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1 Introduction

The idea that changes in agents’ beliefs about the future may be an important driver of

economic fluctuations has fascinated many scholars over the years. While the application

to technology news is recent, and was revived following the seminal work of Beaudry

and Portier (2004, 2006), the insight that expectations about future fundamentals could

be a dominant source of economic fluctuations is a long-standing one in economics (e.g.

Pigou, 1927). The news-driven business cycle hypothesis posits that economic fluctua-

tions can arise because of changes in agents’ expectations about future fundamentals,

and absent any actual change in the fundamentals themselves. If the arrival of favorable

news about future productivity can generate an economic boom, lower than expected

realized productivity can set off a bust without any need for a change in productivity

having effectively occurred. The plausibility of belief-driven business cycles is, however,

still a hotly debated issue in the literature (see e.g. the extensive review in Ramey, 2016).

In this paper, we approach the topic from a different angle, and study the related

question of how does the aggregate economy respond to shocks that raise expectations

about future productivity growth. We provide an empirical answer in an information-

rich VAR that includes many relevant aggregates, such as consumption, investment, and

labor inputs, as well as forward looking variables, such as asset prices and consumer

expectations. The novelty in our approach is the identification of technology news shocks.

We exploit information in patent applications to construct an instrumental variable (IV)

for the shock that enables us to dispense from all the identifying assumptions traditionally

used in the literature.1

The intuition behind our identification is simple: by their nature, patent applications

embed information about potential future technological change (see also e.g. Griliches,

1990; Lach, 1995; Hall and Trajtenberg, 2004). At the same time, patent applications are

cyclical, and may themselves be the result of current economic booms and/or past news.

1Traditional identifications are motivated by economic theory and typically combine zero restrictions
on the impact response of total factor productivity (TFP) with assumptions about its long-run drivers.
In Beaudry and Portier (2006) news shocks are orthogonal to current productivity, but are its sole driver
in the long run (Gaĺı, 1999; Francis and Ramey, 2005). Other works have relaxed this latter assumption
and assumed that news shocks maximize the forecast error variance of productivity either at some long
finite horizon (e.g. Francis, Owyang, Roush and DiCecio, 2014), or over a number of different horizons
(e.g. Barsky and Sims, 2011).
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To account for this endogeneity, we introduce explicit controls for expectations about

the macroeconomic outlook that were prevalent at the time of the application filings,

and for other policy changes that could influence the decision of filing a patent either

directly or through their effect on other macro aggregates. Specifically, we recover an IV

for technology news shocks as the component of patent applications that is orthogonal to

pre-existing beliefs as captured by the Survey of Professional Forecasters (SPF), to con-

temporaneous and lagged monetary and fiscal policy changes as summarized by narrative

accounts, as well as to own lags.2

The exclusive rights granted to patent holders ensure that individuals and businesses

have a set number of years to capitalize on their inventions, and act as a powerful incentive

to engage in the patenting process. The length of time between the application and the

grant issuance, and the eventual diffusion of the innovation within the economy, can be

in the order of several years, depending on the type of patent and the characteristics of

the industry sector. Therefore, patent applications at any given time contain information

about technological changes that may occur at some point in the future. In other words,

and importantly for our purpose, they represent an uncontroversial way to measure news

about possible future technological progress, to a large extent regardless of whether such

progress does indeed follow. Because patent applications are public, the filing date can be

thought of as the first measurable time at which the news occurs, although it is clearly the

case that the underlying idea, in the form of a private signal, predates it. Controlling for

policy changes and for expectations about the macroeconomic outlook that prevailed at

the time of the application filing is a necessary step to increase the likelihood that no other

structural disturbances affect the US economy through the IV, except contemporaneous

technology news. This is our sole identifying assumption.

Our main data source for patent applications are the NBER USPTO Historical Patent

2To be clear, our strategy is in principle equivalent to identifying technology news shocks in a standard
Cholesky triangularization as an innovation to patent applications in a VAR where the variables enter
in the following order: (1) past (relative to the filing date of patent applications) expectations about
current and future macro outcomes; other contemporaneous policy shocks; (2) patent applications; (3)
TFP and other variables of interest. In practice, splitting the problem in two and constructing the
instrument outside of the VAR grants us a number of advantages, including being able to accurately
match the timing of the patent filings with that of the SPF forecasts, delivering an IV that can readily
be used by other researchers, accounting for the presence of measurement error, and easily dealing with
different sample lengths.
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Data Files of Marco, Carley, Jackson and Myers (2015), that provide a comprehensive

record of all patent applications—granted and not granted—filed at the U.S. Patent and

Trademark Office (USPTO) since 1981, and aggregated at monthly frequency. We also

discuss the appropriateness of weighting patent applications according to their scientific

or economic value for the construction of the IV. For this we use data assembled in Kogan,

Papanikolaou, Seru and Stoffman (2017), that collects information on individual patents

granted by the USPTO to large corporations between 1926 and 2010, including their

application date, forward citations, and economic value generated in the stock market.

Because of the minimal set of restrictions required for identification, our framework

enables us to investigate whether news shocks generate the patterns that were assumed

in earlier identification schemes. Importantly, it allows us to dispense from assumptions

about the long-run drivers of technology, as well as on the impact effects, such that

assumptions that were made in earlier studies become instead results in our setting. While

it is not known ex ante whether technological innovation will effectively follow, the news

we capture does eventually materialize on average, and results in a persistent and gradual

increase in aggregate TFP. This allows us to label the recovered structural disturbance as

news, as opposed to noise (see e.g. discussion in Chahrour and Jurado, 2018), overcoming

the issues highlighted in Blanchard, L’Huillier and Lorenzoni (2013). Because innovations

can in principle be released to the public under a patent-pending status, our identification

scheme does not impose orthogonality with respect to the current level of technology,

which is a typical assumption in the news literature.3 While this orthogonality condition

is not imposed a priori, the IV recovers a shock that has essentially no effect on TFP

either on impact or in the years immediately afterwards. After this inertial initial reaction,

aggregate TFP rises robustly, following the S-shaped pattern that is typical of the slow

diffusion of technology (see e.g. Rogers, 1962; Gort and Klepper, 1982). Similarly, albeit

we impose no constraints on variance shares ex ante, the recovered shock explains only

a modest fraction of the variation of TFP at frequencies higher or equal than those

associated with standard business cycle durations, and is instead an important driver of

3In this respect, our identification is akin to Barsky et al. (2015); Kurmann and Sims (2021), who also
relax the assumption of a zero impact response of TFP. Our approach is also robust to mismeasurements
in commonly used empirical estimates of aggregate technology (see e.g. discussions in Fernald, 2014;
Kurmann and Sims, 2021).
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its long-run/permanent component.

The empirical literature has long debated the potential for technology shocks to drive

business cycle fluctuations.4 In particular, two critical aspects have animated the debate.

First, whether technology shocks could generate the type of comovements in macroe-

conomic variables—particularly consumption and hours—that were typical of business

cycles. Second, whether they accounted for a meaningful share of variation of economic

aggregates at the relevant frequencies. We revisit these questions in light of our novel

identification in an otherwise unrestricted VAR, and document four main patterns. First,

macro aggregates react well in advance of any material increase in TFP, suggesting an

important role for anticipatory effects. Second, the conditional comovements implied by

our identified VAR are positive, and therefore enable technology shocks as a potential

originator of business cycles. Third, most macro aggregates tend to respond to the shock

with some delay, which cautions against placing too much weight on impact responses

alone. Fourth, while an important driver of long-run dynamics, the recovered shock only

explains a modest fraction of the variation of main macroeconomic aggregates at business

cycle frequencies. Here it is important to note that while our identifying assumption rests

on patent applications bearing news about future technological change, not all techno-

logical change necessarily goes through the patenting process, which in turn may leave

some drivers of technology—and of business cycle volatility—unaccounted for.

Our results show that the arrival of positive news about future technology triggers

a sustained and broad-based economic expansion. In the VAR output, consumption,

investment, and hours worked all rise to peak within the first three years, and well before

any material improvement in TFP is recorded. In this sense, the pattern of responses lends

credit to a “news-view” in the spirit of Beaudry and Portier (2006), whereby aggregate

fluctuations arise in anticipation of changes in TFP. Indeed, the large asynchronicity

in the timing of the estimated dynamic responses suggests that the aggregate effects of

technology news that we unveil may be predominantly (if not entirely) driven by beliefs,

4The empirical literature on technology news shocks is vast, and we review it when presenting our
results in Section 5. At the poles of the debate are the advocates of the news-driven business cycle
hypothesis, e.g. Beaudry and Portier (2006, 2014); Beaudry and Lucke (2010), and its opponents, e.g.
Barsky and Sims (2009, 2011); Kurmann and Otrok (2013); Barsky, Basu and Lee (2015); Kurmann and
Sims (2021). Other contributions have highlighted the role played by different modeling assumptions
and specifications, and by alternative data transformations (e.g. Christiano, Eichenbaum and Vigfusson,
2003; Francis and Ramey, 2009; Mertens and Ravn, 2011; Forni, Gambetti and Sala, 2014).
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rather than by future realized fundamentals. The expansion is not immediate. While

consumption rises somewhat already upon realization of the shock, the impact response

of output and hours tends to be not significant at conventional levels. Investment also

increases robustly. And so do real wages in the medium term. The shock triggers a

significant response of the monetary authority that eases policy in anticipation of the

expected decline in inflation. Lower borrowing rates and compressed risk premia appear

as likely amplifiers of the short-term effects of the shock. We find that the identified

shock generally accounts for less than 10% of the variation of main macro aggregates

at business cycle frequencies, but it is an important driver of their long-run variation, a

finding that echoes the results in Angeletos, Collard and Dellas (2020).

Lastly, and in an important departure from earlier studies, we test our results also in

a novel monthly setting. For this purpose we construct monthly time series for TFP and

Utilization-Adjusted TFP for the US economy. To our knowledge, ours are the first such

estimates, and we make these data publicly available.

Our work is closely related to a stream of studies that have relied on empirical mea-

sures of technological changes to identify technology news shocks. The first such study

is Shea (1999). Here annual patent applications and R&D expenditures are used to es-

timate the effects of technology shocks on industry aggregates. Identification is achieved

by ordering either measure last in a battery of small-scale VARs that also include labor

inputs and productivity. Christiansen (2008) extends this study by using over a century

of annual patent application data. The benchmark specification is a bivariate VAR with

labor productivity and patents ordered first. Alexopoulos (2011) uses the number of book

titles published in the field of technology to capture the time at which the novelty is com-

mercialized. Responses of aggregate variables are estimated in a set of bivariate VARs

with the publication index ordered last.5 Our paper differs from these contributions in

several ways. First, these studies address the fundamental endogeneity of empirical mea-

sures of technological changes only to the extent that it is captured in the reminder of

variables included in the bi/tri-variate VARs. Other than relying on a richer VAR spec-

5More recently, Baron and Schmidt (2014) have used technology standards and a recursive identifica-
tion to infer on the aggregate implications of anticipated technology shocks. In an international context,
Arezki, Ramey and Sheng (2017) use giant oil discoveries as a directly observable measure of technology
news shocks and estimate their effects in a dynamic panel distributed lag model.
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ification, in the construction of the instrument we explicitly control for the fact that the

cyclical nature of patent applications may be influenced by current economic conditions,

or indeed by past news. Second, and related, these studies have all implicitly assumed

the empirical measure of technology being a near perfect measure of news shocks. In

fact, their identifying assumptions amount to effectively retrieving the transmission coef-

ficients by running a distributed lag regression (with some controls) of the variables on the

patent data. In contrast, our identifying assumptions explicitly account for the possible

presence of measurement error in the constructed instrument. Finally, these studies have

all relied on annual data potentially overlooking important higher frequency variation

which instead we exploit for the identification. In a recent contribution, Cascaldi-Garcia

and Vukotić (2022) use the innovation index of Kogan, Papanikolaou, Seru and Stoffman

(2017) to identify technology news shocks. This index measures the dollar value that

patents generate in the stock market once they are granted. Because patent grants post-

date patent applications by possibly several years, and tend to depend on the intensity of

labor and administrative cycles at the USPTO (see Christiansen, 2008), the innovation

index may not necessarily be a good indicator of news.

The structure of the paper is as follows. Section 2 introduces the external instrument

and describes the patent data used for its construction. In Section 3 we lay out the

identifying assumptions in our SVAR-IV and discuss the identification of technology news

shocks using an illustrative 5-variable VAR. In Section 4 we discuss how to translate our

framework to a monthly setup. Section 5 contains our main results; here we extend the

analysis to an information-rich 12-variable VAR to explore the transmission mechanisms

of technology news shocks more in detail. A discussion of our results is reported in Section

6, and Section 7 concludes. Additional material is reported in the Online Appendix.

2 A Patent-Based IV for Technology News Shocks

2.1 Information in Patent Data

The starting point of our analysis is the monthly flow of all new patent applications

filed at the US Patent and Trademark Office. The data are from the USPTO Historical
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Patent Data Files compiled by Marco et al. (2015) as a follow up and extension of Hall

et al. (2001). The dataset records the monthly stocks and flows of all publicly available

applications and granted patents filed from January 1981 to December 2014. The stocks

include pending applications and patents-in-force; flows include new applications, patent

grants, and abandonments.6 In what follows, we operate at quarterly frequency for

consistency with the existing literature, and due to the constraints imposed by data

availability, particularly TFP. We discuss how one could apply our identification in a

monthly VAR in Section 4.

The patents in the dataset are classified as utility patents. Also known as patents for

invention, these cover the creation of new or improved, and useful products, processes

or machinery. We construct quarterly patent counts by summing up the monthly flows

of all new patent applications within each quarter over the available sample. The left

panel of Figure 1 plots the time series of quarterly patent applications aggregated at

the industry level. In the figure, shaded areas denote NBER recession episodes, and we

normalize 1981-I to be equal to 0 to highlight the different trends across different sectors.

Patent applications have increased substantially over the past 40 years and, as visible

from the figure, patents classified under Computers and Communications have enjoyed a

faster growth. Applications across all categories tend to slide after recessionary episodes,

providing some preliminary evidence of their cyclical nature.

There have been three important regulatory changes in patenting in 1982, 1995, and

2013. All these regulations affected the number of applications when they came into

effect, as shown by the spikes in the left panel of Figure 1. However, since they were

not legislated in response to considerations related to either current or anticipated eco-

nomic conditions, they provide us with important exogenous variation that we exploit

for the identification. Said differently, to the extent that each patent embeds news about

potential future technological progress, the increase in applications in anticipation of

the upcoming regulatory changes represents an exogenous (relative to macroeconomic

conditions) increase in technology news, which is the focus of our identification.7

In 1982, the old Court for Customs and Patent Appeals was abolished, and a new

6The dataset is available at http://www.ustpo.gov/economics.
7We explore the sensitivity of our results to the regulation-induced spikes in the Appendix.
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Figure 1: Patent Applications & Aggregate Innovation
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Note: [left] Patent applications across all NBER categories. Quarterly figures obtained as sum
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Court of Appeals for the Federal Circuit was established. The new court provided more

protection to patent owners against infringement. In 1995, the U.S. implemented wide-

ranging changes to patent law under the Agreement on Trade-Related Aspects of Intel-

lectual Property Rights (TRIPS), as part of the Uruguay Round Agreements Act. The

TRIPS agreement’s main purpose was to harmonize patenting rules among all members

of the World Intellectual Property Organization with the aim to contribute to the promo-

tion of technological innovation and to the transfer and dissemination of technology.8 One

of the main changes introduced by the TRIPS agreement was that of promoting trans-

parency in patenting, and disincentivizing strategic behavior through stricter regulation.9

This had two main effects. First, it shifted forward the timing of some applications, which

8Article 7 (“Objectives”) of the TRIPS Agreement states that the protection and enforcement of
intellectual property rights should contribute to the promotion of technological innovation and to the
transfer and dissemination of technology, to the mutual advantage of producers and users of technological
knowledge and in a manner conducive to social and economic welfare, and to a balance of rights and
obligations. Source: https://tinyurl.com/WTO-TRIPS-Technology-transfer.

9The change in legislation led to a significant reduction in the so-called submarine patents. These
are patents whose issuance or publication is intentionally delayed for strategic purposes, and would
often emerge decades later to prevent competitors from patenting on related topics. The TRIPS also
modified patent terms that were set to 20 years from filing, and away from the previous practice of
17 years after issuance. For most industries this meant a reduction in the protection period. Source:
https://www.wto.org/english/tratop_e/trips_e/inovationpolicytrips_e.htm.
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resulted in the one-off increase highlighted in Figure 1. Second, it made applications more

informative about future innovations (Encaoua, Guellec and Mart́ınez, 2006). Finally, in

March 2013, the U.S. implemented the rules dictated by the America Invents Act which

further revised ownership rights.10

To provide a visual illustration of the link between patent applications and subsequent

aggregate innovation, the right panel of Figure 1 compares the total number of USPTO

applications (sum across industries in LHS chart, solid line) with the aggregate index of

innovation of Kogan et al. (2017). The index is a forward-looking measure of the private,

economic value of innovations in the U.S., and constructed as the GDP-weighted sum of

the market value generated by patents granted within each quarter.11 We note that, as

expected, patent applications lead the aggregate innovation index. Moreover, the large

spikes in the number of applications tend to correspond to substantial future increases

in aggregate innovation, and particularly so after the TRIPS agreement. We take this as

a preliminary indication that the exogenous legislation-induced increases in applications

are informative about their innovation content, and thus contain important information

for the purpose of identifying technology news shocks.

We construct the IV using all the patent applications submitted to the USPTO—

including those that are ex-post not granted—and weighting them all equally (solid line

in Figure 1, right panel). There are multiple reasons for this choice. First, we choose to

work with patent applications rather than grants. Previous studies such as Christiansen

(2008) have noted how most of the news content in patent applications may be exhausted

by the time they are granted.12 One reason is that innovations can be disseminated under

patent-pending status. Other anecdotal evidence reported in Kogan et al. (2017) suggests

that “the market often had advance knowledge of which patent applications were filed,

since firms often choose to publicize new products and the associated patent applications

themselves.” Thus, for the purpose of isolating technology news, applications are more

10The new rules were designed to address the right to file a patent application, and switched the
priority rule to the “first-inventor-to-file”, rather than the pre-existing “first-to-invent”. Source: https:
//www.uspto.gov/sites/default/files/aia_implementation/20110916-pub-l112-29.pdf.

11The original index in Kogan et al. (2017) is annual. Using their data, we have reconstructed a
quarterly version following the same procedure as in the original index.

12From application filing to grant issuance the process takes about two years on average across indus-
tries. While not all applications result in granted patents, the share of successful applications can be
substantial (up to 80%), with some heterogeneity across sectors (see Marco et al., 2015).
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likely to capture the effective time at which the news materializes. Second, we choose

to also include in our set patents that are ex-post not granted. This is primarily due to

our data source supplying information on the total number of applications filed at the

USPTO each month, with no information on which ones are ultimately successful. But

it also makes sense from an identification perspective: at the time of the application, all

patents arguably bear news. Third, it is possible, and indeed likely, that markets and

applicants may attach to each patent an individual ex-ante probability of it being ex-post

granted and/or more or less groundbreaking. This would be the optimal way to weigh

the applications for the purpose of capturing news more accurately, but it is of course

unfeasible. As a result, and in an attempt to account for all these aspects, we construct

our baseline IV using all applications with equal weights.

There is a question of whether the IV can be ameliorated by weighting the patents

differently. A common practice in the literature that uses patent data is to weigh them

according to forward citation counts. That is, according to the number of citations that

each patent receives in the future, which is typically regarded as a way to measure its

scientific relevance. An alternative, proposed in Kogan et al. (2017), is to use weights

that reflect the economic value that a patent generates in the stock market when it is

granted. At the firm-patent level, the value of each patent is measured based on the

return that the patent owner’s stock enjoys when the patent is granted. We discuss these

options in detail in the Appendix. Here we note that, at the application stage, economic

agents—including financial markets—do not know which patents will ex-post be granted,

let alone their expected future citations or economic value. Therefore, we are skeptical

about the use of these weighting schemes for the purpose of identifying technology news

shocks, since they rest on information that was not available at the time at which the

news materialized.

2.2 Instrument Construction

We recover an instrumental variable for the identification of technology news shocks as

the component of patent applications that is orthogonal to beliefs about the state of the

economy that are prevalent at the time of the application filings, to other contempo-
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raneous policy shocks, and is unpredictable given its own history. Intuitively, we seek

to remove endogenous variation in application filings that results from anticipation of

economic conditions due to past news and other contemporaneous disturbances. This to

increase the likelihood that the IV correlates with contemporaneous news shocks only,

which is the required condition for correct identification.

Specifically, we introduce three sets of controls. First, lagged patent applications

to control for past shocks. Second, expectations about the macroeconomic outlook to

control for other shocks, anticipated or otherwise, that are not captured in lagged patent

applications. We align the timing of the survey forecasts such that the expectations reflect

the most up-to-date predictions conditional on information available to the forecasters

at the time of the patent filings. Finally, we include explicit controls for monetary and

tax policy disturbances that may affect the decision of filing a patent either directly, or

indirectly by affecting e.g. firms’ investment plans.

Formally, we recover the IV as the residuals of the following regression, estimated at

quarterly frequency

pat = c + γ(L)pat + ∑
h=1,4

βhEt[xt+h] +
2

∑
j=0

δjηt−j + zt. (1)

In Eq. (1), pat is the quarterly growth rate of all patent applications, i.e. pat = 100 ×

(lnPAt − lnPAt−1), where PAt is the number of patent applications filed at the USPTO

each quarter. γ(L) = ∑4
j=1 γjL

j, where L is the lag operator, and Et[xt+h] is an m × 1

vector of forecasts for the economic variables in xt that we take from the Survey of

Professional Forecasters (SPF).13 Et[xt+h] captures the most up-to-date predictions that

are prevalent at the time of the applications. The forecast horizon h is equal to one

and four quarters. The time index in Et refers to the publication date of the survey.

Because of the release schedule of the SPF, the information set conditional on which

forecasts are made is in fact relative to the previous quarter; hence, the collection of

forecasts in Et[xt+h] captures pre-existing beliefs about the macroeconomic outlook.14

13Survey of Professional Forecasters data (Federal Reserve Bank of Philadelphia, 2023) are available
at https://www.philadelphiafed.org/surveys-and-data/real-time-data-research.

14SPF forecasts are published in the middle of the second month of each quarter. The information set
of the respondents at the time of compiling the survey includes the advance report on the national income
and product accounts of the Bureau of Economic Analysis, which is published at the end of the first
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The vector xt includes the unemployment rate (ut), inflation (πt), and the growth rates

of real non-residential fixed investments (It), and of real corporate profits net of taxes

(Πt).15

An important concern relates to the potential correlation of patent applications with

other contemporaneous shocks, besides current technology news. If this were the case, the

exclusion restrictions in our IV-based identification strategy would be violated. While

there is no formal way to test for the exogeneity of the instrument, we address this

concern by including in Eq. (1) further controls that capture monetary and fiscal policy

changes up to the current quarter. Indeed, by affecting macro aggregates, and especially

investment, monetary and tax policy may have a direct effect on patent applications,

and act as a confounding factor in the identification. The vector ηt includes unexpected

and anticipated exogenous tax changes as classified by Romer and Romer (2010) and

Mertens and Ravn (2012), and the narrative series for monetary policy shocks of Romer

and Romer (2004).16

The regression results are presented in Table 1. The table reports individual regression

coefficients and robust standard errors in parentheses for five models. Eq. (1) corresponds

to column (5) in the table. In columns (1) to (4) we consider subsets of controls for

comparison. Due to the availability of the narrative tax series, the specifications in

columns (4) and (5) are estimated over the sample 1981-I:2006-IV. Columns (1) to (3)

use the full length of patent data (1981-I:2014-IV). At the bottom of the table, we report

Wald test statistics for the joint significance of the controls (excluding own lags) in each

regression.

Patent applications exhibit a strong autocorrelation pattern.17 Moreover, pre-existing

month in each quarter, and contains advance releases for macroeconomic aggregates referring to the pre-
vious quarter. For further information see https://www.philadelphiafed.org/research-and-data/

real-time-center/survey-of-professional-forecasters.
15SPF respondents forecast nominal corporate profits net of taxes. We construct a series for real

corporate profits forecasts by deflating with the forecasts for the GDP deflator (our measure of inflation,
see Section 5) at the relevant forecast horizons.

16We use an extension of the Romer and Romer (2004) series up to 2007. Controlling for the changes
in tax policy follows from the intuition in Uhlig (2004) who noted that changes in capital income taxes
would lead to permanent effects on labor productivity and hence be a confounding factor in the analysis
of technology shocks. This intuition was further developed in Mertens and Ravn (2011).

17The negative sign of the autoregressive coefficients, also noted in Adams et al. (1997), suggests the
presence of seasonal patterns in patent applications data. It is likely that these may be the result of
USPTO institutional features and characteristics of the patenting process itself. The inclusion of own
lags in Eq. (1) removes the dependency of the IV on its own past and ensures that the specific source of

13

https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters


Table 1: Instrument Construction

(1) (2) (3) (4) (5)

Own Lags

pat−1 −0.849∗∗∗ −0.928∗∗∗ −0.900∗∗∗ −0.985∗∗∗ −0.977∗∗∗
(0.10) (0.11) (0.10) (0.10) (0.10)

pat−2 −0.480∗∗∗ −0.605∗∗∗ −0.574∗∗∗ −0.560∗∗∗ −0.581∗∗∗
(0.10) (0.11) (0.11) (0.12) (0.12)

pat−3 −0.273∗∗∗ −0.384∗∗∗ −0.366∗∗∗ −0.292∗∗∗ −0.303∗∗∗
(0.09) (0.08) (0.08) (0.11) (0.11)

pat−4 0.002 −0.061 −0.056 −0.044 −0.048
(0.09) (0.08) (0.08) (0.10) (0.10)

Pre-Existing Beliefs

Et[ut+1] −0.326 0.574
(0.37) (5.15)

Et[πt+1] 1.657∗∗ 2.602
(0.68) (1.99)

Et[It+1] 0.485∗∗ 0.072
(0.23) (0.27)

Et[Πt+1] −0.199 −0.279
(0.34) (0.55)

Et[ut+4] −0.845∗ −0.843
(0.46) (5.70)

Et[πt+4] 0.969 −2.586
(0.78) (1.62)

Et[It+4] 0.385 −0.018
(0.26) (0.39)

Et[Πt+4] −0.982∗∗∗ −0.307
(0.28) (0.35)

Policy Shocks

mpolt −4.022∗ −4.321∗
(2.27) (2.33)

mpolt−1 8.128∗ 7.613
(4.81) (5.54)

mpolt−2 6.784∗∗ 5.504∗

(2.70) (3.16)

utaxt −1.386 −1.886
(0.94) (1.16)

utaxt−1 -1.241 −1.817
(1.49) (1.65)

utaxt−2 −2.024∗∗ −3.209∗∗
(0.86) (1.41)

ataxt 2.255 1.044
(2.60) (2.78)

ataxt−1 −2.607 −3.681∗
(1.65) (2.10)

ataxt−2 −4.273 −4.809
(3.61) (3.61)

intercept 4.343∗∗∗ 0.814 6.639 5.100∗∗∗ 7.554
(0.80) (2.83) (4.89) (0.88) (5.85)

F-stat 33.87 17.99 19.38 17.88 11.32
[0.000] [0.000] [0.000] [0.000] [0.000]

Adj-R2 0.448 0.486 0.469 0.535 0.503
N 131 131 131 99 99

Wald Tests for Joint Significance of Controls

Quarter Ahead SPF 4.832
[0.001]

Year Ahead SPF 3.727
[0.007]

Policy Shocks 2.454
[0.016]

SPF & Policy Shocks 2.634
[0.002]

Notes: Regression results based on Eq. (1). Dependent variable: pat = 100×(lnPAt − lnPAt−1).
Robust standard errors in parentheses. SPF Forecasts are for the unemployment rate (ut),
inflation (GDP deflator, πt), real non-residential investments (It), and real corporate profits net
of taxes (Πt). Policy controls include narrative monetary policy (mpolt), narrative unanticipated
(utaxt) and anticipated (ataxt) tax changes. The bottom panel reports Wald test statistics for
the joint significance of the controls with associated p-values below in square brackets. *, **,
*** denote statistical significance at 10%, 5%, and 1% respectively.
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beliefs about the future as captured by the SPF forecasts contain information for patent

applications beyond that included in own lags. This is consistent with patents being

endogenous to the economic cycle and, potentially, also related to past news embedded

in the survey forecasts. Policy changes, and particularly the contemporaneous ones, are

also informative. Both shocks are normalized such that an increase corresponds to a

tightening of policy. The table shows that it is typically the case that restrictive policies

are associated with a decline in patent applications, a further indication of their cyclical

nature.

The procedure in Eq. (1) removes the autocorrelation and seasonal patterns in patent

applications, and the dependence on pre-existing beliefs as captured by the SPF. More-

over, it ensures that the IV is orthogonal to other contemporaneous policy shocks. The IV

is not forecastable also using a wider set of predictors. Macro-financial factors extracted

from large cross-sections and broader sets of survey forecasts not included in Eq. (1) that

Granger-cause patent applications are uninformative for the IV.18

We argue that it is unlikely that structural disturbances other than current technology

news may affect the U.S. economy through zt. This is our sole identifying assumption.

3 Identification of Technology News Shocks

In the news literature, it is common to think of the process for technology as a random

walk with drift subject to two stochastic disturbances. A typical representation assumes

technology to be the sum of a stationary and a permanent component, with news shocks

affecting the latter (see e.g. Blanchard et al., 2013; Kurmann and Sims, 2021). Formally

lnAt = lnSt + lnΓt , (2)

where St is the stationary component, assumed to follow an AR(1) process

lnSt = ϕslnSt−1 + eA1,t , (3)

seasonality does not affect the identification.
18See Tables A.1 and A.2 for Granger-causality results on patent applications, and Tables A.4 and A.4

for the same on the IV.
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and Γt is the permanent component, characterized instead by the presence of a unit-root

∆lnΓt =∆lnA + ϕΓ∆lnΓt−1 + eA2,t−k . (4)

In Eqs. (3) - (4) above ∆lnA is the steady state growth rate of technology, the autore-

gressive coefficients ϕs and ϕΓ are in the interval (0,1), and eA1,t and eA2,t−k are zero-mean

normally distributed i.i.d. processes with variance equal to σ2
A1 and σ2

A2 respectively. At

is typically understood as a shifter to the aggregate production function of the economy,

and intended to capture a concept of technology related to the efficiency with which the

factors of production are utilized, or the introduction of new processes altogether.

eA2,t is the news shock. The standard identifying assumption in the news literature

is that agents learn about eA2,t−k before it hits the technology process, i.e. k > 0 (see

e.g. Beaudry and Portier, 2006; Barsky and Sims, 2011, among many others). However,

a number of more recent papers have argued that news shocks are also in principle

compatible with k = 0, which would affect technology also on impact (see e.g. Barsky

et al., 2015; Kurmann and Sims, 2021). This may happen because news about future

productivity arrives along with an innovation in current technology, because innovations

to current technology may signal significant improvements in the following years, or

because technology slowly diffuses across sectors.

Allowing for k = 0 naturally makes the task of telling apart a news shock with effects

also on current technology from an innovation in current technology (eA1,t) a daunting

one. In this respect, we rely on the information content of the instrument constructed

in Section 2. As noted, while patent applications are most informative for news about

possible future technological changes (k > 0), the fact that innovations can be distributed

under a patent-pending status does not rule out the k = 0 case a priori. Hence, the use of

the patent-based IV does not warrant imposing orthogonality with respect to the current

level of technology. However, as we shall see in the reminder of this section, while no

assumption on the impact response is made, the instrument recovers a shock that leads

to an effectively muted response of TFP upon realization, while eliciting a strong and

sustained response at further ahead horizons. This gives us confidence that the recovered

shock has a large element of news embedded in it.
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3.1 Identifying Assumptions in Our SVAR-IV

We use the patent-based IV to back out the dynamic causal effects of technology news

shocks on a collection of macroeconomic and financial variables in a structural vector

autoregression (SVAR-IV, Mertens and Ravn, 2013; Stock and Watson, 2018).

