Roman Transport Network Connectivity and Economic Integration

Matthias Flückiger, Erik Hornung, Mario Larch, Markus Ludwig, and Allard Mees

Final version

Abstract

We show that the creation of the first integrated multi-modal pan-European transport network during Roman times influences economic integration over two millennia. Drawing on spatially highly disaggregated data on excavated Roman ceramics, we document that contemporary interregional trade was influenced by connectivity within the network. Today, these connectivity differentials continue to influence integration as approximated by cross-regional firm investment behaviour. Continuity is partly explained by selective infrastructure routing and cultural integration due to bilateral convergence in preferences and values. We show that our results are Roman-connectivity specific and do not reflect pre-existing patterns of exchange using pre-Roman trade data.

Keywords: Economic integration, Roman trade, transport network connectivity, business links, cultural similarity

JEL classification codes: F14, F15, F21, N73, R12, R40, O18
1 Introduction

Large-scale transport infrastructure projects shape connectivity patterns and determine the distribution of economic activity across space by altering the costs of exchange. Changes in connectivity may have additional long-lasting consequences for connected regions because repeated interactions reduce information frictions and increase cultural integration. While many studies investigate the consequences of changing trade costs and transport infrastructure for levels of integration, we know surprisingly little about the potential causes of systematic differences in bilateral transport connectivity and information frictions between regions. For example, one of the largest infrastructure projects in history, the Belt and Road initiative, follows the Silk Road over long stretches. Along this ancient trade corridor goods, ideas, and cultural values have been exchanged over millennia. If new infrastructure projects follow existing patterns of economic integration, transport costs as well as informal barriers to integration—such as cultural differences—may be determined by historical economic integration. Hence, policy makers and economists need to be aware of the history of bilateral exchange and the concurrent integration of attitudes and tastes when evaluating infrastructure projects and regional policies and when discussing the optimal allocation of infrastructure resources.

This paper argues that the first pan-European multi-modal transport network—created by the Romans—had fundamental and lasting effects on the intensity of interregional (socio-)economic exchange. The unprecedented reach of the integrated network, combined with technological and institutional progress, dramatically reduced transport costs and changed the pattern of interregional trade in Western Europe. Regions better connected within the network started interacting more intensely and this pattern continued long after the collapse of the Roman Empire. The continued (socio-)economic interaction led to the convergence of preferences and values and thereby reduced information frictions. High similarity in these aspects, in turn, facilitates investment flows. Based on the arguments outlined above, we hypothesise that variation in connectivity within the Roman transport network determined historical trade flows and influences the intensity of cross-regional firm ownership today.

To empirically assess the validity of these hypotheses, we analyse the relationship between Roman connectivity and (socio-)economic integration at various points in time. We divide Western Europe into grid cells of 0.5×0.5 degrees and determine for each pair of cells how well it is connected within the multi-modal Roman transport network. This network is a collection of numerous segments—sections of sea, river, or road—which differ in length and associated mode of transport. Based on Diocletian’s Edict on Prices of 301 CE, a contemporary and widely used source, we determine Roman-technology-driven differences in freight rates across transport modes. Combining information on network and freight-rate differentials, we identify the least-cost path between any two grid cells that are connected to the network. The cost associated with shipping goods along this optimal path (referred to as Roman effective distance) constitutes our measure of connectivity within the Roman transport network. To isolate the Roman-era-specific aspects of this measure, we control for geodesic distance and further geographic controls.

\footnote{In the remainder of this paper, we use the terms ‘grid cell’ and ‘region’ interchangeably.}
throughout our empirical analysis.

Our first contribution is to document that variation in Roman effective distance influenced the intensity of trade during Roman times. To this end, we draw on geocoded information on more than 242,000 excavated potsherds of Roman fine tableware collated in the hitherto underexploited Samian Research database (Römisch-Germanisches Zentralmuseum in Mainz). A unique feature of the mass-produced and widely used ceramic tableware—subsequently referred to as ‘terra sigillata’—is that production sites (i.e., the origins of the tableware) are precisely identifiable. Combined with information on the location of archaeological excavation sites (i.e., the destination of the terra sigillata), this allows us to aggregate the number of finds to the grid-cell-pair level and thereby capture interregional trade volumes within Western Europe during the Roman era. The possibility to trace terra sigillata from origin to destination, combined with the fact that it was traded throughout the entire Roman territory, makes them ideal goods to study long-distance trade in the first European-wide integrated market.

We empirically estimate the relationship between historical trade shares and Roman effective distance employing a Poisson Pseudo-Maximum-Likelihood (PPML) regression approach that accounts for heteroskedasticity and takes into account information contained in zero trade flows (see Santos Silva and Tenreyro, 2006; Eaton, Kortum and Sotelo, 2013; Barjamovic et al., 2019; Sotelo, 2019). To control for unobserved origin- and destination-specific effects, we include origin and destination fixed effects. The results document that Roman effective distance strongly influenced the volume of interregional trade. A one percent increase in Roman effective distance reduces trade by 2.9% when only controlling for origin and destination fixed effects. When we account for geodesic distance and other geographical disparities to isolate the Roman-era-specific part of effective distance, the point estimate remains statistically significant and economically sizeable, implying an elasticity of Roman effective distance of -1.5. This elasticity is close to estimates for other historical periods (see, e.g., Barjamovic et al., 2019; Donaldson, 2018; Wolf, 2009) and larger in absolute terms than estimates of modern-day distance elasticities (see, e.g., Disdier and Head, 2008).

