≤ 2T̄ 25,491 —

I.B.4. no employment spell, T i = ti1, 0 =
¯
te,i ≤ te,i 122,583 p̂1,T?

II. short time in sample, T i ≤ 2T̄ 760,089 —

Table 2: Number of workers with given non-employment spells, T̄ = 104. Italicized numbers
are subtotals of the numbers below them. The last column indicates which workers are used
for obtaining estimates Ĝ+

χc , p̂1,T, and p̂2,T.
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duration more than T̄ , ti1 /∈ T, and who have an uncensored employment spell so we know

that T i − 2T̄ ≥ te,i. These workers would have had enough time in the sample to complete

two non-employment spells with duration up to T̄ . Second, there are 42,627 workers who find

a job after more than 2T̄ periods, and the duration of their employment spell is censored

at
¯
te,i ≤ te,i. And third, there are 122,583 workers who are non-employed for the entire

T i > 2T̄ periods that they are in the sample. We can think of them as having an employment

duration censored at
¯
te,i = 0 ≤ te,i. For both these groups T i − 2T̄ >

¯
te,i, but we cannot tell

if T i − 2T̄ ⋛ te,i because
¯
te,i ≤ te,i.

Using these groups, we can bound the probability of completing the first non-employment

spell in under T̄ weeks conditional on T i−2T̄ ≥ te: p̂1,T = 783,810+71,844
783,810+71,844+103,969+(42,627+122,583)x

,

where x ∈ [0, 1] is the unknown probability that the last two groups of workers satisfy

T i − 2T̄ > te,i. This gives us the bounds ˆ
¯
p
1,T = 0.761 and ˆ̄p1,T = 0.892.

Finally, there are four groups of workers whom we observe for more than 2T̄ periods

after they become non-employed but are not used in our calculations because we know that

T i − 2T̄ ≤ te,i. The largest, 275,052 workers, have a short non-employment spell, ti1 < T̄ ,

and never lose their job again. Although we only observe a censored employment duration

¯
te,i ≤ te,i, we know T i − 2T̄ ≤

¯
te,i ≤ te,i. The next biggest group, 113,608 workers, also

have a short non-employment spell, ti1 < T̄ , and do lose their job (so te,i is uncensored), but

have T i − 2T̄ ≤ te,i. And then there are two groups of workers who have a long first spell,

ti1 > T̄ , returned to work, but have T i − 2T̄ ≤ te,i. The first group, 4,625 workers, have a

completed employment spell, so we can measure te,i without censoring. The second group,

25,491 workers, never lost their job, but even though te,i is censored at
¯
te,i ≤ te,i, we know

T i − 2T̄ ≤
¯
te,i ≤ te,i.
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