Let yt denote the n-dimensional vector of economic variables of interest, whose dy-

namics follow a VAR(p)

Φ(L)yt = ut, ut ∼ WN(0,Σ), (5)

where Φ(L) ≡ In−∑p
j=1ΦjLj, L is the lag operator, Φj j = 1, . . . , p are conformable matrices

of autoregressive coefficients, and ut is a white noise vector of zero-mean innovations, or

one-step-ahead forecast errors.

For the purpose of estimating the impulse response functions (IRF) and forecast error

variance decompositions (FEVD) we require that the information in our VAR be sufficient

to recover all the structural shocks. Specifically, that there exists an n-dimensional matrix

B0 such that

ut = B0et, (6)

where et is a vector of n structural disturbances, and B0 collects the contemporaneous

effects of et on yt. Given a suitable identification scheme, Eq. (6) guarantees that the

structural disturbances can be recovered from the observables in the VAR. Full invert-

ibility is not strictly required for IV-based identification of IRFs to a single shock of

interest, as discussed in Plagborg-Møller and Wolf (2021) and Miranda-Agrippino and

Ricco (2023). However, Forni, Gambetti and Sala (2019) show that if Eq. (6) does not

hold, then estimates of the forecast error variance contributions are distorted.

When agents anticipate future changes, as is the case with technology news shocks,

non-fundamentalness is likely to arise (see e.g. Leeper, Walker and Yang, 2013). In-

tuitively, if the shock only has effect on future variables, current realizations are only

informative about past shocks, and the mapping in Eq. (6) breaks down. In this context,

a natural route toward the problem solution is to add information to the VAR, through

variables that help reveal the state variables. This is the role of the stock price index
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in Beaudry and Portier (2006), or of measures of consumers and business confidence in

Barsky and Sims (2012). In a similar vein, factors estimated from large cross-sections

can be added to the VAR specification as in e.g. Giannone and Reichlin (2006); Forni,

Gambetti and Sala (2014).19

Conditional on Eq. (6) holding, the conditions for identification in SVAR-IV are

E[eA2,tzt] = ρ, ρ ≠ 0 (Relevance) (7)

E[ei,tzt] = 0, ∀i ≠ A2 (Contemporaneous Exogeneity), (8)

where zt denotes the external instrument used for the identification of eA2,t. Under these

conditions, the impact responses to eA2,t of all variables in yt are consistently estimated

(up to scale and sign) from the projection of the VAR innovations ût on the instrument

zt (Mertens and Ravn, 2013; Stock and Watson, 2018).

It is important to note that, by construction, the IV will correlate with technology

news shocks insofar as these are captured by the patenting process, and may therefore

leave other sources of variation in long-term productivity growth unaccounted for. Said

differently, while all patent applications are an ex-ante measure of technology news, not

all technology news is captured by patents. What is crucial for the identification is

that no other structural disturbances affect the correlation between ût and zt other than

technology news.

Two approaches are available when identification is attained using instrumental vari-

ables. One is to include the IV among the endogenous variables in the VAR, and retrieve

the IRFs using a standard Cholesky triangularization with the IV ordered first. Alterna-

tively, one can follow the two-step procedure of Mertens and Ravn (2013) which entails

estimating a VAR on the observables, and then regressing the VAR residuals on the IV.

We choose this second option. Under invertibility and exogeneity of the IV, the two

approaches yield the same results in population (see Plagborg-Møller and Wolf, 2021;

Miranda-Agrippino and Ricco, 2023). In empirical samples, however, one critical advan-

tage of the two-step procedure is that it allows us to operate on samples of different

19While non-fundamentalness is a theoretically binding constraint, empirically the VAR-based IRFs
may still be accurate if the “wedge” between the estimated and the true shocks is small (Sims, 2012).
See also Beaudry and Portier (2014); Beaudry et al. (2019).
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length, which is particularly useful in our case due to the short life span of our IV. In

particular, it allows us to estimate the VAR dynamics on sufficiently long samples—which

in turn allows us to entertain meaningful discussions around the effects of the shock in

the long run—while at the same time using the full length of the IV to estimate the

impact effects.20

3.2 Inspecting the Mechanism in an Illustrative VAR

In this section, we put our instrument to test in an illustrative 5-variable VAR and discuss

the sensitivity of our results with respect to a number of perturbations. The variables

included in the VAR are the quarterly estimates of TFP corrected for input utilization of

Fernald (2014), output, consumption, total hours worked, and the Dow Jones Industrial

Average as the stock market index.21 These are chosen as to encompass the sets used

in the VARs of Beaudry and Portier (2006) and Barsky and Sims (2011). The variables

enter the VAR in log levels; and are deflated using the GDP deflator and expressed in

per-capita terms, where appropriate. We report a detailed description of the data and

their construction in the Appendix. The VAR is estimated with Bayesian techniques with

4 lags over the 60-year sample 1960-I:2019-IV. We refer to the sample used for the VAR

estimation as the estimation sample, and the one used for the projection of the VAR

residuals on the instrument as the identification sample respectively. The identification

sample equals the full length of zt (1982:I to 2006-IV).

For the estimation of the VAR, we use a standard Normal-Inverse Wishart prior and

estimate the optimal priors’ tightness as in Giannone, Lenza and Primiceri (2015). We

present our empirical results in the form of impulse response functions at the mode of

the posterior distribution of the parameters, and normalized such that the peak response

of TFP equals 1%. Recall that the identification procedure leaves the full shape of the

IRFs unrestricted, including the impact effects. Shaded areas correspond to 68% and

20We report a more in-depth discussion on this point and results obtained using the alternative ap-
proach in Appendix E.

21The TFP series is obtained from Fernald (2021). Macroeconomic and financial series are obtained
from FRED (Federal Reserve Bank of St. Louis (2023), https://fred.stlouisfed.org) and Refinitiv
Datastream. A full list of variables used in this section and throughout the paper, and sources is included
in the replication README.
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Figure 2: Technology News Shocks: 5-Variable VAR
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Note: Modal responses to a technology news shock identified with patent-based IV. Estimation
sample 1960-I:2019-IV. Identification sample 1982-I:2006-IV. Shaded areas denote 68% and 90%
posterior credible sets. Horizon in quarters. First-stage F-stat=1.488.

90% posterior credible sets.22

The IRFs are reported in Figure 2. A few elements stand out. First, while we have not

imposed any restrictions on the effect of the shock on current TFP, the shock recovered

by the IV has essentially no effect on TFP neither on impact, nor in the following three

to five years. TFP eventually rises robustly and remains elevated throughout, following

a shape that resembles the S-shaped pattern that is typical of the slow diffusion of new

technologies.23

Second, output, consumption, and hours worked all rise. Aggregate consumption

increases robustly on impact, while the initial response of output and hours is more

modest, albeit still positive. For all three variables, the rise is sudden, and the peak of

the dynamic adjustment is reached long before any material increase in TFP materializes,

within one or two years after the shock hits. Third, the stock market prices-in the news

22Because the instrument is a residual generated regressor, OLS-based inference is asymptotically
correct (Pagan, 1984).

23A similarly shaped response is reported in Barsky et al. (2015) and Kurmann and Sims (2021) who
identify technology news shocks based on the forecast error variance of TFP, and do not restrict the
impact TFP response to zero.

20



Table 2: Conditional Correlations: 5-Variable VAR

h = 1 h = 4 h = 12 h = 40
Real GDP 0.989** 0.985** 0.995** 0.997**

Hours 0.988** 0.979** 0.990** 0.889**

Notes: Conditional correlations between consumption, output and hours implied by the identi-
fied VAR at selected horizons. Estimation sample 1960:I - 2019:IV. Identification sample 1982:I
- 2006:IV. *, ** denote statistical significance at 68% and 90% levels respectively. Horizons in
quarters.

on impact, and remains elevated throughout.24 Broadly, the shock induces an immediate

and strong economic expansion in anticipation of the rise of TFP. This is confirmed by the

results in Table 2, where we report the implied conditional correlations of consumption

with the main real activity aggregates at some selected horizons, calculated following Gaĺı

(1999).

Notwithstanding the minimal set of identifying restrictions, the pattern of IRFs recov-

ered by our IV shares many similarities with those in prominent studies such as Beaudry

and Portier (2006) and Barsky and Sims (2011), as we report in the Appendix. What is

remarkable in this context is that the negligible impact response of TFP, the stock mar-

ket pricing-in the news on impact, and, as we discuss below, the shock having maximum

explanatory power for TFP at long horizons—assumed for identification in these earlier

studies—become instead results in our setting. The magnitude of the peak effects is also

in line with previous literature (e.g. Barsky and Sims, 2011; Kurmann and Sims, 2021).

The identification is robust to removing the controls for other contemporaneous pol-

icy shocks, and to downplaying or altogether removing the TRIPS observation (see Ap-

pendix). Removing the explicit controls for other policy shocks leads to responses for

TFP, output and consumption that lie within the error bands of the baseline estimates

for the most part. Some qualitative differences arise in the response of hours and the

stock market, but do not alter our conclusions. Similarly, the IRFs lie comfortably within

24We use the residuals of the stock market for the first-stage, due to it being the variable most likely
to respond to the shock on impact in a significant way. The first-stage F-statistic is equal to 1.488. For
the larger VAR in Section 5 it is equal to 5.99. While these may appear somewhat weaker than desirable,
it should be stressed that the first-stage regression involves stock market returns which are notoriously
very volatile and difficult to predict. The fairly sizable first-stage F-stats in this case are therefore more
encouraging than otherwise.
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Figure 3: Shares of TFP explained variance in the 5-variable VAR
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Note: Share of TFP error variance accounted for by technology news shock identified with
patent-based IV. VAR(4) with standard macroeconomic priors. Estimation sample 1960-I :
2019-IV; Identification sample 1982-I : 2006-IV. In the left panel the shaded area delimits
business cycle frequencies (between 8 and 32 quarters).

the estimated error bands when we disregard the large observations corresponding to the

implementation of the TRIPS agreement. Intuitively, this affects the precision of the

estimates, but does not alter the broad picture.

The identification is also robust to only using ex-post granted patents in the construc-

tion of the IV, which corresponds to assigning a zero weight to patent applications that

are eventually unsuccessful. And—mindful of the caveats highlighted in Section 2—also

to alternative weighting schemes, as we discuss in detail in the Appendix. Using only

ex-post granted patents to construct the IV yields somewhat stronger responses for hours

and GDP. It is possible that ex-post granted patents may be embedding a somewhat

stronger signal. Equally, the alternative dataset that we use for these exercises only in-

cluding listed firms may also have a bearing on the response of aggregate output and

hours.

To complete the discussion, Figure 3 reports the share of TFP variance that is ac-

counted for by technology news shocks as identified by the IV.25 Even if we have not

imposed any such restriction ex ante, the shock recovered by the IV is most explana-

tory for TFP at long horizons, and at very low frequencies. This is consistent with the

identified shock being a driver of the long-run component of aggregate productivity.26

25Variance decompositions for all variables as well as the algorithm are reported in the Appendix.
26The variance shares tend to be exceptionally high for consumption and output, reaching up to 80%.

This is likely due to the 5-variable VAR not being informationally sufficient (see Forni and Gambetti,
2014) which, as noted in Section 3.1, may introduce a bias in the forecast error variance decompositions
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4 Technology News Shocks in a Monthly VAR

In this section, we discuss how one could apply our identification strategy in a monthly

VAR. Virtually all the existing empirical literature on technology news shocks relies on

estimated quarterly models. One main reason for this choice is that this is the high-

est frequency at which benchmark estimates of TFP and utilization-adjusted TFP are

available (Fernald, 2014).

The higher sampling frequency of patent data, however, raises the question of whether

we may be discarding relevant variation due to time aggregation. In what follows, we

discuss how to construct the IV using monthly data, and test our results in a monthly

VAR. For this purpose, we also construct monthly estimates of TFP and of utilization-

adjusted TFP for the U.S. economy from 1966:01 to 2023:12. We report all details in the

Appendix.27

To construct an IV at monthly frequency we adapt the specification in Eq. (1) ac-

cordingly. While it was not always feasible to find an exact match for the entries used in

the quarterly specification, we have attempted to preserve the nature of the exercise as

much as possible. The main ingredients needed for the IV are patent applications (pat),

forecasts for the macro outlook that capture up-to-date predictions prevalent at the time

of the application filings (Et[xt+h]), and policy controls (ηt).

Patent applications data are already available at monthly frequency from our source

(Marco et al., 2015). The SPF forecasts that we use in our benchmark specification are

distributed quarterly, which requires switching to a different survey. One possibility, and

the one we have adopted, is to use the monthly Blue Chip forecasts. Blue Chip forecasts

are published once a month and collect predictions about an array of different indicators

at different quarterly horizons. However, the SPF and Blue Chip do not forecast the

same set of variables, such that a match was only possible for the unemployment rate

and inflation. In the quarterly specification we also included forecasts for non-residential

investment and real corporate profits. These only become available in the Blue Chip

Economic Indicators in 1993, therefore we have substituted them with the forecast for

(see Forni et al., 2019).
27We thank John Fernald for his invaluable guidance and assistance in this endeavour. We make these

data publicly available.
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Figure 4: Technology News Shocks in a Monthly VAR
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GDP growth in an attempt to encompass both. Similar to the quarterly case, we have

included forecasts for the next quarter and next year in the monthly version.

Policy controls in the quarterly benchmark include narrative shocks for both monetary

and tax policy. Monetary policy shocks are technically available at FOMC announcement

frequency. For the monthly specification we have re-estimated and extended the series of

Romer and Romer (2004) at monthly frequency. However, we were not able to switch to

a monthly series for tax shocks.

The monthly IV is then estimated as the residual of the following regression

pat = c + γ(L)pat + ∑
h=3,12

βhEt[xt+h] + δηt + zt, (9)

where now the time indices t and h refer to months. Accordingly, pat denotes the monthly

growth rate of patent applications, and γ(L) = ∑12
j=1 γjL

j. Et[xt+h] are the Blue Chip

forecasts one quarter and one year ahead. And ηt is the monetary policy control.

We test the monthly IV in an illustrative 5-variable VAR that mimics the composition
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of the VAR in Section 3. The VAR includes our new monthly series of utilization-

adjusted TFP, a monthly series for GDP constructed as in Arias et al. (2019), real personal

consumption expenditures, hours worked, and the stock market index. The VAR is

estimated with 12 lags over the sample 1966-2019, and identified using the monthly IV.

The shock is normalized to yield a peak response of TFP of 1 percentage point. Figure 4

reports the results.

Despite all the caveats associated with the construction of monthly versions of the

IV and of utilization-adjusted TFP, results are remarkably in line with what discussed in

the quarterly specification.

5 Technology News Shocks and Business Cycles

To study the propagation of technology news shocks to the broader economy we use

a larger 12-variable VAR. The variables included cover real macroeconomic aggregates,

financial markets, and expectations, and encompass the main indicators that feature in

the theoretical literature on technology news shocks. This larger system enables us to

characterize more carefully the response of the aggregate economy, and the importance

of these structural disturbances in originating economic fluctuations. We offer a more

in-depth discussion of our results in the next section.

In addition to the variables analyzed in the previous section, the VAR includes real

investment, inputs utilization, R&D expenditures, the inflation rate and real wages, the

term spread, and an index of consumer confidence taken from the Michigan Survey of

Consumers. With the exception of inflation and the term spread, all the variables enter

the specification in log levels, and are deflated and expressed in per-capita terms where

appropriate. A complete description of the data and transformations is reported in the

Appendix. The main features of the estimation are the same as in the previous section.28

The IRFs are reported in Figure 5 and scaled such that the peak TFP response is equal

to 1 percentage point. We discuss the robustness of our results below and report the

associated charts in the Appendix.

28We address concerns in e.g. Canova et al. (2009) and Fève et al. (2009) by re-estimating our baseline
VAR with 12 lags. The richer parametrization substantially increases the computational burden but
does not change our results. IRFs are reported in the Appendix.
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Figure 5: Propagation of Technology News Shocks
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Note: Modal response to a technology news shock identified with patent-based external in-
strument. VAR(4). Estimation sample 1960-I:2019-IV. Identification sample 1982-I:2006-IV.
Shaded areas denote 68% and 90% posterior credible sets. First-stage F-stat=5.99.

Most of the considerations made in the previous section carry through in the larger

VAR. Albeit less precisely estimated, the response of TFP retains the main features

discussed earlier. Namely, an initial muted response followed by a slow and persistent

rise that becomes significant only years after the shock hits. Conversely, all other macro

aggregates respond more swiftly, and tend to peak within the first three years. Both

output and hours do not respond on impact, and are in distinctly positive territory

thereafter. But while the response of hours tends to revert over time, output remains

elevated throughout. Investment displays a similarly shaped response. While positive,

the initial reaction is only marginally significant at conventional levels. The magnitude
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Table 3: Conditional Correlations

h = 1 h = 4 h = 12 h = 40
Real GDP 0.450 0.896* 0.985** 0.993**

Hours 0.597 0.896* 0.982** 0.916**

Notes: Conditional correlations between consumption, GDP, and hours implied by the identified
VAR at selected horizons. Estimation sample 1960:I - 2019:IV. Identification sample 1982:I -
2006:IV. *, ** denote statistical significance at 68% and 90% levels respectively. Horizons in
quarters.

of the responses is economically important. Output rises by almost 2 ppt at peak, while

investment increases by about 6 ppt in annual terms. Consumption retains the positive

and significant impact response observed earlier, although the magnitude of the initial

adjustment is significantly more modest at less than half a percentage point. We return

on the response of consumption in the discussion of our results in the next section. Inputs

utilization—the same variable used to correct TFP—drops modestly on impact to increase

a few quarters afterward. R&D expenditures also increase with delay, presumably as a

result of the increase in both investment and output.

While the responses are somewhat delayed, also in the larger VAR they are consistent

with positive technology news prompting a broad-based expansionary business cycle phase

whereby all macroeconomic aggregates are significantly higher long before any material

increase in TFP is recorded. We quantify the extent of the comovement in Table 3, where

we report the conditional correlation between consumption, output, and hours worked

at selected horizons.29 We note that while the delayed response of output and hours

makes the short-horizon correlations not significant, the correlations are generally large

and positive at all horizons, which makes the shock a plausible enabler of business cycles.

This aligns with findings in e.g. Beaudry and Portier (2006); Christiano et al. (2003) but

contrasts with e.g. Barsky and Sims (2011). Although the latter identification scheme

and associated comovements are shown to be sensitive to the TFP vintage used (see

Cascaldi-Garcia, 2017; Kurmann and Sims, 2021).

The identified shock is mildly deflationary. While the initial response is not significant,

inflation falls within the first year following a negative hump-shape that reaches a trough

29The full set of correlations is reported in the Appendix.
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of about negative 14 bps at the two-year horizons, and reverts to zero thereafter. The

muted impact response of inflation contrasts with findings in some earlier studies that

document a sharp initial decline instead (see e.g. Barsky and Sims, 2011; Barsky et al.,

2015). Aggregate real wages fall marginally on impact to improve robustly at longer

horizons.

Financial variables respond strongly and on impact. The stock market is quick in

pricing-in positive news, and remains elevated throughout, although the response be-

comes less precisely estimated relative to the 5-variable VAR. Using broader stock market

indices such as the S&P 500 makes the estimated response more uncertain. This is likely

due to the DJIA including many of the heavy-weight information-technology companies,

presumably those mostly affected by these types of shocks over the identification sample

considered. The slope of the yield curve, here measured as the spread between the 10-year

and the 1-year Treasury rates, rises by about 20 bps on impact. The response of the yield

curve is qualitatively similar to what is documented in Kurmann and Otrok (2013), but

the magnitudes in our case are smaller. We return to the response of the yield curve and

the likely monetary policy response to the shock in the next section. Finally, consumer

confidence rises robustly at medium horizons, but the impact response is only marginally

significant at conventional levels. We verify that neither the global financial crisis nor

the ZLB sample drive or affect our results (see Appendix).

Using an instrumental variable that is based on patent applications rather than grants

is important to unveil the full extent of the anticipatory effects. Comparing our results

with those in Cascaldi-Garcia and Vukotić (2022) reveals that the latter choice leads to

responses that are mostly significant on impact, and very short-lived, suggesting that

patent grants may be capturing some non-trivial cyclical variation as well, as also noted

in Christiansen (2008).

The set of response functions is compatible with the identified shock being an origina-

tor of business-cycle type of fluctuations. But whether it can be thought of as a meaningful

driver of business cycles ultimately rests on the share of aggregate fluctuations that it

can account for.

Table 4 reports the average shares of explained variation over selected frequency inter-

vals for all variables in our VAR. Each column reports the percentage share of variance

28



Table 4: Error Variance Decomposition

short run business cycle medium run long run

[ 1 - 2 years ] [ 2 - 8 years ] [ 8 - 25 years ] [ 50 - 60 years ]

Utilization-Adj TFP 0.33 0.42 3.76 11.88

Real GDP 1.52 6.61 13.13 32.85

Real Consumption 4.74 6.78 20.16 34.27

Real Investment 1.44 8.70 26.37 34.77

Hours 1.17 6.04 15.73 29.80

Inputs Utilization 5.54 3.82 4.98 4.05

R&D Expenditures 1.92 6.78 6.16 9.14

GDP Inflation 1.98 10.28 2.30 3.54

Real Wages 3.34 3.67 6.64 19.10

Term Spread 33.62 23.24 10.65 7.42

Dow Jones 4.67 2.00 1.43 14.32

Consumer Confidence 1.42 9.45 16.7 20.60

Notes: Average percentage share of variance accounted for by the identified technology news
shock over different frequency intervals. Estimation sample 1960:I - 2019:IV. Identification
sample 1982:I - 2006:IV.

accounted for by the identified shock in the short-run (average over frequencies corre-

sponding to a period between 1 and 2 years), over the business cycle (between 2 and

8 years), and in the medium- and the long-run (between 8 and 25 years, and 50 and

60 years respectively). The algorithm used for the decomposition builds on Altig et al.

(2011) and is described in detail in the Appendix. The advantage of looking at variance

decompositions in the frequency domain is that it allows us to separate among long,

medium, and short-run fluctuations more clearly than a standard forecast error variance

decomposition in the time domain.30

A few results are worth highlighting. First, and similar to what we found in the

5-variable VAR, the shock recovered by the IV is most explanatory for TFP in the very

long run. Conversely, the contribution of the shock to higher frequency fluctuations in

productivity is negligible. This is consistent with the identified shock being mostly a

driver of the trend component of TFP. Second, the shock is responsible for a relatively

30Intuitively, even at relatively short forecast horizons, FEVDs in the time domain combine fluctuations
at all frequencies. Because each horizon is a mixture of short, medium and long term components,
evaluating the contribution of shocks at business cycle frequencies becomes more problematic. For
comparison, frequency-based and time-based forecast error variance decompositions are reported in the
Appendix.
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small fraction of the fluctuations in main business cycle aggregates at business cycle

frequencies, but it accounts for over a third of the variation in consumption, investment,

output and hours in the very long-run. This apparent disconnect between drivers of

business cycles and of long-run fluctuations echoes findings in Angeletos et al. (2020).

Third, the shock explains around 15% of the long-run variance of the stock market, and

is responsible for over a third of the variation of the yield curve in the short-term, which

points in the direction of Kurmann and Otrok (2013). A note of caution is in order. As

discussed, the IV only captures technology news shocks insofar as these are captured by

the patenting process, and may therefore leave other sources of variation in productivity

unaccounted for. As a result, caution should be used when comparing the shares of

forecast error variance with those reported in other studies.

6 Discussion of the Results

In this section we take stock of our results and use them as guide to interpret the features

of the identified shock, and how it may diffuse through the economy. In this context,

it is important to bear in mind that the aggregate IRFs that we report are likely to

result from a combination of multiple and distinct effects that jointly determine how

households, firms, financial markets, and the central bank respond to the shock, and that

the empirical nature of our exercise does not allow to disentangle. In what follows, we

make use of additional variables to aid with the interpretation, and leave a more formal

model-based characterization for future research.31

As noted, and consistent with patent applications marking the early stages of the

innovation process, the IV recovers a shock that improves long-term productivity signif-

icantly, but has no noticeable bite on TFP in the short-run. One interesting question

is what type of technological change is the IV likely to be picking up. To this purpose,

recall that our identification strategy centers on the signal embedded in so-called utility

patents. These patents encompass advancements in products, machinery, and processes.