As a second contribution, we provide evidence that Roman-era-specific transport network connectivity continued to influence the geography of trade at least until the advent of steam power and new transport technologies during the Industrial Revolution. Trade is proxied by the degree of interregional price correlation over the period 1208–1790 as well as differences in the timing of onset of the Black Death (1347–51).

Our third contribution is to document that differential connectivity within the Roman network influences the spatial pattern of firm ownership today, despite the fundamental changes in relative transport costs that occurred since the advent of railways and air travel. Drawing on geocoded firm-level data from the Bureau van Dijk’s Orbis database, we show that greater connectivity during the Roman Empire intensifies cross-regional parent-subsidiary connections. In our preferred regression specification, which accounts for geodesic distance, geographical factors and home bias, ownership connections decline by 0.4% as Roman effective distance increases by 1%. This finding highlights that today’s pattern of bilateral economic integration in Western Europe is (partly) determined by infrastructure routing decisions made 2,000 years ago. Motivated
by the observation that foreign direct investment is an important transmission channel of business cycles (Cravino and Levchenko, 2017), we extend our analysis and show that the effect of Roman connectivity on firm ownership is also reflected in business cycle integration. As proxy for integration we use correlation in night-time luminosity growth.

Our fourth contribution is to investigate potential mechanisms that link variation in connectivity within the ancient transport network to cross-regional firm investment behaviour today. Guided by recent studies (discussed below), we focus on two mechanisms: persistence in transport infrastructure connectivity and cultural convergence. We first show that regions better connected within the Roman transport network continue to be more closely linked within today’s transport network, particularly the passenger network. This suggests that regions with stronger ancient connectivity were connected more directly when new transport technologies (e.g., railways, aeroplanes, and highways) became available. The persistence in infrastructure connectivity can explain a substantial part (36%) of the Roman-era-specific effect on cross-regional firm ownership. Second, we show that the effect of Roman-transport-network connectivity can partially be explained by network-induced similarity in preferences and values. Greater connectivity between regions increases similarity in preferences and values as reported in the Global Preferences Survey (GPS, Falk et al., 2018) and the European Values Study (EVS, EVS, 2016). This mechanism can account for 18% of the Roman-transport-network effect on firm ownership. Combined, the two mechanisms absorb around 50% of the ancient connectivity effect. The lack of detailed bilateral data prevents us from testing further specific mechanisms, such as greater genetic similarity resulting from migration. However, we use the Social Connectedness Index (SCI, Bailey et al., 2018) as an aggregate index that captures the realisation of many conceivable mechanisms. This measure of the interregional intensity of social ties may be (loosely) interpreted as an index of revealed similarity. Once we account for the SCI, Roman transport network connectivity ceases to have explanatory value for today’s ownership links.

The identifying assumption underlying our estimation strategy is that, conditional on control variables, Roman effective distance captures Roman-era-specific variation in transport network connectivity that is not correlated with unobserved factors that influence integration. A particularly pressing concern is that connectivity within the Roman transport network could be endogenous to pre-existing cultural and economic exchange. We alleviate this concern by empirically documenting that Roman effective distance does not explain pre-existing patterns of socio-economic integration. These findings are based on a newly compiled database of more than 7,000 prehistoric artefacts with precisely identifiable origins and destinations. We additionally show that connectivity within the not yet existing transport network has no effect on cultural diffusion, as measured by Neolithic or Bronze Age burial traditions.

Another related concern is that the path of Roman roads could have been influenced by economic or geographic factors. Historical evidence, however, indicates that the routing of the road network was primarily influenced by military strategic considerations and disregarded local (socio-)economic and geographic conditions (see, e.g., Temin, 2012; Laurence, 2002; Davies, 1998). Based on this historical evidence, we develop an instrumental variable approach in which we replace the actual road network with a hypothetical network that connects the capital Rome
to the locations of Roman battlefields using a Gabriel graph. This creates a network that consists only of straight-line road segments and allows for a rapid movement of troops. The results of the IV procedure confirm our main findings: Roman effective distance deters economic integration both in the past and today.

A further worry is that Roman effective distance partially captures the effects of geographic connectivity. To assuage this concern, we show that estimates remain stable when we account for a variety of geography-based least cost measures as well as a wide range of geographic aspects. Additionally, we conduct a falsification exercise in which we show that Roman-era-specific transport network connectivity does not influence interregional business link intensity in parts of Europe that were never part of the Roman Empire. Taken together, the exercises outlined above provide strong evidence that our estimates are, in fact, capturing Roman-era-specific effects.

Our paper relates and contributes to various literatures. Directly linked to our research is the literature concerned with identifying determinants of bilateral trade and especially the branch that assesses transport-cost related effects on trade flows (see, e.g., Duranton, Morrow and Turner, 2014; Pascali, 2017; Donaldson, 2018; Feyrer, 2019). We contribute by providing the first empirical evidence that transport costs, approximated by Roman effective distance, influenced trade during ancient (Roman) times. To the best of our knowledge, only the recent study by Barjamovic et al. (2019) applies a gravity-type framework to an earlier period (Bronze Age).

A related and rapidly growing literature investigates the contemporaneous and persistent effects of transport network accessibility on local economic activity (see, e.g., Michaels, 2008; Duranton and Turner, 2012; Jedwab and Moradi, 2016; Faber, 2014; