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Abstract. Agents learn about a changing state using private signals and their neighbors’

past estimates of the state. We present a model in which Bayesian agents in equilibrium

use neighbors’ estimates simply by taking weighted sums with time-invariant weights. The

dynamics thus parallel those of the tractable DeGroot model of learning in networks, but

arise as an equilibrium outcome rather than a behavioral assumption. We examine whether

information aggregation is nearly optimal as neighborhoods grow large. A key condition

for this is signal diversity : each individual’s neighbors have private signals that not only

contain independent information, but also have sufficiently different distributions. Without

signal diversity—e.g., if private signals are i.i.d.—learning is suboptimal in all networks and

highly inefficient in some. Turning to social influence, we find it is much more sensitive to

one’s signal quality than to one’s number of neighbors, in contrast to standard models with

exogenous updating rules.
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1. Introduction

People learn from others about conditions relevant to decisions they have to make. In many

cases, the conditions—e.g., the state of a labor market facing workers, or the business envi-

ronment relevant to an organization—are changing. Thus, welfare depends not on learning a

static “state of the world,” but rather on staying up to date with a changing state. The phe-

nomenon of adaptation and responsiveness to new information is central in many economic

applications, including in economic development, the study of organizations, and financial

decision-making. When is a group of agents successful, collectively, in adapting efficiently to

a changing environment? The answers lie partly in the structure of the social networks that

shape agents’ social learning opportunities. Our model is designed to analyze how a group’s

adaptability is shaped by the properties of such networks, the inflows of information into

society, and the interplay of the two.

We consider overlapping generations of agents who are interested in tracking an unobserved

state that evolves over time.1 The state is a Gaussian AR(1) process: somewhat persistent,

but with constant innovations to learn about. Each agent, before making a decision, engages

in social learning: she observes the actions of some members of prior generations, which reveal

their estimates of the state. The social learning opportunities are embedded in a network,

in that one’s network position determines the neighborhood of peers whom one observes.

Neighborhoods reflect geographic, cultural, organizational, or other kinds of proximity.2 In

addition to social information, agents also receive private signals about the current state,

with Gaussian distributions that may also vary with network position; in particular, some

agents may receive more precise information about the state than others.

We give some examples. When a university student begins searching for jobs, she becomes

interested in the state of the relevant labor market (e.g., typical wages for someone like her),

which naturally vary over time. She uses her own private research (a private signal) but also

learns from the choices of others (e.g., recent graduates) who have recently faced a similar

problem. Whom she can learn from will depend on her academic specialization, dormitory,

extracurricular activities, and so forth: she will predominantly observe predecessors who are

“nearby” in these ways. Similarly, when a new cohort of professionals enters a firm such as

a management consultancy or law practice, they learn about the business environment from

their seniors. Who works with whom, and therefore who learns from whom, is shaped by the

structure of the organization. Beyond heterogeneity in network position, agents differ in the

precision of the private signals they can access from outside the network: for example, people

with quantitative training may be better placed to learn from external statistical reports.

1Cf. Banerjee and Fudenberg (2004) and Wolitzky (2018), with overlapping generations and a fixed state.
2Sethi and Yildiz (2019) argue that, even without explicit communication costs or constraints, familiarity and
shared context determine the network in which people can effectively communicate.
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We now detail our three main contributions. The first is to develop a tractable model

of learning about a changing state in which Bayesian updating has a simple form: each

agent forms an estimate by taking a weighted average of neighbors’ estimates and her private

signal. Because the environment is stationary, the weights are stationary as well. Equilibrium

behavior thus yields a dynamic paralleling the DeGroot (1974) network learning model, which

is famous for its tractability, but which has been criticized for its lack of canonical foundations

(Molavi et al., 2018; Golub and Sadler, 2016). The weights in agents’ learning rules are

endogenously determined because, when each agent extracts information from neighbors’

estimates, the information content of those estimates depends on the neighbors’ learning rules.

We characterize these weights and the distributions of behavior in a stationary equilibrium.3

These characterizations permit the analysis of comparative statics of behavior and welfare.

The model is well-behaved computationally: equilibria can be calculated quickly in networks

of thousands of nodes, which makes the framework useful for structural exercises. Finally,

the basic framework and stationary equilibrium definition extend readily to accommodate

various kinds of behavioral updating rules, e.g., ones that neglect correlations in neighbors’

actions.

Our second contribution is to analyze when equilibrium learning facilitates good informa-

tion aggregation. Here we have positive and negative results. The main positive finding is

that Bayesian agents in equilibrium can achieve good aggregation under a signal diversity

condition. To formalize “good aggregation,” we first note that in our model social informa-

tion is valuable to agents insofar as it allows them to estimate the state before the current

period; our measure of aggregation quality is the accuracy of these estimates. We say good

aggregation occurs if each agent has an estimate nearly as precise as if she simply knew the

previous state. We say signal diversity holds if each individual has at least two different pri-

vate signal precisions represented in large numbers in her neighborhood. The positive result

says that signal diversity is sufficient for good aggregation, robustly across a large class of

random networks (ones arising from stochastic block models satisfying certain technical con-

ditions). Signal diversity is valuable because it leads to diversity of neighbors’ strategies: it

makes them use recent and older information differently from one another. An agent observ-

ing such neighbors, in turn, can use the diversity for statistical identification, constructing a

precise estimate of the most recent state. We illustrate this key idea in an example at the

end of the introduction.

We complement the positive finding with two negative results showing that both the “signal

diversity” and the “Bayesian” conditions are important. First, signal homogeneity turns out

3In Bayesian models of learning about a fixed state there is a time-dependence whereby rational updating
rules depend on the time elapsed since the learning process started. Studies of such models often focus on an
eventual rate of learning about a fixed state. See, for instance, Molavi, Tahbaz-Salehi, and Jadbabaie (2018)
and Harel, Mossel, Strack, and Tamuz (2021). This time-dependence is absent in our stationary environment;
equilibrium outcomes can be summarized by steady-state updating weights and error rates.
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to be a fundamental obstruction to good aggregation. In an environment where everyone’s

private signals are conditionally independent and identically distributed, equilibrium aggre-

gation is bound to be inefficient. We begin by establishing this point in highly symmetric

networks, where the failure of aggregation is shown to have severe welfare consequences, mak-

ing each agent worse off by an unbounded amount relative to a world with signal diversity. A

more general finding is that in large networks with signal homogeneity, it is impossible in equi-

librium to achieve accuracies of aggregation of the same order as in our positive result under

signal diversity. One might have thought that diversity of neighbors’ network positions (and

thus learning opportunities) can substitute for diversity of their private signal distributions;

our negative result shows that network diversity is a poor substitute for signal diversity.

We next show that the “Bayesian” condition is also important for the good aggregation

result. To do this, we contrast the learning of Bayesians best-responding to others’ learning

rules with that of a naive population too unsophisticated to account for correlations in neigh-

bors’ learning errors, as in some canonical behavioral learning models (Eyster and Rabin,

2010).4 We identify a class of such models in which information aggregation is essentially

guaranteed to fall short of good aggregation benchmarks for all agents. The deficiencies of

naive learning rules are different from and more severe than those in similar problems with

an unchanging state, where naive heuristics can aggregate information very well.5

Our third contribution is to study social influence, an outcome of central importance in

network theory. We define a notion of steady-state social influence—how an idiosyncratic

change in an individual’s information affects others’ average behavior. This is analogous

to the definition of influence in the standard DeGroot model (where updating weights are

exogenous). The endogenous determination of weights makes a big difference for how the

environment affects social influence. Relative to the DeGroot model benchmark studied in

DeMarzo, Vayanos, and Zweibel (2003), an agent’s social influence is much more sensitive to

the quality of her private information. On the other hand, just as in the standard benchmark,

an agent’s influence is approximately proportional to her degree.

A closing discussion makes two main points. First, some of our theoretical aggregation

results use large random graphs. We perform a numerical exercise to show that the main

message about information aggregation—diversity of signal types helps learning—remains

valid when we calculate equilibria on graphs reflecting real social networks. Second, our

analysis generalizes readily to richer models of multidimensional states and signals. As one

application of such a generalization, we consider a manager who wishes to facilitate better

learning in an organization, and ask what distributions of expertise such a designer would

4See also Bala and Goyal (1998), a seminal model of boundedly rational learning rules in networks.
5In analogous fixed-state environments where individuals have sufficiently many observations, if everyone uses
certain simple and stationary DeGroot-style heuristics (requiring no sophistication about correlations between
neighbors’ behavior), they can learn the state quite precisely (Golub and Jackson, 2010; Jadbabaie, Molavi,
Sandroni, and Tahbaz-Salehi, 2012). A changing state makes such imitative heuristics quite inefficient.
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prefer. Our results provide a distinctive rationale for informational specialization as a design

feature that facilitates good information aggregation.

An example. We now present a simple example that illustrates our dynamic model, high-

lights obstacles to learning that distinctively arise in a dynamic environment, and gives a

sense of some of the main forces that play a role in our results on the quality of learning.

Consider a particular environment, with a single perfectly informed source S; many media

outletsM1, . . . ,Mn with access to the source as well as some independent private information;

and the general public. The public consists of many individuals who learn only from the media

outlets. We are interested in how well each member of the public could learn by following

many media outlets. More precisely, we consider the example shown in Figure 1.1 and think

of P as a generic member of the large public.

. . .

P

S

M1 M2 M3 M4 M5 M6 Mn

Figure 1.1. The network used in the “value of diversity” example

The state θt follows a Gaussian random walk: θt = θt−1 + νt, where the innovations νt

are standard normal. Each period, the source learns the state θt and takes an action (which

can be thought of simply as making an announcement) that reveals it. The media outlets

observe the source’s action from the previous period, which is θt−1. At each time period, they

also receive noisy private signals, sMi,t = θt + ηMi,t with normally distributed, independent,

mean-zero errors ηMi,t. They then announce their posterior means of θt, which we denote

by aMi,t. The member of the public, in a given period t, makes an estimate based on the

observations aM1,t−1, . . . , aMn,t−1 of media outlets’ actions in the previous period. All agents

are short-lived: they see actions in their neighborhoods one period ago, and then they take

an action that reveals their posterior belief of the state.

If we had an unchanging state but the same signals and observation structure, learning

would trivially be perfect: media outlets would learn the state from the source and report it

to the public. In the dynamic environment, given that P has no signal, she can at best hope

to learn θt−1 (and use that to estimate θt). Can this benchmark be achieved, and if so, when?

A typical estimate of a media outlet at time t is a linear combination of sMi,t and θt−1 (the

latter being the information that the media outlets learned from the source S). In particular,
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the estimate of media outlet Mi at time t can be expressed as

aMi,t = wisMi,t + (1− wi)θt−1,

where the weight wi on the media outlet’s signal is increasing in the precision of that signal.

We give the public no private signal, for simplicity only.

Suppose first that the media outlets have identically distributed private signals. Because

the member of the public observes many symmetric media outlets, it turns out that her best

estimate of the state, aP,t, is simply the average of the estimates of the media outlets. Since

each of these outlets uses the same weight wi = w on its private signal, we may write

aP,t = w

n∑
i=1

sMi,t−1

n
+ (1− w)θt−2 ≈ wθt−1 + (1− w)θt−2.

That is, P ’s estimate is an average of media private signals from last period (t−1), combined

with what the media learned from the source, which tracks the state in the period before that

(t− 2). In the approximate equality, we have used the fact that an average of many private

signals is approximately equal to the state, by our assumption of independent errors. No

matter how many media outlets there are, and even though each has independent information

about θt−1, the public’s beliefs are confounded by older information.

What if, instead, half of the media outlets (say M1, . . . ,Mn/2) have more precise private

signals than the other half, perhaps because these outlets have invested more in expertise

on this topic? The media outlets with more precise signals, called group A, will then place

weight wA on their private signals, while the media outlets with less precise signals (group B)

use a smaller weight, wB. We will now argue that a member of the public can extract more

information from the media in this setting. In particular, she can first compute the averages

of the two groups’ actions

type A average

action at time t− 1
= wA

n/2∑
i=1

sMi,t−1

n/2
+ (1− wA)θt−2 ≈ wAθt−1 + (1− wA)θt−2

type B average

action at time t− 1
= wB

n∑
i=n/2+1

sMi,t−1

n/2
+ (1− wB)θt−2 ≈ wBθt−1 + (1− wB)θt−2.

Then, since wA > wB, the public knows two distinct linear combinations of θt−1 and θt−2.

The state θt−1 is identified from these. So the member of the public can form a very precise

estimate of θt−1—which, recall, is as well as she can hope to do. The key force is that the two

groups of media outlets give different mixes of the old information and the more recent state,

and by understanding this, the public can infer both. Indeed, to recover θt−1, the public puts

a negative weight on the actions of media outlets of type B, which allows it to subtract off old

information and focus on the recent state, θt−1. One can show that if, in contrast, agents are

naive, e.g., if they think that all of the estimates of the media are uncorrelated (or only mildly
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correlated) conditional on the state, they will put positive weights on their observations and

will again be bounded from learning the state.

This illustration relied on a particular network with several special features: a very “cen-

tral” source, one-directional links, and no communication among the media outlets or the

public. We will show that the same considerations determine learning quality in a large class

of random networks in which agents have many neighbors, with complex connections among

them. Quite generally, if each neighborhood contains a diversity of signal types, agents can

concentrate on new developments in the state while filtering out old, less relevant information

and thus estimate the changing state as accurately as physical constraints allow.

Outline. Section 2 sets up the basic model and discusses its interpretation. Section 3 defines

equilibrium, shows its existence, and characterizes it. Section 4 reports our main theoretical

results on the quality of information aggregation. In Section 5, we discuss learning outcomes

under a variety of non-Bayesian models. Section 6 defines and analyzes social influence.

Section 7 relates our model and results to the social learning literature. In Section 8, we

describe our numerical exercise with network data from Indian villages and discuss a simple

extension to multi-dimensional states to interpret our results on signal diversity.

2. Model

State of the world. There is a discrete set of instants, T = Z = {. . . ,−2,−1, 0, 1, 2, . . .} .
At each time t ∈ T , there is a state, a random variable θt taking values in R. This state

evolves as an AR(1) stochastic process. That is,

θt+1 = ρθt + νt+1, (2.1)

where ρ is a constant with 0 < |ρ| ≤ 1 and νt+1 ∼ N (0, σ2
ν) are independent innovations.

When |ρ| < 1 we have the explicit formula

θt =
∞∑
ℓ=0

ρℓνt−ℓ,

and thus the state at any time t has the stationary distribution θt ∼ N
(
0, σ2

ν

1−ρ2

)
.Wemaintain

the normalization throughout that innovations have variance 1, i.e., σν = 1.

We will occasionally examine an alternative specification (making our departure from the

main model explicit) where there is a starting time, so that T = Z≥0 = {0, 1, 2, . . .}, and the

state process is defined as in (2.1) starting at time 0 with some specified distribution for θ0.

Information and observations. There is a set of nodes is N = {1, 2, . . . , n}. Each node

i can be thought of as a location, and is associated with a set Ni ⊆ N of nodes that i can

observe, called its neighborhood.6

6For all results, a node i’s neighborhood can, but need not, include i itself.
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t = −1. . .

· · ·
(i,−1) observes t = −1 signal

and acts

t = 0

(i, 0) born and observes
t = −1 actions

(i, 0) observes t = 0 signal
and acts

t = 1 · · ·

(i, 1) born and observes
t = 0 actions

(i, 1) observes t = 1 signal
and acts

Figure 2.1. An illustration, with memory m = 1, of the overlapping generations at a
node i. At time t − 1, agent (i, t) is born and observes contemporaneous actions in her
neighborhood. At time t, she observes her private signal si,t and takes her action ai,t.

Each node is populated by a sequence of agents in overlapping generations. For each time

t, there is a node-i agent, labeled (i, t), who takes that node’s time-t action ai,t. This agent

is born at time t −m and has m periods to observe the actions taken in her neighborhood

before she acts. Thus, when taking her action, the agent (i, t) knows aj,t−ℓ for all nodes

j ∈ Ni and all lags ℓ ∈ {1, 2, . . . ,m}. We call m the memory ; it reflects how many periods

of actions in her neighborhood an agent passively observes before acting. (See Figure 2.1 for

an illustration.) One interpretation is that a node corresponds to a role in an organization.

A worker in that role has some time to observe colleagues in related roles before choosing a

once-and-for-all action herself. Much of our analysis is done for an arbitrary finite m; we view

the restriction to finite memory as useful for avoiding technical complications, but because

m can be arbitrarily large, this restriction has little substantive content.7

In addition to social information from her neighborhood, each agent also observes a private

signal,

si,t = θt + ηi,t,

where the error term ηi,t ∼ N (0, σ2
i ) has a variance σ2

i > 0 that depends on the node but

not on the time period. All the errors ηi,t and state innovations νt are independent of one

another. An agent’s information is a vector consisting of her private signal and all of her

social observations. An important special case will be m = 1, where agents observe only

one period of others’ actions before acting themselves, so that the agent’s information is

(si,t, (aj,t−1)j∈Ni
).

The network G = (N,E) is the set of nodes N together with the (fixed) set of links

E, defined as the subset of pairs (i, j) ∈ N × N such that j ∈ Ni. This network (also

called a graph), which determines the observation structure, is common knowledge, as is the

informational environment (i.e., the joint distribution of all exogenous random variables).

7It is worth noting that even when the memory m is small, observed actions can indirectly incorporate signals
from much further in the past.
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An environment is specified by (G,σ), where σ = (σi)i∈N is the profile of signal variances.

Preferences and best responses. When an agent (i, t) makes her once-and-for-all choice

ai,t ∈ R, her utility is given by

ui,t(ai,t) = −E[(ai,t − θt)
2]. (2.2)

By a standard fact about squared-error loss functions, given the distribution of (aNi,t−ℓ)
m
ℓ=1,

the optimal choice of agent (i, t) is to set her action equal to her expectation of the state:

ai,t = E[θt | (aNi,t−ℓ)
m
ℓ=1, si,t︸ ︷︷ ︸

i’s information

]. (2.3)

Here the notation aNi,t′ refers to the vector (aj,t′)j∈Ni
of time-t′ actions in the agent’s neigh-

borhood. An action can be interpreted as an agent’s estimate of the state, and we will

sometimes use this terminology.

The conditional expectation (2.3) depends, of course, on the prior of agent (i, t) about θt,

which, under correctly specified beliefs, has distribution θt ∼ N
(
0, σ2

ν

1−ρ2

)
. We allow the prior

to be any normal distribution or a diffuse improper prior.8 It saves on notation to analyze the

case where all agents have improper priors. Because actions under a normal prior are related

to actions under the improper prior by a simple linear bijection—and thus have the same

information content for other agents—all results immediately extend to the general case.

The doubly-infinite time axis introduces some subtleties into the definition of strategy

profiles; complete details are formalized in online Appendix OA3.

3. Updating and equilibrium

In this section we study agents’ learning behavior and present a notion of stationary equi-

librium. We begin with the canonical case of Bayesian agents with correct models of others’

behavior; we study other behavioral assumptions in Section 5 below.

3.1. Best-response behavior. The first step is to analyze optimal updating behavior in

response to others’ strategies. A strategy of an agent is linear if the action taken is a

linear function of the variables she observes. We will analyze agents’ best responses to linear

strategies, showing that they are linear and computing them explicitly.9

Fix an agent (i, t) and some linear strategy profile played before time t. By (2.3), this

agent’s best-response action ai,t is her conditional expectation of θt given her information,

E[θt | (aNi,t−ℓ)
m
ℓ=1, si,t]. Each action before time t can be written as a (possibly infinite) sum of

past signals sj,t′ . It follows that all random variables appearing in the conditional expectation

are jointly Gaussian. That implies that ai,t = E[θt | (aNi,t−ℓ)
m
ℓ=1, si,t] is an affine function of si,t

8We take priors about θt, like the information structure and network, to be common knowledge.
9This analysis applies both to the main T = Z model and the alternative with T = Z≥0. For a discussion of
why it is natural to consider linear opponent strategies, see Section 3.2 below.
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and (aNi,t−ℓ)
m
ℓ=1 (see Eaton 1983, Section 4.3). We now analyze this conditional expectation

in detail.

3.1.1. Actions as estimates of states: A key covariance matrix. Agents learn partly from past

agents’ actions, so the joint distribution of actions as estimates of the state at an arbitrary

time t will be important to track. An arbitrary agent’s scaled past action ρℓai,t−ℓ gives an

estimate of the state in the sense that E[θt | ρℓai,t−ℓ] = ρℓai,t−ℓ. Turning to second moments,

define the covariance matrix of the errors in these estimates over the most recent m periods:

Vt = Cov

((
ρℓai,t−ℓ − θt

)
i∈N

0≤ℓ≤m−1

)
.

In the case m = 1, we have Vt = Cov
(
(ai,t − θt)i∈N

)
. We will often refer to Vt simply as the

covariance matrix of the model, as it will play a central role in our subsequent analysis.

3.1.2. Best-response weights. The information of agent (i, t) at time t may be represented as

a random vector

zi,t =

((
ρℓaj,t−ℓ

)
j∈Ni

1≤ℓ≤m
, si,t

)
.

We will calculate the conditional expectation E[θt | zi,t] in terms of a covariance matrix

constructed from (i, t)’s observations,

Ci,t−1 = Cov(zi,t − θt1) =

(
ρ2VNi,t−1 + 11⊤ 0

0 σ2
i

)
,

where VNi,t−1 is the submatrix of Vt−1 corresponding to indices in i’s neighborhood.10 Now

we have the following formula for best-response actions, which, for simplicity, we give in the

case where the agent has an improper prior11 about θt.

ai,t =
1⊤C−1

i,t−1

1⊤C−1
i,t−11︸ ︷︷ ︸

agent (i, t)’s weights

·


ρaNi,t−1

...

ρmaNi,t−m

si,t


︸ ︷︷ ︸

agent (i, t)’s observations

. (3.1)

Expression (3.1) is a linear combination of the agent’s signal and the observed actions; the

weights in this linear combination depend on the matrix Vt−1, but not on realizations of any

random variables. Section OA4.1 of the online Appendix gives the details of the standard

calculations underlying the formula.

10We rewrite ρℓaj,t−ℓ − θt = ρ(ρℓ−1aj,t−ℓ − θt−1) − νt, where Var[νt] = 1. The covariances of the term in
parentheses are entries of Vt−1. For the block structure, note the private signal errors ηi,t are independent of
events before t.
11Our analysis extends immediately to any proper normal prior for θt: To get an agent’s estimate of θt, the
formula in (3.1) would simply be averaged with a constant term accounting for the prior, and everyone could
invert this deterministic operation to recover the same information from others’ actions.
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We denote by (Wt,w
s
t ) a weight profile in period t, with ws

t ∈ Rn being the weights agents

place on their private signals and Wt being the weights they place on their other information.

3.1.3. The evolution of covariance matrices under best-response behavior. Assuming agents

best-respond according to the optimal weights just described in (3.1), we can compute the

resulting next-period covariance matrix Vt from the previous covariance matrix. Letting V
be the space of covariance matrices, this defines a map Φ : V → V , given by

Φ : Vt−1 7→ Vt. (3.2)

This map gives the basic dynamics of the model: how an arbitrary variance-covariance matrix

Vt−1 maps to a new one when all agents best-respond to Vt−1. The variance-covariance

matrix Vt−1 (along with parameters of the model) determines (i) the weights agents place

on their observations in (3.1), and (ii) the distributions of the random variables that are

being combined in this expression. This yields the deterministic updating dynamic Φ. A

consequence is that the weights agents place on observations are (commonly) known, and do

not depend on any random realizations.

Example 1. We compute the map Φ explicitly in the case m = 1. We refer to the weight

agent (i, t) optimally places on ρaj,t−1 as Wij and the weight on si,t, her private signal, as w
s
i .

Note we have, from (3.1) above, explicit expressions for these weights. Then

[Φ(V )] ii = (wsi )
2σ2

i +
∑
k,k′

WikWik′(ρ
2Vkk′ + 1) and [Φ(V )] ij =

∑
k,k′

WikWjk′(ρ
2Vkk′ + 1).

(3.3)

3.2. Stationary equilibrium in linear strategies. We will now turn our attention to

stationary equilibria in linear strategies—ones in which all agents’ strategies are linear with

time-invariant coefficients—though, of course, we will allow all agents to consider deviating

to arbitrary strategies, including non-linear ones. Once we establish the existence of such

equilibria, we will use the word equilibrium to refer to one of these unless otherwise noted.

A reason for focusing on equilibria in linear strategies comes from noting that, in the variant

of the model with a starting time (i.e., the case T = Z≥0) agents begin by using only private

signals, and they do this linearly. After that, inductively applying the reasoning of Section

3.1, best-responses are linear at all future times. Taking time to extend infinitely backward

is an idealization that allows us to focus on exactly stationary behavior.

We now show the existence of stationary equilibria in linear strategies.

Proposition 1. A stationary equilibrium in linear strategies exists, and is associated with a

covariance matrix V̂ such that Φ(V̂ ) = V̂ .

The proof appears in Appendix A, and we sketch the key ideas below.
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At such an equilibrium, the covariance matrix Vt and all agent strategies are time-invariant.

Actions are linear combinations of observations with stationary weights, which we denote by

Ŵij and ŵsi . The form of these rules has some resemblance to static equilibrium notions

studied in the rational expectations literature (e.g., Vives, 1993; Babus and Kondor, 2018;

Lambert, Ostrovsky, and Panov, 2018; Mossel, Mueller-Frank, Sly, and Tamuz, 2020). It also

has a similar form to the DeGroot (1974) and Friedkin and Johnsen (1997) updating rules,

typically imposed as behavioral heuristics. In our dynamic environment, such a solution

emerges as a stationary equilibrium.

3.2.1. Proof sketch for the existence result. The goal is to apply the Brouwer fixed-point

theorem to show there is a covariance matrix V̂ that remains unchanged under updating. To

find a convex, compact set to which we can apply the fixed-point theorem, we use the fact

that when all agents best-respond to any beliefs about prior actions, all action variances lie

in a compact set of positive numbers. This is because all agents’ actions must be at least as

precise in estimating θt as their private signals, and cannot be more precise than estimates

given perfect knowledge of θt−1 combined with the private signal. This establishes bounds

on action variances. The Cauchy-Schwartz inequality then bounds covariances in terms of

corresponding variances. All matrices respecting these bounds constitute a compact, convex

set containing the image of Φ. This and the continuity of Φ allow us to apply the Brouwer

fixed-point theorem.

3.2.2. Other remarks. In the case of m = 1, we can use the formula of Example 1, equation

(3.3), to write the fixed-point condition Φ(V̂ ) = V̂ explicitly. More generally, for any m,

equation (3.1) gives a formula in terms of V̂ for the weights Ŵij and ŵ
s
i in the best response

to V̂ , and this can be used to describe the equilibrium V̂ij as solving a system of polynomial

equations. These equations typically have large degree and cannot be solved analytically

except in very simple cases, but they can readily be used to solve for equilibria numerically.

A related feature of the model is that standard methods can easily be applied to estimate it

and test hypotheses within it (see Appendix OA2 for details).

The main insight is that we can analyze equilibria through action covariances. This idea

applies equally to many extensions and variations of our basic model, as illustrated by two

examples: (1) We assume that agents observe neighbors perfectly, but one could define other

observation structures. For instance, agents could observe actions with noise, or they could

observe some set of linear combinations of neighbors’ actions with noise. Similarly, agents

could be observing predecessors’ actions for heterogeneous durations before acting (i.e., node-

specific m). (2) We assume agents are Bayesian and best-respond to the true distribution
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of actions, but the same proof would also show that equilibria exist under other behavioral

rules (see Section 5.1).12

Proposition 1 shows that there exists a stationary linear equilibrium. We show later, as

part of Proposition 2, that there is a unique stationary linear equilibrium in networks having

a particular structure. In general, uniqueness of the equilibrium is an open question that we

leave for future work.13 In Section 4.2.3 and Appendix OA5, we discuss the T = Z≥0 variant

of the model, which has a unique equilibrium, and relate it to our main model.

How much information does each agent need to play her equilibrium strategy? In a sta-

tionary equilibrium, she only needs to know the steady-state variance-covariance matrix V̂Ni

in her neighborhood. Then her problem of inferring θt−1 becomes essentially a linear regres-

sion problem. If historical empirical data on neighbors’ error variances and covariances are

available, then V̂Ni
can be estimated from such data.

4. How good is information aggregation in equilibrium?

In this section we analyze the quality of information aggregation in stationary equilibrium.

First, recall that in any agent’s time-t decision problem, θt−1 is a sufficient statistic for

social information, because the difference θt − ρθt−1 is independent of all actions taken at or

before time t− 1. Let the social signal of agent (i, t) be defined as her estimate of θt−1 based

on social information:

ri,t = E[θt−1 | (aNi,t−ℓ)
m
ℓ=1].

We will be interested in the error in this estimate:

Definition 1. For a given strategy profile, define the aggregation error κ2i,t = Var(ri,t− θt−1)

to be the expected squared error in the social signal as a prediction of θt−1.

The aggregation error measures how well an agent can extract information from social obser-

vations. Note that agent i’s aggregation error is a monotone transformation of her expected

utility.14

How efficient is aggregation? The environment features informational externalities: players

do not internalize the impact of their learning rules on others’ learning. Consequently, there

is no reason to expect outcomes to be efficient in any exact sense. And we have seen that

the details of equilibrium in a particular network can be complicated. However, it turns out

12What is important in the proof is that actions depend continuously on the covariance structure of an agent’s
observations; the action variances are uniformly bounded under the rule agents play; and there is a vanishing
dependence of behavior on the very distant past.
13We have checked numerically that Φ is not, in general, a contraction in various norms (entrywise sup,
Euclidean operator norm, etc.). In computing equilibria numerically for many examples, we have not been
able to find a case of equilibrium multiplicity. Indeed, in all of our numerical examples, repeatedly applying
Φ to an initial covariance matrix converges to the same fixed point for any starting conditions.
14In fact, for any decision dependent on θt, an agent is better off with a lower value of κ2

i,t. This is a
consequence of the fact that unidimensional Gaussian signals can be Blackwell ordered by their precision.
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that much more can be said about the behavior of aggregation errors as neighborhood sizes

grow. In this section, we study the asymptotic efficiency of information aggregation. We

give conditions under which aggregation error decays as quickly as physically possible, and

different conditions under which it remains far from efficient levels even when agents have

arbitrarily many observations. We discuss the case m = 1 for simplicity but the reasoning

extends easily to other values of m.

A benchmark lower bound on aggregation error. A first observation is a lower bound

on the aggregation error (in terms of an asymptotic rate as a function of a node’s degree)

under any behavior of agents. This establishes a benchmark relative to which we can assess

equilibrium outcomes.

Let di denote the out-degree of a node i.

Fact 1. Fix ρ ∈ (−1, 1) as well as upper and lower bounds for private signal variances, so

that σ2
i ∈ [σ2, σ2] for all i. On any network and for all strategy profiles, we have κ2i,t ≥ c/di

for all i and t, where c is a constant that depends only on ρ, σ2, and σ2.

The lower bound is reminiscent of the central limit theorem: if an agent had di conditionally

independent noisy signals about θt−1 (e.g., by observing neighbors’ private signals directly),

then the variance of her estimate would be of order 1/di. Fact 1 notes that it is not possible

for aggregation errors to decay (as a function of degree) any faster than that.

For an intuition, imagine that an agent sees neighbors’ private signals (not just actions)

one period after they are received, and all other private signals two periods after they are

received; this clearly gives an upper bound on the quality of the agent’s possible aggregation

given physical communication constraints. The information that is two periods old cannot be

very informative about θt−1 because of the movement in the state from period t− 2 to t− 1;

a large constant number z of signals about θt−1 would be better. Thus, a lower bound on

aggregation error is given by the error that could be achieved with di+ z independent signals

about θt−1 of the best possible precision (σ−2). The bound follows from these observations.

Outline of results: When is aggregation comparable to the benchmark? Fact 1

places a lower bound on aggregation error given the physical constraints. Even efficient

learning could not do better than this bound. We examine when equilibrium learning can

achieve aggregation of similar quality. More precisely, we ask when there is a stationary

equilibrium where the aggregation error at node i satisfies κ̂2i ≤ C/di for all i, for some

constant C.

In Section 4.2 we establish a good-aggregation result: outcomes comparable to the bench-

mark are achieved in equilibrium in a class of networks. The key condition enabling the

asymptotically efficient equilibrium outcome is called signal diversity : each individual has

access to enough neighbors with multiple different kinds of private signals. The fact that
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neighbors use private information differently turns out to give the agents enough power to

identify θt−1 with equilibrium aggregation error that decays at a rate matching the lower

bound of Fact 1 up to a multiplicative constant.

In Section 4.3, we turn to negative results. Without signal diversity, equilibrium aggrega-

tion can be extremely bad. Our first negative result shows that when signals are exchange-

able, it may be that the aggregation error κ̂2i does not approach zero in any equilibrium, no

matter how large neighborhoods are, though a social planner could achieve good aggrega-

tion by prescribing different updating weights. We prove this in highly symmetric networks.

Once we move away from such networks, one might ask whether diversity in individuals’

network positions could play a role analogous to signal diversity and enable approximately

efficient learning. Our next negative result shows that this is impossible. When signals are

homogeneous and all agents’ degrees in network Gn are bounded by d(n) (where d(n) is any

unbounded sequence) then in any equilibrium, it cannot be that almost all aggregation errors

are less than C/d(n) as the network grows, for any number C > 0 not depending on n.

4.1. Distributions of networks and signals. For our good-aggregation result, we study

large populations and specify two aspects of the environment: network distributions and

signal distributions. In terms of network distributions, we work with a standard type of

random network model—a stochastic block model (see, e.g., Holland, Laskey, and Leinhardt,

1983 and Abbe, 2017). It makes the structure of equilibrium tractable while also allowing us

to capture rich heterogeneity in network positions. We also specify signal distributions : how

signal precisions are allocated to agents, in a way that may depend on network position. We

now formalize these two primitives of the model and state the assumptions we work with.

Fix a set of network types k ∈ K = {1, 2, . . . , K}. For each pair of network types, there

is a given probability pkk′ that each agent of network type k has a link to each agent of

network type k′. An assumption we maintain on these probabilities is that each network type

k observes at least one network type (possibly k itself) with positive probability. There is

also a vector (α1, . . . , αK) of population shares of each network type, which we assume are

all positive. Jointly, (pkk′)k,k′∈K and α specify the network distribution. These parameters

can encode differences in expected degree and also features such as homophily (where some

groups of types are linked to each other more densely than to others).

We next define signal distributions, which describe the allocation of signal variances to

network types. Fix a finite set S of private signal variances, which we call signal types.15 We

let qkτ be the share of agents of network type k with signal type τ ; then (qkτ )k∈K,τ∈S defines

the signal distribution.

15The assumptions of finitely many signal types and network types are for technical convenience only, and
could be relaxed.
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Let the nodes in network n be partitioned into the network types N1
n, N

2
n, . . . , N

K
n , with the

cardinality |Nk
n | equal to ⌊αkn⌋ or ⌈αkn⌉ (rounding so that there are n agents in the network).

We (deterministically) set the signal variances σ2
i equal to elements of S in accordance with the

signal shares (again rounding as needed). Let (Gn)
∞
n=1 be a sequence of directed or undirected

random networks with these nodes, so that i ∈ Nk
n and j ∈ Nk′

n are linked with probability

pkk′ ; these link realizations are all independent.

In our setting, a stochastic block model D is specified by the linking probabilities (pkk′)k,k′∈K,

the type shares α, and the signal distribution (qkτ )k∈K,τ∈S. We let (Gn(D),σn(D)) denote

the environment (i.e., the network and the signal variances) in a random realization. We say

that a network type k contains a signal type τ if qkτ > 0.

Definition 2. A stochastic block model satisfies signal diversity if each network type has a

positive probability of linking with at least one network type containing two distinct signal

types.

4.2. Good aggregation under diverse signals. Our first main result is that signal di-

versity is sufficient for good aggregation in the networks described in the previous section.

Aggregation error decays at a rate C/di for each node i independently of the structural

properties of the network.

We first define a notion of good aggregation for an agent in terms of a bound on that

agent’s aggregation error.

Definition 3. Given ε > 0, we say that agent i achieves the ε-aggregation benchmark in a

given equilibrium if the aggregation error satisfies κ̂2i ≤ ε.

We say an event (indexed by n) occurs asymptotically almost surely if the probability of

the event converges to 1 as n→ ∞.

Theorem 1. Fix any stochastic block model D satisfying signal diversity. There exists C > 0

such that asymptotically almost surely the environment (Gn(D),σn(D)) has an equilibrium

where all agents achieve the C/n-aggregation benchmark.

So for large enough n, societies with signal diversity are very likely to aggregate information

very well. The uncertainty in this statement is over the network, as there is always a small

probability of a realized network which prevents learning (e.g., an agent has no neighbors).

We give an outline of the argument next, and the proof appears in Appendix B.

The constant C in the theorem statement can depend on the stochastic block model D.

However, given any compact set of stochastic block models D, we can choose a single C > 0

for which the result holds uniformly across D.16 Thus, the theorem can be applied without

16The reason is that the distribution of aggregation errors is upper hemicontinuous in model parameters, so
if the desired bounds hold for each point in a compact set, they can be made uniform.
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detailed information on how the random graphs are generated, as long as some bounds are

known about which models are possible.

4.2.1. Discussion of the proof. To give intuition for Theorem 1, we first describe why the

theorem holds on the complete network17 with two signal types A and B in the m = 1 case.

This echoes the intuition of the example in the introduction. We then discuss the challenges

involved in generalizing the result to our general stochastic block model networks, and the

techniques we use to overcome those challenges.

Consider a time-t agent, (i, t). Recall that the social signal ri,t is the optimal estimate of

θt−1 based on the actions (i, t) has observed in her neighborhood. In the complete network,

all agents have the same social signal, which we call rt.
18

At any equilibrium, each agent’s action is a weighted average of her private signal and this

social signal.

ai,t = ŵsi si,t + (1− ŵsi )rt. (4.1)

The weights on the two random variables on the right-hand side sum to 1 because both si,t

and rt are unbiased estimates of θt, and so is the left-hand side ai,t. The weight ŵsi on the

private signal depends on the precision of this signal relative to the social signal. We call the

weights used by agents of the two distinct signal types ŵsA and ŵsB. Suppose signal type A is

more precise than signal type B, so that ŵsA > ŵsB.

Now, turning our attention to the next period of updating, observe that each time-(t+ 1)

agent can compute two averages of the time-t actions—one for each signal type. Using (4.1)

to rewrite ai,t and then plugging in si,t = θt + ηi,t:

type A average

action at time t
=

1

nA

∑
i:σ2

i =σ
2
A

ai,t = ŵsAθt + (1− ŵsA)rt +Op(n
−1/2),

type B average

action at time t
=

1

nB

∑
i:σ2

i =σ
2
B

ai,t = ŵsBθt + (1− ŵsB)rt +Op(n
−1/2).

Here nA and nB denote the numbers of agents of each type (recalling we assumed each type

is a positive share of the population size, n). The Op(n
−1/2) error terms19 come from the

average signal noises ηi,t of agents in each group; the bound holds with high probability by

the central limit theorem. In other words, each time-(t+1) agent can obtain precise estimates

of two different convex combinations of θt and rt. Because the two weights, ŵsA and ŵsB, are

distinct, she can approximately (up to signal error) solve for θt as a linear combination of the

average actions taken by each type she observes. It follows the agent must have an estimate

at least as precise as what she can obtain by the strategy we have described, and will thus

17Note this is a special case of the stochastic block model.
18In particular, agent (i, t) sees everyone’s past action, including the one taken last period at the same node.
19The notation means the errors are bounded by Cn−1/2 for a C > 0 with high probability (Janson, 2011).
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be very close the benchmark. Since the equilibrium in question was arbitrary, this shows

that aggregation approaches the benchmark in any equilibrium. The estimator of θt in this

strategy places negative weight on 1
nB

∑
i:σ2

i =σ
2
B
ai,t, thus anti-imitating the agents of signal

type B—those with the less precise private signal. The logic of Proposition 3 in Section 5.2

implies that anti-imitation necessarily occurs in any equilibrium in which agents aggregate

information precisely.

To extend the ideas just presented to the more general setting of Theorem 1, we need to

show that each individual observes a large number of neighbors of at least two signal types

who also have similar social signals. More precisely, the proof shows that agents with the

same network type have highly correlated social signals. Showing this is much more subtle

than it was in the above illustration. In general, the social signals in an arbitrary network

realization are endogenous objects that depend to some extent on all the links.

A key insight allowing us to overcome this difficulty is a useful general fact about sufficiently

dense stochastic block models: despite a lot of idiosyncratic randomness in direct connections,

the law of large numbers implies the number of paths of length two between any agent i of

type k and any agent j of type k′ going through an agent of type k′′ is nearly determined

by the types k, k′, and k′′, with a small relative error.20 We can leverage this to deduce

some important facts about the updating map Φ (recall Section 3.1.3) in the realized random

network, and specifically about the evolution of social signals.

In particular, if we look at the set of covariance matrices where all social signals are close

to perfect, we can show that the composition Φ2 := Φ ◦ Φ maps this set to itself. In other

words, if social signals are very precise, then they will remain very precise two periods later.

If the two-step path counts were determined by types exactly, it would not be too difficult

to show this by elaborating the reasoning in the complete graph example, because neighbors

of the same type would be effectively exchangeable. We show that despite the path counts

being known only approximately, the desired conclusion holds. This is nontrivial because the

weights agents use in their updating—and thus the evolution of social signals—could depend

sensitively on realized network structure; small relative errors could matter. A key step is to

develop results on matrix perturbations to show that small relative changes in the network

actually do not affect Φ2 too much. A fixed-point theorem then implies there is a fixed point

of Φ2 in the set of outcomes with very precise social signals. With some further analysis we

can deduce that this implies the existence of an equilibrium (corresponding to a fixed point

of Φ) with nearly perfect aggregation.

4.2.2. Sparser random graphs. In the random graphs we have defined in Section 4.1, the

group-level linking probabilities (pkk′) are, for simplicity, held fixed as n grows. This yields

20For simplicity we first present the argument in a random graph family where the number of two-step paths
is nearly deterministic. The argument extends to a larger class of models where the same property applies to
longer paths, as we discuss in the next subsection.
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expected degrees that grow linearly in the population size, which may not be the desired

asymptotic model. We can, however, establish versions of our results in a class of models

much more flexible with respect to degrees. While it is important to have neighborhoods

“large enough” (i.e., growing in n) to permit the application of laws of large numbers, their

rate of growth can be considerably slower than linear. For example, our proof can be extended

directly to degrees that scale as nα for any α > 0 to show that asymptotically almost surely,

there exists an equilibrium where the C/nα-aggregation benchmark is achieved for all agents.

Instead of studying Φ2 and two-step paths, one can extend the same sort of analysis to the

L-fold composition ΦL, which reflects L-step paths. In order to do this, one uses the fact that

for L larger than 1/α, the number of paths of length L between any two nodes is determined

by the types involved in the path with a small relative error. Elaborating the proof of the

theorem above, we can then characterize the behavior of ΦL and finally deduce the claimed

aggregation property for Φ.

4.2.3. The good-aggregation outcome as a unique prediction. The theorem above says good

aggregation is supported in an equilibrium but does not state that this is the unique equilib-

rium outcome. To deal with this issue, we study the alternative model with T = Z≥0 (where

agents begin with only their own signals and then best-respond to the previous distribution

of behavior at each time). We show that, as n → ∞, its long-run outcomes get arbitrarily

close to the good-aggregation equilibrium of Theorem 1 under the same conditions. Thus,

even if there were other equilibria of the stationary model, they could not be approached via

the natural iterative procedure coming from the T = Z≥0 model. Formal statements and

details are in Appendix OA5.

4.3. Aggregation under homogeneous signals. Having established conditions for good

aggregation under signal diversity, we now explore what happens without signal diversity.

Our general message is that aggregation is worse.

To gain an intuition for this, note that it is essential to the argument described in the

previous subsection that different agents have different signal precisions. Recall the complete

network case. From the perspective of an agent (i, t + 1), the fact that type A and type

B neighbors place different weights on the social signal rt keeps their behavior from being

collinear, and allows (i, t) to separate θt from a confound. In that example, if type A and B

agents had the same signal types, they would use the same weights, and our agent trying to

learn from them would face a collinearity problem.

We begin by studying graphs having a symmetric structure and show that learning out-

comes are necessarily bounded very far from good aggregation. We then turn to arbitrary

large graphs and prove a lower bound on aggregation error that implies the homogeneous-

signals regime has, quite generally, worse outcomes for some agents than those achieved by

everyone in our good-aggregation result.
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4.3.1. Aggregation in networks with symmetric neighbors.

Definition 4. A network G has symmetric neighbors if, whenever j, j′ ∈ Ni for some i, then

Nj = Nj′ .

In the undirected case, the graphs with symmetric neighbors are the complete network and

complete bipartite networks.21 For directed graphs, the condition allows a larger variety of

networks.

Proposition 2. Consider a sequence (Gn)
∞
n=1 of strongly connected graphs with symmetric

neighbors. Assume that all signal variances are equal, and thatm = 1. Then there is a unique

equilibrium on each Gn, and there exists an ε > 0 such that the ε-aggregation benchmark is

not achieved by any agent i at this equilibrium for any n.

All agents have non-vanishing aggregation errors at the unique equilibrium. So all agents

learn poorly compared to the diverse signals case. The proof of this proposition, and the

proofs of all subsequent results, appear in Appendix OA4.

This failure of good aggregation is not due simply to a lack of sufficient information in the

environment: On the complete graph with exchangeable (i.e., non-diverse) signals, a social

planner who set weights for all agents could achieve ε-aggregation for any ε > 0 when n is

large. See Appendix OA7 for a formal statement, proof and numerical results.22 In this sense,

the social learning externalities are quite severe: a small change in weights for each individual

could yield a very large benefit in a world of homogeneous signal types.

We now give intuition for Proposition 2. In a graph with symmetric neighbors and homoge-

neous signals, in the unique equilibrium,23 actions of any agent’s neighbors are exchangeable.

So Bayesian estimates (and thus actions) must weight all neighbors equally, which prevents

the sort of inference of the most recent state illustrated in Section 4.2.1. This is easiest to

see on the complete graph, where all observations are exchangeable. So, in any equilibrium,

each agent’s action at time t is equal to a weighted average of her own signal and the average

action 1
|Ni|
∑

j∈Ni
aj,t−1:

ai,t = ŵsi si,t + (1− ŵsi )
1

|Ni|
∑
j∈Ni

aj,t−1. (4.2)

By iteratively using this equation, we can see that actions must place substantial weight on

the average of signals from, e.g., two periods ago, and indeed further back. Note that all

signals sj,t′ at past times t′ take the form θt′ + ηi,t′ . Thus, although the effect of signal errors

ηi,t′ vanishes (by averaging) as n grows large, the correlated error from past changes in the

21These are both special cases of our stochastic block model from Section 4.2, so Theorem 1 applies to these
network structures when signal diversity is satisfied.
22We thank Alireza Tahbaz-Salehi for suggesting this analysis.
23The proof of the proposition establishes uniqueness by showing that Φ is a contraction in a suitable sense.
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state νt′ never “washes out” of estimates, and this is what prevents vanishing aggregation

errors.

The bad-aggregation result as stated applies to exactly homogeneous signal types only. In

fact, in finite networks we need sufficiently heterogeneous signals to avoid bad learning out-

comes; this is illustrated in Appendix OA1. In Section 4.4 we discuss the welfare implications

of this failure of aggregation.

As a consequence of Theorem 1 and Proposition 2, we can give an example where making

one node’s private information less precise helps all agents.

Corollary 1. There exists a network G, a vector of signal precisions σ, and an agent i ∈ G

such that increasing σ2
i yields a Pareto improvement at the unique equilibrium.

To prove the corollary, we consider the complete graph with homogeneous signals and

large n. By Proposition 2, all agents have non-vanishing aggregation errors. If we instead

give agent 1 a very uninformative signal, all players can anti-imitate agent 1 and achieve

vanishing aggregation errors. When the signals at the initial configuration are sufficiently

imprecise, this gives a Pareto improvement. There are also examples where severing links in

the observational network can yield a Pareto improvement, as reported in an earlier version

of the present paper (Dasaratha, Golub, and Hak, 2018).

4.3.2. Aggregation in arbitrary networks. Section 4.3.1 showed aggregation errors are non-

vanishing when signal endowments and neighborhoods are symmetric. A natural question is

whether asymmetry in network positions can substitute for asymmetry in signal endowments.

In Section 4.2 the key point was that different neighbors’ actions were informative about

different linear combinations of θt and older information, and this permitted filtering. Perhaps

different network positions can achieve the same effect?

We thus move to arbitrary networks and show a weaker but much more general result.

Consider any sequence of equilibria on any networks with symmetric signal endowments.

Our result here is that no equilibrium achieves C/n-aggregation for almost all agents, no

matter what C is. In particular, this implies that the rate of learning (as n grows) is slower

than at the good-learning equilibrium with diversity of signal endowments from Theorem 1.

Moreover, if degrees are bounded above by some d(n) growing at rate slower than n, we prove

the stronger statement that no equilibrium achieves C/d(n)-aggregation for almost all agents.

Theorem 2. Let C > 0. Let (Gn)
∞
n=1 be an arbitrary sequence of networks and suppose all

private signals have variance σ2. If all agents’ in-degrees and out-degrees are bounded above

by some d(n) → ∞, then in any sequence of equilibria, the aggregation error κ̂2i is greater

than C/d(n) for a non-vanishing fraction of agents i.

In addition to considering arbitrary networks, we allow the memory m to be an arbitrary

positive integer. Because the assumptions are much weaker, we obtain a weaker conclusion
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than in Proposition 2. While Proposition 2 shows that aggregation errors are non-vanishing,

this theorem shows that aggregation errors cannot vanish quickly, but does not rule out

aggregation errors vanishing more slowly.

The basic intuition is that to avoid putting substantial weight on θt−2, an agent at time

t must anti-imitate some neighbors. If all or almost all neighbors achieve C/n-aggregation

for some C and have identical types of private signals, there is not much diversity among

neighbors. So more and more anti-imitation is needed as n grows large in the sense that

the total positive weight and total negative weight on neighbors both grow large. But then

the contribution to the agent’s variance from neighbors’ private signal errors cannot vanish

quickly.

We can combine Theorems 1 and 2 to compare the value of signal diversity and network

diversity. With diversity of signal endowments, there exists a C > 0 such that asymptotically

almost surely there is a good-learning equilibrium achieving the C/n-aggregation benchmark

for all agents under the stochastic block model. With exchangeable signals, it is not possible

to find equilibria achieving the same aggregation rate in n under any sequence of networks.

Thus, Theorem 2 shows that network heterogeneity cannot improve learning outcomes as

much as signal heterogeneity. Section 8.1 complements the asymptotic results with numerical

results in finite networks. It shows that in our model on real-world (highly asymmetric) social

networks, signal heterogeneity improves learning outcomes much more than choosing a very

favorable network structure but homogeneous signals.

4.4. The welfare loss associated with homogeneity. The results derived so far in this

section show that there is a qualitative difference in how well agents are able to infer re-

cent states across the homogeneous and heterogeneous signal settings. How important is

this difference for welfare? We illustrate next that the welfare loss associated with signal

homogeneity can be arbitrarily severe.

To gain an intuition for this, note that with homogeneous signals, period-t actions are

confounded by previous states. These confounds include θt−2, which all t − 1 agents use in

the same way (as illustrated in the example of the introduction). But the confounds also

include θt−3, which could not be filtered out by t− 1 agents, and so forth. The more weight

agents place on social information (i.e., the more informative the past is), the more severe

this confounding is. If the state is highly persistent and private signals are not very precise,

then the confounds from periods even very long ago are substantial. The following corollary

quantifies this effect.

Corollary 2. Consider a complete graph with all signal variances equal to σ2, and let m = 1.

Then, in any symmetric strategy profile,

Var(ai,t − θt) ≥
(1− ŵs)2

1− (1− ŵs)2ρ2
,
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where ŵs is the weight agents place on their own signals. As ρ→ 1 from below and σ−2 → 0,

agent i’s action error in the unique equilibrium tends to infinity. Moreover, this convergence

is uniform in n.24

The corollary guarantees that we can choose (σ−2, ρ) so that the error is arbitrarily large,

uniformly in n. In contrast, recall that our main positive result shows that the C/n-

aggregation benchmark would be achieved with signal heterogeneity.25 When this benchmark

is achieved, each individual obtains a variance Var(ai,t − θt) that is at worst 1 if n is large

enough.26 This bound on variance does not depend on σ2 or ρ. Thus welfare can be arbitrarily

worse in environments with signal homogeneity compared to ones with heterogeneity.

In large complete graphs with homogeneous signals, we can explicitly characterize the

limit action variance (and therefore welfare). Let V∞ denote the limit, as n grows large, of

Var(ai,t − θt). Let Cov∞ denote the limit covariance of any two agents’ errors. By direct

computation using equation (3.3), these can be seen to be related by the following equations,

which have a unique solution:

V∞ =
1

σ−2 + (ρ2Cov∞ +1)−1
, Cov∞ =

(ρ2Cov∞ +1)−1

[σ−2 + (ρ2Cov∞ +1)−1]2
. (4.3)

These equations also let us extend Corollary 2 beyond the complete graph. The V∞ and

Cov∞ solving (4.3) describe the limits of all variances and covariances in any graph with

symmetric neighbors where degrees tend uniformly to infinity.27 As σ−2 → 0 and ρ→ 1 from

below, equations (4.3) show that V∞ and therefore Cov∞ diverge to infinity, just as in the

complete-network case. This shows the welfare loss from homogeneity can also be arbitrarily

severe in graphs with symmetric neighbors and large degrees.

5. The importance of understanding correlations

In the positive result on achieving the C/n-aggregation benchmark (Theorem 1), a key

aspect of the argument involved agents filtering out confounding information from their

neighbors’ estimates—i.e., responding in a sophisticated way to the correlation structure

of those estimates. In this section, we demonstrate that this sort of behavior is essential for

nearly perfect aggregation, and that more naively imitative heuristics yield outcomes far from

the benchmark. Empirical studies have found evidence (depending on the setting and the

subjects) consistent with both equilibrium behavior and naive inference in the presence of

24For any v, there are ρ < 1 and σ−2 > 0 such that if ρ > ρ and σ−2 < σ−2, then Var(ai,t − θt) ≥ v for all n.
25For example, by making half the agents’ signals strictly worse.
26Note the agent can use the estimate of last period’s state, which has an error of order C/n. If the agent
simply set her action equal to this estimate, then she would achieve Var(θt − θt−1) = 1, since the state
innovation has variance 1. Additionally using her private signal does strictly better than this.
27Indeed, it can be deduced (as in the proof of Corollary 2) that agents’ actions are equal to an appropriately
discounted sum of past θt−ℓ, up to error terms (arising from ηi,t−ℓ) that vanish asymptotically. The weights
on past states are the same as in the complete-network case, which is why the characterization of (4.3) applies.
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correlated observations (e.g., Eyster, Rabin, and Weizsacker, 2015; Dasaratha and He, 2021;

Enke and Zimmermann, 2019).

We begin with a canonical model of agents who do not account for correlations among their

neighbors’ estimates conditional on the state, and show by example that naive agents achieve

much worse learning than Bayesian agents, and thus have non-vanishing aggregation errors.

We then formalize the idea that accounting for correlations in neighbors’ actions is crucial to

reaching the benchmark. This is done by demonstrating a general lack of good aggregation

by agents who use imitative strategies, rather than filtering in a sophisticated way. Finally,

we show that even in fixed, finite networks, any positive weights chosen by optimizing agents

will be Pareto-dominated.

5.1. Naive agents. In this part we introduce agents who misunderstand the distribution

of the signals they are facing and who therefore do not update as Bayesians with a correct

understanding of their environment. We consider a particular form of misspecification that

simplifies solving for equilibria analytically:28

Definition 5. We call an agent naive if she believes that all neighbors choose actions equal

to their private signals and maximizes her expected utility given these incorrect beliefs.

Equivalently, a naive agent believes her neighbors all have empty neighborhoods. This is

the analogue, in our model, of “best-response trailing naive inference” (Eyster and Rabin,

2010). So naive agents understand that their neighbors’ actions from the previous period are

estimates of θt−1, but they think these are conditionally independent given the state, and

that the precision of each estimate is equal to the signal precision of the corresponding agent.

They then play their expectation of the state given this misspecified theory of others’ play.

In Figure 5.1, we compare Bayesian and naive learning outcomes. We consider a complete

network with 600 agents and ρ = 0.9. Half of agents have signal variance σ2
A = 2, while we

vary the signal variance σ2
B of the remaining agents. The figure shows the average social signal

variance for the group of agents with private signal variance σ2
A = 2. It suggests that naive

agents learn substantially worse than rational agents, whether signals are diverse or not. We

prove this holds for general stochastic block models and provide formulas for variances under

naive learning in Appendix OA6.

5.2. More general learning rules: Understanding correlation is essential for good

aggregation. We now show more generally that a sophisticated response to correlation is

needed to achieve vanishing aggregation errors on any sequence of growing networks. To this

end, we make the following definition:

28There are a number of possible variants of our behavioral assumption, and it is straightforward to nu-
merically study alternative specifications of behavior in our model (Alatas et al., 2016 consider one such
variant).
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Figure 5.1. Bayesian and naive learning on a complete graph and n = 600 agents divided
into two groups of equal size. The plot shows the aggregation error in group A as group B’s
private signal variance varies, fixing group A’s private signal variance at σ2

A = 2.

Definition 6. The steady state associated with weights W and ws is the (unique) covariance

matrix V ∗ such that if actions have a variance-covariance matrix given by Vt = V ∗ and next-

period actions are set using weights (W ,ws), then Vt+1 = V ∗ as well.

In this definition of steady state, instead of best-responding to others’ actual distributions

of play, agents use exogenous weights W in all periods.

By a straightforward application of the contraction mapping theorem, if agents use any

non-negative weights under which covariances remain bounded at all times, there is a unique

steady state.

Consider a sequence of networks (Gn)
∞
n=1 with n agents in Gn.

Proposition 3. Fix any sequence (V ∗(n))∞n=1, with each V ∗(n) being a steady state under

non-negative weights in the networkGn. Suppose that all private signal variances are bounded

below by σ2 > 0 and that all agents place weight at most w < 1 on their private signals.

Then there is an ε > 0 such that, for all n, the ε-aggregation benchmark is not achieved by

any agent i at the steady state V ∗(n).

The essential idea is that at time t+1, observed time-t actions all put weight on actions from

period t−1, which causes θt−1 to have a (positive weight) contribution to all observed actions.

Agents do not know θt−1 and, with positive weights, cannot take any linear combination that

would recover it. Even with a very large number of observations, this confound prevents

agents from learning the time-t state precisely.

We now explain why we impose an assumption of all weights on private signals being

bounded away from 1. If there were many autarkic agents who simply reported their private

signals (i.e., placed weight 1 on these signals), some other agent could learn well without
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adjusting for correlations by observing the autarkic agents. Note that in this case, all of the

autarkic agents would have non-vanishing aggregation errors. This illustrates that a weaker

conclusion than that of the proposition can be established more generally. If we did not

impose a bound on private signal weights, learning would fail in the weaker sense that some

agent must fail to achieve the ε-aggregation benchmark for small enough ε.

On undirected networks, the proposition implies that aggregation errors do not vanish

under naive inference or under various other specifications of non-Bayesian inference implying

nonnegative weights. Moreover, the same argument shows that in any sequence of Bayesian

equilibria on undirected networks where all agents use positive weights, no agent can learn

well.

5.3. Without anti-imitation, outcomes are Pareto-inefficient. The previous section

argued that anti-imitation is critical to achieving vanishing aggregation errors. We now show

that even in small networks, where that benchmark is not relevant, any equilibrium without

anti-imitation is Pareto-inefficient relative to another steady state. This result complements

our asymptotic analysis by showing a different sense (relevant for small networks) in which

anti-imitation is necessary to make the best use of information.

Proposition 4. Suppose the network G is strongly connected and some agent has more than

one neighbor. Given any naive equilibrium or any Bayesian equilibrium where all weights are

positive, the action variances at that equilibrium are Pareto-dominated by action variances

at another steady state.

The basic argument behind Proposition 4 is that if agents place marginally more weight on

their private signals, this introduces more independent information that eventually benefits

everyone. In a review of sequential learning experiments, Weizsäcker (2010) finds that subjects

weight their private signals more heavily than is optimal (given the empirical behavior of

others they observe). Proposition 4 implies that in our environment with optimizing agents,

it is actually welfare-improving for individuals to “overweight” their own information relative

to best-response behavior.

The condition on equilibrium weights says that no agent anti-imitates any of her neighbors.

This assumption makes the analysis tractable, but we believe the basic force also works in

finite networks with some anti-imitation. In the proof in Appendix OA4, we state and prove

a more general result where weights are non-negative but need not all arise from Bayesian or

naive updating.

Proof sketch. The idea of the proof for the Bayesian equilibrium case is to begin at the

steady state and then marginally shift each agent’s weights toward her private signal. This

means agents’ actions are less correlated but, by the envelope theorem, not significantly

worse in the next period. We show that if all agents continue using these new weights, the
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decreased correlation eventually benefits everyone. To do this, we use the absence of anti-

imitation, which implies a certain monotonicity in the updating function whereby the initial

decrease in correlation results in all agents’ variances decreasing.

The proof in the naive case is simpler. Here a naive agent is overconfident about the

quality of her social information, so she would benefit from shifting some weight from her

social information to her signal. This deviation also reduces her correlation with other agents,

so it is Pareto-improving.

6. Social influence

A canonical question about learning in networks is how much influence various agents have

in affecting aggregate behavior. This is a focus of studies including DeMarzo, Vayanos, and

Zweibel (2003) and Golub and Jackson (2010) in the DeGroot model with an unchanging

state. In this section, we define a suitable analogue of social influence for our dynamic

environment. We then study how an agent’s influence depends on her signal precision and

degree. We find that, relative to benchmark results from the DeGroot model, influence is

more sensitive to signal precisions, while social connectedness plays a similar role in both

models.

6.1. Defining social influence. We define the total influence of node i in a stationary

equilibrium with weights (Ŵ , ŵs) to be the total weight that all actions place on the private

signal of agent (i, t). The total influence measures the total increase in actions if si,t increases

by 1 (due to an idiosyncratic shock).29 At equilibrium, the total influence of i is:

TI(i) =
∑
j∈N

∞∑
k=0

(
ρkŴ k

)
ji
ŵsi .

This expression for total influence is a version of Katz-Bonacich centrality with respect to

the matrix Ŵ of weights. The decay parameter is the persistence ρ of the of the AR(1) state

process.

We define the social influence of i to be the total weight that all actions in future periods

place on the private signal of agent (i, t). At equilibrium, the social influence of i is:

SI(i) =
∑
j∈N

∞∑
k=1

(
ρkŴ k

)
ji
ŵsi = TI(i)− ŵsi .

The social influence measures the influence of an agent at node i on other agents. Social

influence and total influence differ only by the weight (i, t) places on her own current signal,

because an agent’s signal realization does not affect others’ actions in the same period. Note

29Note that in a stationary equilibrium, this depends on the node and not the time, so we speak interchange-
ably of the influence of a node and that of an agent at this node.
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that agent i’s social influence depends on the weight ŵsi she places on her own signal as well

as the weights agents place on each others’ actions.

The next result, which follows from Proposition 1 on equilibrium existence, shows that

the summation that defines social influence is guaranteed to converge at equilibrium, which

makes social influence (and similarly total influence) well-defined.30

Proposition 5. The social influence SI(i) is well-defined at any equilibrium and is equal to[
1⊤(I − ρŴ )−1 − 1⊤

]
i
ŵsi .

We show this as follows: if social influence did not converge, some agents would have

actions with very large variances (because their actions would depend sensitively on small

idiosyncratic shocks). But then these agents would have simple deviations that would improve

their accuracy, such as following their private signals. So this could not happen in equilibrium.

Once the infinite series defining social influence is shown to be convergent, the proposition

follows by a standard Neumann series identity.

In general, social influence can be negative: an agent’s net effect on others can be in the

opposite direction of her signal.

6.2. Which agents are influential? We now ask how the social influence SI(i) of an agent

depends on her signal precision and degree. To facilitate the most direct comparison with

standard results in models with a fixed state, such as DeMarzo, Vayanos, and Zweibel (2003),

we focus on cases where social influences are positive.

To examine the effect of signal precision on social influence, we first study complete net-

works with n ≥ 2 agents and two private signal variances: half the agents have more precise

signals, and the other half have less precise signals. We call the two groups’ signal variances

σ2
A and σ2

B and the corresponding agents’ social influences SI(A) and SI(B). We show that

the ratio between the two groups’ social influences in equilibrium is larger than the ratio

between their signal precisions (whenever the imprecise group has positive social influence).

Proposition 6. On a complete network with m = 1 and signal variances σ2
A < σ2

B, in the

unique equilibrium it holds that
SI(A)

SI(B)
>
σ−2
A

σ−2
B

whenever SI(B) > 0.

The proposition says that increasing a group’s precision increases their influence more than

proportionately. As we have seen in our main results, if the precision difference is large enough,

then it is optimal to place zero or negative weight on the less precise group. The result says

30Since Ŵ can contain both positive and negative numbers, some of them potentially large, it is not imme-
diately obvious that the summation converges.
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σ2
B

Precision 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

σ2
A

0.5 1 2.14 4.53 9.06 168.09 −29.69 −15.54 −8.22 −7.41 −6.19

1 1 1.80 3.15 5.62 9.95 26.35 −29.89 −15.23 −13.67

1.5 1 1.64 2.56 3.80 6.27 10.64 44.97 −31.32
2 1 1.51 2.22 3.13 4.35 7.05 11.34

2.5 1 1.43 2.04 2.69 3.88 5.50

3 1 1.38 1.86 2.46 3.35
3.5 1 1.34 1.74 2.27

4 1 1.30 1.67

4.5 1 1.28
5 1

Table 1. The table shows how far influence ratios are from a benchmark of being propor-
tional to precision. We use a configuration model with a regular network and heterogeneous
signal variances; there are n = 40 agents and the degree is d = 5. Agents are randomly as-
signed to signal variances σ2

A or σ2
B . Each entry is computed from 100 runs with persistence

ρ = 0.9. Each table entry reports the ratio Rσ = SI(A)/SI(B)

σ−2
A /σ−2

B

for the precision parameters

corresponding to that entry.

that even before this happens, imprecision reduces a group’s influence considerably—and, as

we will discuss below, more than in benchmark models of social influence.

The proposition assumes the network is complete, but numerical evidence suggests that

on other networks, too, agents with more precise signals tend to be much more influential.

We simulate a configuration model with n = 40 nodes, each with degree d = 5.31 Nodes

are randomly assigned to have a precise signal with variance σ2
A or an imprecise signal with

variance σ2
B (with equal probability).

We are interested in the ratio SI(A)/SI(B) in this more complicated environment. If

social influence were approximately proportional to precision, then SI(A)/SI(B) would be

approximately σ−2
A /σ−2

B . To assess by how much the influence of the precise group exceeds

the level suggested by this benchmark, we will look at the ratio

Rσ =
SI(A)/SI(B)

σ−2
A /σ−2

B

.

Table 1 reports this ratio over 100 runs of the simulation model for various pairs of σ2
A and

σ2
B, each in the interval [0.5, 5]. The entries of the table would be equal to 1 if influence is

proportional to precision. Instead, all off-diagonal entries are greater than one (or negative),

meaning social influence depends more (and often much more) on signal precision than in the

proportional benchmark.

Having examined how influence depends on precisions, we turn to how it depends on

degrees. We again use a configuration model, which allows us to fix any desired empirical

degree distribution and generate the graphs uniformly conditional on the degrees. We will find

that social influence depends less on degree than on precision. We simulate a configuration

31This model works by creating n nodes, each with d “stubs” sticking out of it, and then performing a random
matching of the stubs to create a graph. See Jackson (2010), Section 4.5.10, for details.
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dB
Degree 1 2 3 4 5 6 7 8 9 10

dA

1 1 1.11 1.02 0.96 0.94 0.92 0.96 1.00 1.03 1.09

2 1 1.02 1.01 0.98 0.96 0.92 0.93 0.91 0.95

3 1 1.01 1.01 1.01 0.98 0.96 0.94 0.93
4 1 1.01 1.01 1.00 0.99 0.98 0.96

5 1 1.01 1.01 1.02 1.01 1.00

6 1 1.01 1.01 1.01 1.01
7 1 1.01 1.01 1.02

8 1 1.01 1.01

9 1 1.01
10 1

Table 2. The table shows how far influence ratios are from a benchmark of being propor-
tional to degree. We use a configuration model with two possible degrees on n = 40 agents
with homogeneous signal variance σ2 = 2. Agents are randomly assigned to degrees dA or
dB . Each entry is computed from 100 runs with persistence ρ = 0.9. Each table entry reports

the ratio Rd = SI(A)/SI(B)
dA/dB

for the degree parameters corresponding to that entry.

model with n = 40 nodes, each randomly assigned degrees dA or dB (with equal probability

of each) and with σ2 = 2 for all agents. Table 2 reports the ratio

Rd =
SI(A)/SI(B)

dA/dB
.

over 100 runs of the simulation model for degrees between 1 and 10. Again, the entries

would be equal to 1 if social influence were proportional to degree. Social influence is indeed

approximately proportional to degree: the entries in the table range between 0.91 and 1.11.

Remark 1. A simple intuition explains why social influence depends more on private in-

formation than on network position. Increasing an agent’s private signal precision and her

degree both tend to make her action more accurate. Increasing private signal precision has

the additional effect of increasing an agent’s weight on her private information, which is re-

cent and independent of other agents’ actions. This provides more reason for others to place

weight on her actions, amplifying the effect of the increased accuracy. In contrast, increasing

degree tends to make an agent place more weight on her social information, which is older

and more correlated with others. This countervails the effect of increased accuracy, making

the agent a less appealing source for others.

The exercises so far varied only one of signal precision or degree, and we now explore how

social influence depends on precision and degree jointly. To do so, we compute equilibrium

social influences on 5,000 networks with n = 40 agents in each. Each agent is randomly

assigned a degree chosen uniformly from {1, 2, . . . , 7} and a private signal variance chosen

uniformly and independently from {0.5, 1, . . . , 3.5}. Networks are then drawn via the config-

uration model. Figure 6.1 plots the level curves for average social influence conditional on

node attributes. The steepness of the level curves shows that social influence again depends

more on signal variance than degree, especially when signals are less precise.
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Figure 6.1. Level curves for average social influence of agents in a configuration model
with 5,000 networks with n = 40 agents in each and persistence ρ = 0.9. Degrees are
chosen uniformly from {1, 2, . . . , 7} and private signal variances are chosen uniformly from
{0.5, 1, . . . , 3.5}. The figure shows level curves for average social influence (drawn via cubic
interpolation) on a log-log plot. If proportional changes in degree and signal variances mat-
tered equally, these level curves would have slope 1.

6.3. Comparison with a DeGroot benchmark. The results above are interesting to com-

pare with those of canonical network models with a fixed state. A relevant benchmark is a

version of the DeGroot model studied by DeMarzo, Vayanos, and Zweibel (2003). Agents

start with an improper prior, receive independent normal private signals si (with different

precisions) about the state once, and then each takes an action ai,0 equal to her expectation

of the state θ. After this, agents observe their neighbors’ actions and take actions ai,1, which

are Bayesian expectations of the state θ given their observations. In all subsequent periods

t > 1, agents observe their neighbors’ actions aj,t−1 and take actions ai,t as if aj,t−1 had the

same distribution as j’s private signal. That is, they naively repeat their optimal strategy

from the first period, which DeMarzo et al. (2003) interpret as a quasi-Bayesian, boundedly

rational procedure.

One natural measure of social influence is the influence of si on the long-run consensus

estimate limt→∞ aj,t held by any agent. In an undirected, connected, and aperiodic network,

this limit exists and the influence of agent i is proportional to her private signal precision σ−2
i

and to her degree di. Compared to this benchmark, social influence in our changing-state

model is more sensitive to signal precision (in the complete graph and in our simulations for

configuration models). On the other hand, the dependence of social influence on degree is very

similar to the DeGroot benchmark—approximately proportional. To summarize, influence

depends more on an agent’s private information, while the dependence on network position

is remarkably similar. The difference between the benchmark and our model is explained in

Remark 1.
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7. Related literature

Whether decentralized communication can facilitate efficient adaptation to a changing

world is a fundamental question in economic theory, related to questions raised by Hayek

(1945)32 and central to certain applied problems, e.g., in real business cycle models with

consumers and firms learning about evolving states.33 Nevertheless, there is relatively little

modeling of Bayesian learning of dynamic states in the large literature on social learning and

information aggregation in networks, whose most relevant papers we now review.34

Play in the stationary linear equilibria of our model closely resembles behavior in the

DeGroot (1974) model, where agents update by linearly aggregating network neighbors’ past

estimates, with constant weights on neighbors over time. DeMarzo, Vayanos, and Zweibel

(2003), in a Gaussian environment with an unchanging state, derive DeGroot learning as the

Bayesian behavior in the first round of communication, and use that as a foundation for a

DeGroot rule as a boundedly-rational heuristic. Molavi, Tahbaz-Salehi, and Jadbabaie (2018)

present new bounded-rationality foundations for the DeGroot rule. Our different environment

offers a different foundation for averaging rules with time-invariant weights: as a stationary

equilibrium of a stationary environment.35 Though the updating rule resembles those studied

in fixed-state environments, we have stressed that the learning implications are quite different.

Several recent papers in engineering and computer science study dynamic environments

similar to ours. Shahrampour, Rakhlin, and Jadbabaie (2013) study an exogenous-weights

version, interpreted as a set of Kalman filters under the control of a planner. They bound

measures of welfare in terms of the persistence of the state process (ρ) and network properties,

such as the spectral gap. Frongillo, Schoenebeck, and Tamuz (2011) study a ρ = 1 model

of the state. They characterize the steady-state distribution of behavior for any weights,

and calculate equilibrium weights on a complete network, which they show are inefficient.

Our Proposition 4 documents a related inefficiency; the quality of equilibrium learning in

large, incomplete networks and social influence in equilibrium are topics not considered in

these papers. In economics, Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016)

perform an empirical exercise in a similar model with a quasi-Bayesian learning rule. Their

32“If . . . the economic problem of society is mainly one of rapid adaptation to changes in the particular
circumstances of time and place . . . there still remains the problem of communicating to [each individual] such
further information as he needs.” Hayek’s main concern was aggregation of information through markets, but
the same questions apply more generally.
33See Angeletos and La’O (2010) for a survey of related models that are used to study real business cycles.
More recent developments include Angeletos and Lian (2018) and Molavi (2019), with the latter allowing a
form of misspecification.
34For more complete surveys of different parts of this literature, see, among others, Acemoglu and Ozdaglar
(2011), Golub and Sadler (2016), and Mossel and Tamuz (2017). See Moscarini, Ottaviani, and Smith
(1998) for an early model in a binary-action environment, where it is shown that a changing state can break
information cascades.
35Indeed, agents behaving according to the DeGroot heuristic in other environments might have to do with
their experiences in stationary environments where it is closer to optimal.
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estimation assumes agents ignore the correlations between social observations, similarly to

our naive models.36 Our results show that the degree of rationality can be pivotal for the

outcomes of such processes, and provide foundations for structural inference to test various

behavioral assumptions.

Our results about when agents learn well are related to two phenomena that have played

an important role in the social learning literature. One theme in this literature is that

heterogeneity—in agents’ neighborhoods or preferences—can be helpful for learning. A man-

ifestation of this is the usefulness of sacrificial lambs (typically studied in sequential social

learning models with a fixed state): a small set of agents who observe nobody can help every-

one else learn well, because their actions are then informative only about their private signals,

and unconfounded by an information cascade (Sgroi, 2002, Arieli and Mueller-Frank, 2019).

Heterogeneity in preferences can serve a similar purpose: if preferences have full support,

there is a positive probability that preference bias counteracts available social information,

causing an agent to follow her private signal (Goeree, Palfrey, and Rogers, 2006, Lobel and

Sadler, 2016). A crucial difference is that our mechanism does not rely on any agents simply

revealing their private signals: heterogeneity helps by changing how neighbors use their social

information, which in turn aids an agent in inferring a common confound.37

Second, a robust aspect of rational learning in sequential models is the phenomenon of

anti-imitation, as discussed, e.g., by Eyster and Rabin (2014). They give general conditions

for fully Bayesian agents to anti-imitate in a standard sequential model. We find that anti-

imitation is also an important feature in our dynamic model, and in our context is crucial for

good learning. Despite this similarity, there is an important contrast between our environment

and standard sequential models. In those models, while rational agents do prefer to anti-

imitate, individuals and society as a whole can often obtain good outcomes using heuristics

without any anti-imitation: for instance, by combining one’s own private signal with the

information that can be inferred from a single neighbor. Acemoglu, Dahleh, Lobel, and

Ozdaglar (2011) and Lobel and Sadler (2015) show that such a heuristic leads to asymptotic

learning in a sequential model. Our dynamic learning environment is different, as shown in

Proposition 3: to have any hope of approaching good aggregation benchmarks, agents must

respond in a sophisticated way, with anti-imitation, to their neighbors’ (correlated) estimates.

36The paper’s focus is estimating parameters of social learning rules using data from Indonesian villages,
where agents are trying to estimate each other’s wealth.
37A bit farther afield, in Sethi and Yildiz (2012), learning outcomes when two individuals repeatedly learn
from each other depend on whether their (heterogeneous) priors are independent or correlated; the common
thread is that a natural assumption about agents’ attributes (independent priors in their case) leads to an
identification problem. The mechanics are otherwise quite different.
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8. Discussion and extensions

8.1. Aggregation and its absence without asymptotics: Numerical results. The

message of Section 4 is that signal diversity enables good aggregation, and signal homogeneity

obstructs it. The theoretical results were asymptotic, and relied on various assumptions about

network structure. It is natural to ask whether our main conclusions hold up in realistic

finite networks. To analyze this, we numerically study equilibria of our model on graphs

reflecting social relationships measured in Indian villages (Banerjee, Chandrasekhar, Duflo,

and Jackson, 2013). This subsection briefly summarizes our findings; we describe the exercise

fully in Appendix OA1.

We examine the benefits of signal heterogeneity for equilibrium aggregation. The network

data are essentially the only empirical input to our exercise.38 Given a network, we compute

equilibria using our model and parameters chosen for illustration. We compare two environ-

ments that differ in signal allocations: (i) a homogeneous case, with all signal variances set to

2, and (ii) a heterogeneous case, where half of the nodes have a signal variance greater than

2 (which we vary) and half of the nodes have a signal variance less than 2.39

We first compare the value of a good network with the value of heterogeneous signals.

Some networks have better learning than others even with homogeneous signals. We define

the network-driven variation in learning to be the standard deviation of learning quality (ag-

gregation error) across villages in the homogeneous case. Our main finding is that increasing

the private signal variance for half of the agents by 50%, and reducing the signal variance of

the others to keep total information constant, changes social signal error variance by 6.5 times

the network-driven variation. In fact, introducing this amount of private signal heterogeneity

improves learning much more than the most favorable network among the villages.

Though the asymptotic prediction changes starkly depending on whether signal precisions

are identical or not, considerable heterogeneity is actually required to achieve the benefits of

signal diversity in a finite network. Starting from homogeneous signals and increasing signal

diversity, aggregation error changes very slightly at first. Once the variance of the less precise

signal has increased by 50% relative to the starting point, learning quality has moved about

halfway to what is achievable with the most extreme signal heterogeneity.

8.2. Multidimensional states and informational specialization. Our formal analysis

assumed a one-dimensional state and one-dimensional signals, which varied only in their

precisions. Our message about the value of diversity is, however, better interpreted in a

mathematically equivalent multidimensional model.

38In particular, we have no data on signal qualities; when we introduce signal heterogeneity, we simply posit
that households without electricity have worse access to external information.
39We choose the larger signal variance so that the average precision in each village is 1

2 , which holds the total
inflow of information constant in a sense made precise in the appendix.
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Consider Bayesian agents who learn and communicate about two independent dimensions

simultaneously, each one working as in our model. If all agents have equally precise signals

about both dimensions, then society may not learn well about either of them. In contrast, if

half the agents have superior signals about one dimension and inferior signals about the other

(and the other half has the reverse), then society can learn well about both dimensions. Thus,

the designer has a strong preference for an organization with informational specialization

where some, but not all, agents are expert in a particular dimension.40

Of course, there are many familiar reasons for specialization in having precise information

about an issue. For instance, it may be that specialization is technologically efficient, or

makes it easier to provide incentives. Crucially, specialization is valuable in our setting for a

distinct reason: it helps agents with their inference problems.

More generally, one could readily extend our model and equilibrium concept to a multi-

dimensional state θt ∈ Rd and arbitrary Gaussian signals about it, with flexible correlations.

We would expect to find suitable generalizations of the basic message that sufficient diversity

within neighborhoods (in terms of signal types) facilitates learning. The assumption that

agents know neighbors’ signal distributions is clearly very helpful for tractability; it would

be interesting to consider models in which agents are also uncertain about these distributions.

Supplementary Data

The data and code underlying this article are available on Zenodo, at https://dx.doi.

org/10.5281/zenodo.6954517.
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Appendix A. Existence of equilibrium: Proof of Proposition 1

Recall from Section 3.1 the map Φ, which gives the next-period covariance matrix Φ(Vt)

for any Vt. The expression given there for this map ensures that its entries are continuous

functions of the entries of Vt. Our strategy is to show that this function maps a convex,

compact set, K, to itself, which, by Brouwer’s fixed-point theorem, ensures that Φ has a

fixed point V̂ . We will then argue that this fixed point corresponds to a stationary linear

equilibrium.
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We begin by defining the compact set K. Recalling Section 3.1.2, entries of Vt are covari-

ances between pairs of neighbor errors from any periods t − ℓ where 1 ≤ ℓ ≤ m. Let k, l be

two indices of such actions, corresponding to actions taken at nodes i and j respectively (at

potentially different times), and let σ2
i = max

{
σ2
i , ρ

m−1σ2
i +

1−ρm−1

1−ρ

}
. Now let K ⊂ V be the

subset of symmetric positive semi-definite matrices Vt such that, for any such k, l,

Vkk,t ∈
[
min

{
1

1 + σ−2
i

,
ρm−1

1 + σ−2
i

+
1− ρm−1

1− ρ

}
,max

{
σ2
i , ρ

m−1σ2
i +

1− ρm−1

1− ρ

}]
Vkl,t ∈ [−σiσj, σiσj] .

This set is closed and convex, and we claim that Φ(K) ⊂ K.
To show this claim, we will first find upper and lower bounds on the variance of any

neighbor’s action (at any period in memory). For the upper bound, note that a Bayesian

agent will not choose an action with a larger variance than her signal, which has variance σ2
i .

For a lower bound, note that if she knew the previous period’s state and her own signal, then

the variance of her action would be 1
1+σ−2

i

. Thus an agent observing only noisy estimates of

θt and her own signal can do no better.

By the same reasoning applied to the node-i agent from m periods ago, the error variance

of ρmai,t−m − θt is at most ρmσ2
i +

1−ρm
1−ρ and at least ρm

1+σ−2
i

+ 1−ρm
1−ρ . This establishes bounds

on Vkk,t for observations k from either the most recent or the oldest available period. The

corresponding bounds from the periods between t −m + 1 and t are always weaker than at

least one of the two bounds we have described, so we need only take minima and maxima

over two terms.

This established the claimed bound on the variances. The bounds on covariances follow

from Cauchy-Schwartz.

We have now established that there is a variance-covariance matrix V̂ such that Φ(V̂ ) = V̂ .

By definition of Φ, this means there exists some weight profile (Ŵ , ŵs) such that, when

applied to prior actions that have variance-covariance matrix V̂ , produce variance-covariance

matrix V̂ . However, it still remains to show that this is the variance-covariance matrix

reached when agents have been using the weights (Ŵ , ŵs) forever.

To show this, first observe that if agents have been using the weights (Ŵ , ŵs) forever,

the variance-covariance matrix Vt in any period is uniquely determined and does not depend

on t; call this V̌ .41 This is because actions can be expressed as linear combinations of

private signals with coefficients depending only on the weights. Second, it follows from our

construction above of the matrix V̂ and the weights (Ŵ , ŵs) that there is a distribution

of actions where the variance-covariance matrix is V̂ in every period and agents are using

weights (Ŵ , ŵs) in every period. Combining the two statements shows that in fact V̌ = V̂ ,

41The variance-covariance matrices are well-defined because the (W,ws) weights yield unambiguous strategy
profiles in the sense of Appendix OA3.
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and this completes the proof. Note that this argument also establishes that the response

profile we have constructed is a strategy profile: under the responses used, we can write

formally the dependence of actions on all prior signals, and verify using the observations

on decay of dependence across time that the formula is summable and hence defines unique

actions.

Appendix B. Proof of Theorem 1

B.1. Notation and key notions. Let S be the (by assumption finite) set of all possible

signal variances, and let σ2 be the largest of them. The proof will focus on the covariances

of errors in social signals. Suppose that all agents have at least one neighbor. Take two

arbitrary agents i and j. Recall that both ri,t and rj,t have mean θt−1, because each is

an unbiased estimate42 of θt−1; we will thus focus on the errors ri,t − θt−1. Let At denote

the variance-covariance matrix (Cov(ri,t − θt−1, rj,t − θt−1))i,j and let W be the set of such

covariance matrices. For all i, j note that Cov(ri,t − θt−1, rj,t − θt−1) ∈ [−σ2, σ2] using the

Cauchy-Schwarz inequality and the fact that Var(ri,t−θt−1) ∈ [0, σ2] for all i. This fact about

variances says that no social signal is worse than putting all weight on an agent who follows

only her private signal. Thus the best-response map Φ is well-defined and induces a map Φ̃

on W .

Next, for any ψ, ζ > 0 we will define the subset Wψ,ζ ⊂ W to be the set of covariance

matrices in W such that both of the following hold:

1. for any pair of distinct agents43 i ∈ Gk
n and j ∈ Gk′

n ,

Cov(ri,t − θt−1, rj,t − θt−1) = ψkk′ + ζij

where (i) ψkk′ depends only on the network types of the two agents (k and k′, which

may be the same); (ii) |ψkk′| < ψ; and (iii) |ζij| < ζ;

2. for any single agent i ∈ Gk
n,

Var(ri,t − θt−1) = ψk + ζii

where (i) ψk only depends on the network type of the agent; (ii) |ψk| < ψ, and (iii)

|ζii| < ζ.

This is the space of covariance matrices such that each covariance is split into two parts.

Considering (1) first, ψkk′ is an effect that depends only on i’s and j’s network types, while

ζij adjusts for the individual-level heterogeneity arising from different link realizations. The

description of the decomposition in (2) is analogous.

B.2. Proof strategy.

42This is because it is a linear combination, with coefficients summing to 1, of unbiased estimates of θt−1.
43Throughout this proof, we abuse terminology by referring to agents and nodes interchangeably when the
relevant t is clear or specified nearby.
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B.2.1. A set Wψ,ζ of outcomes with good learning. Our goal is to show that as n grows large,

there is an equilibrium in which Var(ri,t − θt−1) becomes very small, which then implies that

the agents asymptotically learn. To this end we define a set of covariances with this property

as well as some other useful properties. We will take ψ and ζ to be arbitrarily small numbers

and show that for large enough n, with high probability (which we abbreviate “asymptotically

almost surely” or “a.a.s.”) there is an equilibrium with a social error covariance matrix At

in the set Wψ,ζ . That will imply that, in this equilibrium, Var(ri,t− θt−1) becomes arbitrarily

small as we take the constants ψ and ζ to be small. In our constructions, the ζij (resp.,

ζi) terms will be set to much smaller values than the ψkk′ (resp., ψk) terms, because group-

level covariances are more predictable and less sensitive to idiosyncratic realizations than

individual-level covariances.

B.2.2. Approach to showing that Wψ,ζ contains an equilibrium. To show that there is (a.a.s.)

an equilibrium outcome with a social error covariance matrix At in the set Wψ,ζ , the plan

is to construct a set so that (a.a.s.) W ⊂ Wψ,ζ and Φ̃(W) ⊂ W . This set will contain an

equilibrium by the Brouwer fixed point theorem, and therefore so will Wψ,ζ .

To construct the set W , we will fix a positive constant β (to be determined later), and

define

W = W β
n
, 1
n
∪ Φ̃

(
W β

n
, 1
n

)
.

We will then prove that, for large enough n, (i) Φ̃(W) ⊆ W and (ii) for another suitable

positive constant λ,

W ⊂ W β
n
,λ
n
.

This will allow us to establish that (a.a.s.) W ⊂ Wψ,ζ and Φ̃(W) ⊂ W , with ψ and ζ being

arbitrarily small numbers.

The following two lemmas will allow us to deduce (immediately after stating them) prop-

erties (i) and (ii) of W .

Lemma 1. There is a function λ(β) ≥ 1 such that the following holds. For all large enough

β and all λ ≥ λ(β), for n sufficiently large we have Φ̃
(
W β

n
, 1
n

)
⊂ W β

n
,λ
n
with probability at

least 1− 1
n
.

Lemma 2. For all large enough β, for n sufficiently large, Φ̃2
(
W β

n
, 1
n

)
⊂ W β

n
, 1
n
, with proba-

bility at least 1− 1
n
.44

Putting these lemmas together, a.a.s. we have,

Φ̃2
(
W β

n
, 1
n

)
⊂ W β

n
, 1
n

and Φ̃
(
W β

n
, 1
n

)
⊂ W β

n
,λ
n
.

44The notation Φ̃2 means the operator Φ̃ applied twice.
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From this it follows that W = W β
n
, 1
n
∪ Φ̃

(
W β

n
, 1
n

)
is mapped to a subset of itself by Φ̃, and

contained in W β
n
,λ
n
, as claimed.

B.2.3. Proving the lemmas by analyzing how Φ̃ and Φ̃2 act on sets Wψ,ζ. The lemmas are

about how Φ̃ and Φ̃2 act on the covariance matrix At, assuming it is in a certain set Wψ,ζ ,

to yield new covariance matrices. Thus, we will prove these lemmas by studying two periods

of updating. The analysis will come in five steps.

Step 1: No-large-deviations (NLD) networks and the high-probability event. Step

1 concerns the “with high probability” part of the lemmas. In the entire argument, we

condition on the event of a no-large-deviations (NLD) network realization, which says that

certain realized statistics in the network (e.g., number of paths between two nodes) are close

to their expectations. The expectations in question depend only on agents’ types. Therefore,

on the NLD realization, the realized statistics do not vary much based on which exact agents

we focus on, but rather depend only on their types. Step 1 defines the NLD event E formally

and shows that it has high probability. We use the structure of the NLD event throughout

our subsequent steps, as we mention below.

Step 2: Weights in one step of updating are well-behaved. We are interested in Φ̃

and Φ̃2, which describe how the covariance matrix At of social signal errors changes under

updating. How this works is determined by the “basic” updating map Φ, and so we begin by

studying the weights involved in it and then make deductions about the implications for the

evolution of the variance-covariance matrix At.

The present step establishes that in one step of updating, the weight Wij,t+1 that agent

(i, t+1) places on the action of another agent j in period t, does not depend too much on the

identities of i and j. It only depends on their (network and signal) types. This is established

by using our explicit formula for weights in terms of covariances. We rely on (i) the fact that

covariances are assumed to start out in a suitable Wψ,ζ , and (ii) our conditioning on the NLD

event E. The NLD event is designed so that the network quantities that go into determining

the weights depend only on the types of i and j (because the NLD event forbids too much

variation within type). The restriction to At ∈ Wψ,ζ ensures that covariances in the initial

period t do not vary too much with type, either.

Step 3: Lemma 1: Φ̃
(
W β

n
, 1
n

)
⊂ W β

n
,λ
n
. Once we have analyzed one step of updating, it

is natural to consider the implications for the covariance matrix. Because we now have a

bound on how much weights can vary after one step of updating, we can compute bounds on

covariances. We show that if covariances At are in W β
n
, 1
n
, then after one step, covariances are

in W β
n
,λ
n
. Note that the introduction of another parameter λ on the right-hand side implies

that this step might worsen our control on covariances somewhat, but in a bounded way.

Step 4: Weights in two steps of updating are well-behaved. Here we establish that

the statement made in Step 2 remains true when we replace t+ 1 by t+ 2. By the same sort
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of reasoning as in Step 2, an additional period of updating cannot create too much further

idiosyncratic variation in weights. Proving this requires analyzing the covariance matrices of

various social signals (i.e., the At+1 that the updating induces), which is why we needed to

do Step 3 first.

Step 5: Lemma 2: Φ̃2
(
W β

n
, 1
n

)
⊂ Wβ

n
, 1
n
. Now we use our understanding of weights from

the previous steps, along with additional structure, to show the key remaining fact. What

we have established so far about weights allows us to control the weight that a given agent’s

estimate at time t+2 places on the social signal of another agent at time t. This is Step 5(a).

In the second part, Step 5(b), we use that to control the covariances in At+2. It is important

in this part of the proof that different agents have very similar “second-order neighborhoods”:

the paths of length 2 beginning from an agent are very similar, in terms of their counts and

what types of agents they go through. We use our control of second-order neighborhoods, as

well as the assumptions on variation across entries of At to bound this variation well enough

to conclude that At+2 ∈ W β
n
, 1
n
.

B.3. Carrying out the steps.

B.3.1. Step 1. Here we formally define the NLD event, which we call E. It is given by

E = ∩5
i=1Ei, where the events Ei will be defined next.

(E1) Let X
(1)
i,τk be the number of agents having signal type τ and network type k who are

observed by i. The event E1 is that this quantity is close to its expected value in the following

sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X(1)
i,τk] ≤ X

(1)
i,τk ≤ (1 + ζ2)E[X(1)

i,τk].

(E2) Let X
(2)
ii′,τk be the number of agents having signal type τ and network type k who are

observed by both i and i′. The event E2 is that this quantity is close to its expected value in

the following sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X(2)
ii′,τk] ≤ X

(2)
ii′,τk ≤ (1 + ζ2)E[X(2)

ii′,τk].

(E3) Let X
(3)
i,τk,j be the number of agents having signal type τ and network type k who are

observed by agent i and who observe agent j. The event E3 is that this quantity is close to its

expected value in the following sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X(3)
i,τk,j] ≤ X

(3)
i,τk,j ≤ (1 + ζ2)E[X(3)

i,τk,j].

(E4) Let X
(4)
ii′,τk,j be the number of agents having signal type τ and network type k who

are observed by both agent i and i′ and who observe j. The event E4 is that this quantity is

close to its expected value in the following sense, simultaneously for all possible values of the

subscript:

(1− ζ2)E[X(4)
ii′,τk′,j] ≤ X

(4)
ii′,τk′,j ≤ (1 + ζ2)E[X(4)

ii′,τk′,j].
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(E5) Let X
(5)
i,τk,jj′ be the number of agents of signal type τ and network type k who are

observed by agent i and who observe both j and j′. The event E5 is that this quantity is

close to its expected value in the following sense, simultaneously for all possible values of the

subscript:

(1− ζ2)E[X(5)
i,τk,jj′ ] ≤ X

(5)
i,τk,jj′ ≤ (1 + ζ2)E[X(5)

i,τk,jj′ ].

We claim that the probability of the complement of the event E vanishes exponentially.

We can check this by showing that the probability of each of the Ei vanishes exponentially.

For E1, for example, the bounds will hold unless at least one agent has degree outside the

specified range. The probability of this is bounded above by the sum of the probabilities of

each individual agent having degree outside the specified range. By Chebyshev’s inequality,

the probability a given agent has degree outside this range vanishes exponentially. Because

there are n agents in Gn, this sum vanishes exponentially as well. The other cases are similar.

For the rest of the proof, we condition on the event E.

B.3.2. Step 2. As a shorthand, let ψ = β/n for a sufficiently large constant β, and let ζ = 1/n.

Lemma 3. Suppose that in period t the matrix A = At of covariances of social signals

satisfies A ∈ Wψ,ζ and all agents are optimizing in period t+1. Then there is a γ so that for

all n sufficiently large,
Wij,t+1

Wi′j′,t+1

∈
[
1− γ

n
, 1 +

γ

n

]
.

whenever i and i′ have the same network and signal types and j and j′ have the same network

and signal types.

To prove this lemma, we will use the formula given by (3.1) for row i of the matrix Wt+1:

Wi·,t+1 =
1⊤C−1

i,t

1⊤C−1
i,t 1

.

This says that in period t + 1, agent i’s weight on agent j is proportional to the sum of the

entries of column j of C−1
i,t . We want to show that the change in weights is small as the

covariances of observed social signals vary slightly. To do so we will use the Taylor expansion

of f(A) = C−1
i,t around the covariance matrix A(0) at which all ψkk′ = 0, ψk = 0 and ζij = 0.

We begin with the first partial derivative of f at A(0) in an arbitrary direction. Let A(x)

be any perturbation of A(0) in one parameter, i.e., A(x) = A(0) + xM for some constant

matrix M with entries in [−1, 1]. Let Ci(x) be the matrix of covariances of the actions

observed by i given that the covariances of agents’ social signals were A(x). There exists a

constant γ1 depending only on the possible signal types such that each entry of Ci(x)−Ci(x
′)

has absolute value at most γ1(x− x′) whenever both x and x′ are small.

We will now show that the column sums of Ci(x)
−1 are close to the column sums of C(0)−1

i .

To do so, we will evaluate the formula
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∂f(A(x))

∂x
=
∂Ci(x)

−1

∂x
= Ci(x)

−1∂Ci(x)

∂x
Ci(x)

−1 (B.1)

at zero. If we can bound each column sum of this expression (evaluated at zero) by a

constant (depending only on the signal types and the number of network types K), then the

first derivative of f will also be bounded by a constant.

Recall that S is the set of signal types and let S = |S|; index the signal types by numbers

ranging from 1 to S. To bound the column sums of Ci(0)
−1, suppose that the agent observes

ri agents from each signal type 1 ≤ i ≤ S. Reordering so that all agents of each signal type

are grouped together, we can write, for a suitable matrix Y and vector z:

Ci(0) =


Y111r1×r1 + z1Ir1 Y121r1×r2 YS11r1×rS

Y121r2×r1 Y221r2×r2 + z2Ir2
...

. . .

Y1S1rS×r1 · · · YSS1rS×rS + zSIrS


Therefore, the covariance matrixCi(0) can be written as a block matrix with blocks Yττ ′1rτ×rτ ′+

zτδττ ′Irτ where 1 ≤ τ, τ ′ ≤ S and δττ ′ = 1 for τ = τ ′ and 0 otherwise.

We now have the following important approximation of the inverse of this matrix.45

Lemma 4 (Pinelis (2018)). Let C be a block matrix with blocks given by

Yττ ′1rτ×rτ ′ + zτδττ ′Irτ

for all τ, τ ′ ∈ S. As n→ ∞, the (τ, τ) block of C−1 satisfies

1

zτ
Irτ −

1

zτrτ
1rτ×rτ +O(1/n2)

while the off-diagonal blocks are O(1/n2).

Proof. Note that the block (τ, τ ′) of C−1 has the form

Eττ ′1rτ×rτ ′ + dτδττ ′Irτ

for some matrix E and vector d. Here δ denotes the Kronecker delta.

Therefore, the (τ, τ ′) block of CC−1 can be written (using that 1r×r′1r′×r′′ = r′1r×r′′) as∑
τ̂ (Yτ τ̂1rτ×rτ̂ + zτδτ τ̂Irτ )(Eτ̂ τ ′1rτ̂×rτ ′ + dτ̂δτ̂ τ ′Irτ̂ ) =

(Yττ ′dτ ′ +
∑

τ̂ (Yτ τ̂rτ̂ + δτ τ̂zτ̂ )Eτ̂ τ ′)1rτ×rτ ′ + zτdτδττ ′Irτ . (B.2)

For any vector v ∈ RS, let Dv denote the diagonal matrix with vτ in the (τ, τ) diagonal

entry and v ◦v′ denote the pointwise product of two vectors. Breaking up the fact that (B.2)

45We are very grateful to Iosif Pinelis for this argument.
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equals I into its off-diagonal and diagonal parts, we have

Y Dd + (Y Dr +Dz)E = 0 and Dd = D−1
z .

Hence,

E = −(Y Dr +Dz)
−1Y Dd

= −(IS +D−1
r Y −1Dz)

−1(Y Dr)
−1Y D−1

z

= −(IS +D−1
r Y −1Dz)

−1D−1
z◦r

= −D−1
z◦r +O(1/n2).

Therefore as n→ ∞ the off-diagonal blocks of C−1 will be O(1/n2) while the (τ, τ) diagonal

block is
1

zτ
Irτ −

1

zτrτ
1rτ×rτ +O(1/n2)

as desired. □

Using Lemma 4 we can analyze the column sums of46 Ci(0)
−1MCi(0)

−1. In more detail,

we use the formula of the lemma to estimate both copies of Ci(0)
−1, and then expand this

to write an expression for any column sum of Ci(0)
−1MCi(0)

−1. It follows straightforwardly

from this calculation that all these column sums are O(1/n) whenever all entries of M are

in [−1, 1].

We can bound the higher-order terms in the Taylor expansion by the same technique: by

differentiating equation (B.1) repeatedly in x, we obtain an expression for the kth derivative

in terms of Ci(0)
−1 and M :

f (k)(0) = k!Ci(0)
−1MCi(0)

−1MCi(0)
−1 · . . . ·MCi(0)

−1,

where M appears k times in the product. By the same argument as above, we can show that

the column sums of f
(k)(0)
k!

are bounded by a constant independent of n. The Taylor expansion

is

f(A) =
∑
k

f (k)(0)

k!
xk.

Since we take A ∈ Wψ,ζ , we can assume that x is O(1/n). Because the column sums of each

summand are bounded by a constant times xk, the column sums of f(A) are bounded by a

constant.

Finally, because the variation in the column sums is O(1/n) and the weights are propor-

tional to the column sums, each weight varies by at most a multiplicative factor of γ1/n for

some γ1. We find that the first part of the lemma, which bounded the ratios between weights

Wij,t+1/Wi′j′,t+1, holds.

46Recall we wrote A(x) = A(0) + xM , and in (B.1) we expressed the derivative of f in x in terms of the
matrix we exhibit here.
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B.3.3. Step 3. We complete the proof of Lemma 1, which states that the covariance matrix

of ri,t+1 is in Wψ,ζ′ . Recall that ζ ′ = λ/n for some constant n, so we are showing that if

the covariance matrix of the ri,t is in a neighborhood Wψ,ζ , then the covariance matrix in

the next period is in a somewhat larger neighborhood Wψ,ζ′ . The remainder of the argument

then follows by the same arguments as in the proof of the first part of the lemma: we now

bound the change in time-(t + 2) weights as we vary the covariances of time-(t + 1) social

signals within this neighborhood.

Recall that we decomposed each covariance Cov(ri,t − θt−1, rj,t − θt−1) = ψkk′ + ζij into a

term ψkk′ depending only on the types of the two agents and a term ζij, and similarly for

variances. To show the covariance matrix is contained in Wψ,ζ′ , we bound each of these terms

suitably.

We begin with ζij (and ζi). We can write

ri,t+1 =
∑
j

Wij,t+1

1− wsi,t+1

ρai,t =
∑
j

Wij,t+1

1− wsi,t+1

ρ
(
wsj,tsj,t + (1− wsj,t)rj,t

)
.

By the first part of the lemma, the ratio between any two weights (both of the form Wij,t+1,

wsi,t+1, or w
s
j,t) corresponding to pairs of agents of the same types is in [1− γ1/n, 1+ γ1/n] for

a constant γ1. We can use this to bound the variation in covariances of ri,t+1 within types by

ζ ′: we take the covariance of ri,t+1 and rj,t+1 using the expansion above and then bound the

resulting summation by bounding all coefficients.

Next we bound ψkk′ (and ψk). It is sufficient to show that Var(ri,t+1 − θt) is at most ψ.

To do so, we will give an estimator of θt with variance less than β/n, and this will imply

Var(ri,t+1−θt) < β/n = ψ (recall ri,t+1 is the estimate of θt given agent i’s social observations

in period t+1). Since this bounds all the variance terms by ψ, the covariance terms will also

be bounded by ψ in absolute value.

Fix an agent i of network type k and consider some network type k′ such that pkk′ > 0.

Then there exists two signal types, which we call A and B, such that i observes Ω(n) agents

of each of these signal types in Gk
n.

47 The basic idea will be that we can approximate θt well

by taking a linear combination of the average of observed agents of network type k and signal

type A and the average of observed agents of network type k and signal type B.

In more detail: Let Ni,A be the set of agents of type A in network type k observed by i

and Ni,B be the set of agents of type B in network type k observed by i. Then fixing some

agent j0 of network type k,

1

|Ni,A|
∑
j∈Ni,A

aj,t−1 =
σ−2
A

1 + σ−2
A

θt +
1

1 + σ−2
A

rj0,t−1 + noise

47We use the notation Ω(n) to mean greater than Cn for some constant C > 0 when n is large.
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where the noise term has variance of order 1/n and depends on signal noise, variation in rj,t,

and variation in weights. These bounds on the noise term follow from the assumption that

the covariance matrix of the ri,t is in a neighborhood Wψ,ζ and our analysis of variation in

weights. Similarly

1

|Ni,B|
∑
j∈Ni,B

aj,t−1 =
σ−2
B

1 + σ−2
B

θt +
1

1 + σ−2
B

rj0,t−1 + noise

where the noise term has the same properties. Because σ2
A ̸= σ2

B, we can write θt as a linear

combination of these two averages with coefficients independent of n up to a noise term of

order 1/n. We can choose β large enough such that this noise term has variance most β/n

for all n sufficiently large. This completes the proof of Lemma 1.

B.3.4. Step 4: We now give the two-step version of Lemma 3.

Lemma 5. Suppose that in period t the matrix A = At of covariances of social signals

satisfies A ∈ Wψ,ζ and all agents are optimizing in periods t+ 1 and t+ 2. Then there is a γ

so that for all n sufficiently large,

Wij,t+2

Wi′j′,t+2

∈
[
1− γ

n
, 1 +

γ

n

]
.

whenever i and i′ have the same network and signal types and j and j′ have the same network

and signal types.

Given what we established about covariances in Step 3, the lemma follows by the same

argument as the proof of Lemma 3.

Step 5: Now that Lemma 5 is proved, we can apply it to show that Φ̃2(Wψ,ζ) ⊂ Wψ,ζ .

We will do this by first writing the time-(t+2) behavior in terms of agents’ time-t observa-

tions (Step 5(a)), which comes from applying Φ̃ twice. This gives a formula that can be used

for bounding the covariances48 of time-(t+2) actions in terms of covariances of time-t actions.

Step 5(b) then applies this formula to show we can take ζij and ζi to be sufficiently small.

(Recall the notation introduced in Section B.1 above.) We split our expression for ri,t+2 into

several groups of terms and show that the contribution of each group of terms depends only

on agents’ types up to a small noise term. Step 5(c) notes that we can also take ψkk′ and ψk

to be sufficiently small.

48We take this term to refer to variances, as well.
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Step 5(a): We calculate:

ri,t+2 =
∑
j

Wij,t+2

1− wsi,t+2

ρaj,t+1

= ρ

(∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1sj,t+1 +
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1ρaj′,t

)

= ρ

(∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1sj,t+1 + ρ
(∑

j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1w
s
j′,tsj′,t

+
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t)rj′,t

))
.

Let hij′,t be the coefficient on rj′,t in this expansion of ri,t+2. Explicitly,

hij′,t =
∑
j

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t). (B.3)

The coefficient hij′,t adds up the influence of rj′,t on ri,t+2 over all paths of length two.

First, we establish a lemma about how much these weights vary.

Lemma 6. There exists γ such that for n sufficiently large, when i and i′ have the same

network types and j′ and j′′ have the same network and signal types, the ratio hij′,t/hi′j′′,t is

in [1− γ/n, 1 + γ/n].

Proof. Fix i and j′. For each network type k′′ and signal type τ , consider the number of

agents j of network type k′′ and signal type τ who are observed by i and who observe j′. This

number varies by at most a factor ζ2 as we vary i and j′, preserving signal and network types.

For each such j, the contribution to hij′,t due to weight on that agent’s action is (recalling

(B.3))
Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t).

By applying Lemma 3 repeatedly, we can choose γ1 such that each of these contributions

varies by at most a factor of γ1/n as we change i in Gk and j′ in Gk′ . Thus, hij′,t is a sum

of terms which vary by at most a multiplicative factor of γ1/n as we vary i and j′ preserving

signal and network types. If we can show that the sum of the absolute values of these terms

is bounded, then it will follow that hij′,t varies by at most a multiplicative factor of γ/n for

some n. This bound on the sum of absolute values follows from the calculation of weights in

the proof of Lemma 3. □

Step 5(b): We first show that fixing the values of ψkk′ and ψk in period t, the variation in

the covariances Cov(ri,t+2 − θt+1,ri′,t+2 − θt+1) of these terms as we vary i and i′ over network



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 48

types is not larger than ζ. From the formula above, we observe that we can decompose

ri,t+2 − θt+1 as a linear combination of three mutually independent groups of terms:

(i) signal error terms ηj,t+1 and ηj′,t;

(ii) the errors rj′,t − θt in the social signals from period t; and

(iii) changes in state νtand νt+1 between periods t and t+ 2.

Note that the terms rj′,t − θt are linear combinations of older signal errors and changes in

the state. We bound each of the three groups in turn:

(i) Signal errors: We first consider the contribution of signal errors. When i and i′ are

distinct, the number of such terms is close to its expected value because we are conditioning

on the events E2 and E4 defined in Section B.1. Moreover the weights are close to their

expected values by Step 2, so the variation is bounded suitably. When i and i′ are equal,

we use the facts that the weights are close to their expected values and the variance of an

average of Ω(n) signals is small.

(ii) Social signals: We now consider terms rj′,t − θt, which correspond to the third

summand in our expression for ri,t+2. Since we will analyze the weight on νt below, it is

sufficient to study the terms rj′,t − θt−1.

By Lemma 6, the coefficients placed on rj′,t by i and on rj′′,t by i
′ vary by a factor of at

most 2γ/n. Moreover, the absolute value of each of these covariances is bounded above by ψ

and the variation in these terms is bounded above by ζ. We conclude that the variation from

these terms has order 1/n2.

(iii) Innovations: Finally, we consider the contribution of the innovations νt and νt+1. We

treat νt+1 first. We must show that any two agents of the same types place the same weight

on the innovation νt+1 (up to an error of order 1
n2 ). This will imply that the contributions of

timing to the covariances Cov(ri,t+2 − θt+1,ri′,t+2 − θt+1) can be expressed as a term that can

be included in the relevant ψkk′ and a lower-order term which can be included in ζii′ .

The weight an agent places on νt+1 is equal to the weight she places on signals from period

t+ 1. So this is equivalent to showing that the total weight

ρ
∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1

agent i places on period t + 1 depends only on the network type k of agent i and Op(1/n
2)

terms. We will first show the average weight placed on time-(t+ 1) signals by agents of each

signal type depends only on k. We will then show that the total weights on agents of each

signal type do not depend on n.

Suppose for simplicity here that there are two signal types A and B; the general case is the

same. We can split the sum from the previous paragraph into the subgroups of agents with
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signal types A and B:

ρ
∑

j:σ2
j=σ

2
A

Wij,t+2

1− wsi,t+2

wsj,t+1 + ρ
∑

j:σ2
j=σ

2
B

Wij,t+2

1− wsi,t+2

wsj,t+1.

Letting WA
i =

∑
σ2
j=σ

2
A

Wij,t+2

1−ws
i,t+2

be the total weight placed on agents with signal type A and

similarly for signal type B, we can rewrite this as:

WA
i ρ

∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

wsj,t+1 +WB
i ρ

∑
j:σ2

j=σ
2
B

Wij,t+2

WB
i (1− wsi,t+2)

wsj,t+1.

The coefficients
Wij,t+2

WA
i (1−ws

i,t+2)
in the first sum now sum to one, and similarly for the second.

We want to check that the first sum
∑

j:σ2
j=σ

2
A

Wij,t+2

WA
i (1−ws

i,t+2)
wsj,t+1 does not depend on k, and

the second sum is similar.

For each j in group A,

wsj,t+1 =
σ−2
A

σ−2
A + (ρ2κj,t+1 + 1)−1

,

where we define κ2j,t+1 = Var(rj,t+1 − θt) to be the error variance of the social signal. Because

κj,t+1 is close to zero, we can approximate wsj,t+1 locally as a linear function µ1κj,t+1 + µ2

where µ1 < 1 (up to order 1
n2 terms).

So we can write the sum of interest as∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

(
µ1

∑
j′,j′′

Wjj′,t+1Wjj′′,t+1(ρ
2Vj′j′′,t + 1) + µ2

)
.

By Lemma 3, the weights vary by at most a multiplicative factor contained in [1−γ/n, 1+γ/n].
The number of paths from i to j′ passing through agents of any network type k′′ and any

signal type is close to its expected value (which depends only on i’s network type), and the

weight on each path depends only on the types involved up to a factor in [1− γ/n, 1 + γ/n].

The variation in Vj′j′′,t consists of terms of the form ψk′k′′ , ψk′ , and ζj′j′′ , all of which are

Op(1/n), and terms from signal errors ηj′,t. The signal errors only contribute when j = j′,

and so only contribute to a fraction of the summands of order 1/n. So we can conclude the

total variation in this sum as we change i within the network type k has order 1/n2.

Now that we know each the average weight on private signals of the observed agents of

each signal type depends only on k, it remains to check that WA
i and WB

i only depend on k.

The coefficients WA
i and WB

i are the optimal weights on the group averages∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρaj,t+1 and
∑

j:σ2
j=σ

2
B

Wij,t+2

WB
i (1− wsi,t+2)

ρaj,t+1,
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so we need to show that the variances and covariance of these two terms depend only on k.

We check the variance of the first sum: we can expand∑
σ2
j=σ

2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρaj,t+1 =
∑
σ2
j=σ

2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρ
(
wsj,t+1sj,t+1 + (1− wsj,t+1)rj,t+1

)
.

We can again bound the signal errors and social signals as in the previous parts of this proof,

and show that the variance of this term depends only on k up to error terms that are Op(1/n
2).

The second variance and covariance are similar, so WA
i and WB

i depend only on k up to error

terms that are Op(1/n
2).

This takes care of the innovation νt+1. Because we have included any innovations prior to

νt in the social signals rj′,t, to complete Step 5(b) we need only show the weight on νt depends

only on the network type k of an agent.

The analysis is a simpler version of the analysis of the weight on νt+1. It is sufficient to

show the total weight placed on period t social signals depends only on the network type of

k of an agent i. This weight is equal to

ρ2
∑
j,j′

Wij,t+2

1− wsi,t+2

·Wjj′,t+1 · (1− wsj′,t).

As in the νt+1 case, we can approximate (1−wsj′,t) as a linear function of κj′,t up to Op(1/n
2)

terms. Because the number of paths to each agent j′ though a given type and the weights on

each such path cannot vary too much within types, the same argument shows that this sum

depends only on k, up to error terms that are Op(1/n
2). Thus Step 5(b) is complete.

Step 5(c): The final step is to verify that we can take ψkk′ and ψk to be smaller than ψ.

It is sufficient to show that the variance Var(ri,t+2 − θt+1) of each social signal about θt+1 is

at most ψ. The proof is the same as in Step 2(b).