In turn, advancements are intended as improvements of existing technologies as well

31We study the response of these additional variables by separately including them in the VAR. Full
IRFs are reported in the Appendix.
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Figure 6: Price of Investment, Unemployment & Consumer Expectations
(a)
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Note: Response of selected variables separately included in the VAR. VAR(4) with standard
macroeconomic priors. Estimation sample 1960-I:2019-IV; Identification sample 1982-I:2006-IV.
Shaded areas denote 68% and 90% posterior credible sets.

as the creation of new technologies altogether. This definition makes it likely that the

identified shock may combine elements of both embodied and disembodied technological

change. Some evidence in this direction is provided by the response of the relative price

of investment (Figure 6 panel a) which tends to contract persistently over time, indicat-

ing that the shock may have some of the flavor of the investment-specific technological

improvements of e.g. Fisher (2006).32

News about this future (and potentially investment-intensive) productivity improve-

ment is released in advance—and channeled by the IV as per our identifying assumption—

which opens up the door for the economy to adjust and react in anticipation to it. Our

results show that output, consumption, investment and hours all expand a few quarters

32See also Justiniano et al. (2010, 2011); Ben Zeev and Khan (2015). However, whether this is the
main channel through which the shock operates remains unclear. Chen and Wemy (2015) show that IST
shocks are an important driver of long-run movements in aggregate TFP, which is a useful complement
to our findings. In fact, this paper shows that shocks that maximize the long-run FEV of TFP and
those that maximize that of the relative price of investment are almost perfectly collinear. Due to our
identification being fundamentally different, it is not clear that this interpretation can be seamlessly
applied in our context.
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after the shock hits.33 The large asynchronicity between the speed of adjustment of these

macro aggregates relative to the improvement in TFP is consistent with such anticipatory

effects being active and playing a potentially important role.

Anticipatory effects are also typically advocated to make sense of the systematic in-

crease in consumption, which is a fixture of virtually all empirical studies. To shed more

light on the reaction of households behavior, Figure 6 reports the response of the unem-

ployment rate (panel b) as well as of consumers’ expectations about unemployment and

business conditions over a one- and five-year horizon respectively (panels c and d). Taken

together, these responses paint a rather nuanced picture. As noted, consumer confidence

tends to improve robustly shortly after the shock hits, even though the impact rise is only

marginally significant. Very interestingly, short-term expectations of unemployment rise

sharply upon realization of the shock, to quickly revert thereafter. The survey asks re-

spondents whether they expect unemployment over the next twelve months to be higher,

lower, or about the same as current, and returns the balance of responses as an indicator.

Therefore, the IRF in the figure is to be interpreted as an increase in the share of re-

spondents that expect unemployment to rise. While to different degrees, these two sets of

responses seem to suggest that the perception of the short-term effects of technology news

may be potentially unfavorable, or at least not unequivocally benign. This initial reaction

however dissipates over a relatively short horizon. And, consistently, expectations about

the medium-term outlook rise significantly (panel d).34

How these expectations may interact with the reminder of the variables to concur to

determine the response of aggregate consumption is a question that is best addressed in

the context of a model. But, based on our results, we posit that there may be at least

two elements at play. On the one hand, the aggregate responses may mask composi-

tional effects and heterogeneity across workers. Consider for example the case in which

firms switch to more capital-intensive technologies, or reconfigure towards automation,

or introduce technologies that render the skills of some incumbent workers obsolete (e.g.

Kogan et al., 2021). These cases can plausibly lead to expectations of unemployment to

33Note that, differently from theoretical models, the VAR is unrestricted, and does not impose an ag-
gregate resource constraint; as such, some discrepancies may arise when comparing the impact responses
of output, consumption and investment.

34Barsky and Sims (2012) argue that this variable in particular is likely to embed news about future
productivity. See also Cochrane (1994).
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Figure 7: Monetary Policy Response
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Note: Response of selected variables separately included in the VAR. VAR(4) with standard
macroeconomic priors. Estimation sample 1975-I:2018-IV; Identification sample 1982-I:2006-IV.
Shaded areas denote 68% and 90% posterior credible sets.

increase in the short-term. And workers that are negatively impacted may reasonably

reduce their consumption. However, there is no a priori reason to believe that this should

apply in equal measure to all workers, or that indeed this should be thought of as the

representative or predominant case. In the VAR the impact response of aggregate hours

is muted, but the unemployment rate rises on impact (Figure 6 panel b), suggesting that

adjustments along both the intensive and extensive margins may be at play. On the other

hand, there may be meaningful heterogeneity across the income distribution. While ag-

gregate wages decline mildly on impact, the stock market rises significantly. Depending

on the relative distribution of labor income and financial wealth, it is plausible that the

combination of responses may leave some segments of the population significantly better

off.

A final point refers to the possible amplification that may result from the endogenous

response of the monetary authority to the shock (see also Kurmann and Otrok, 2013).

Figure 7 reports the response of the short-term interest rate, of the Federal Reserve’s ex-

pectation of inflation a year hence, which we take from the official Greenbook/Tealbook

publication, and of the decomposition of the response of the 10-year rate into its ex-

pectation and term premia components, as implied by our VAR.35 Due to the sample

35Note that the availability of Greenbook forecasts for inflation restricts the VAR sample to 1975-2018.
Net of risk considerations, holding a 10-year bond should be equivalent to rolling 1-year bonds over 10
years. We calculate horizon h term premium responses as the difference between the horizon h response
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considered including the zero-lower-bound period, we use the one-year nominal interest

rate to measure the short-term policy rate.

The one-year rate falls by about 30 bps on impact, which roughly matches the size

of the decline in expected inflation. This implies that shorter maturity interest rates

are likely to fall by more, and hence that short-term real rates fall following the shock.

Recall also that the slope of the yield curve—the spread between the 10-year and the

1-year Treasury rates—rises by about 20 bps on impact. Together with the short-term

interest rate response, this implies an impact decline of long-term yields of about 10 bps.

We further note that the 1-year rate returns to pre-shock levels relatively quickly, and is

hence likely not to fully account for the impact fall in the 10-year Treasury yield. In turn,

this implies that following a technology news shock the term premium declines. Indeed,

the decomposition of Figure 7 shows that the term premium remains compressed for an

extended period of time, which aligns with findings in Crump, Eusepi and Moench (2016).

In addition to anticipatory effects, the fall in borrowing costs, coupled with compressed

risk premia, may act as a further powerful amplifier for the propagation of news shocks.

7 Conclusions

How does the aggregate economy react to a shock that raises expectations about future

productivity growth? In this paper, we have provided an empirical answer to this ques-

tion using a novel patent-based instrumental variable for the identification of technology

news shocks that enables us to dispense from all the traditional assumptions used in the

empirical news literature. The IV is constructed as the component of patent applications

that is orthogonal to pre-existing beliefs about the macro outlook, and to other con-

temporaneous policy shocks. Our sole identifying assumption is that no other structural

disturbances affect the economy via the IV, except for contemporaneous technology news.

The IV recovers technology news shocks that have essentially no impact on current

productivity, but are a significant driver of its trend component. Our results reveal four

main patterns. First, macro aggregates react well in advance of any material increase

in TFP, suggesting an important role for anticipatory effects. Second, the conditional

of the 10-year rate, and the average expected response of the 1-year rate at horizons h,h + 4, . . . , h + 36.
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comovements implied by our identified VAR are positive, and therefore enable technology

shocks as a potential originator of business cycles. Third, most macro aggregates tend

to respond to the shock with some delay. Fourth, while an important driver of long-run

dynamics, the recovered shock only explains a relatively modest fraction of the variation

of main macroeconomic aggregates at business cycle frequencies.

We further document a nuanced response of consumers’ expectations in response to

the shock, and that the central bank tends to respond to the shock by easing policy.

Lower borrowing rates and compressed term premia appear as likely amplifiers of the

short-term effects of news shocks.

In our analysis we have focused on the aggregate effects of technology news shocks,

and therefore looked at the aggregate signal embedded in the universe of USPTO patent

applications. In practice, however, different sectors may behave differently. Equally,

patents in certain industries may carry a stronger or more pervasive news signal than in

others. This opens up interesting questions concerning heterogeneous effects at sectoral

and even at the firm level. We leave these important questions for future research.

Data Availability Statement The data and code underlying this research are avail-

able on Zenodo at https://doi.org/10.5281/zenodo.15298755.
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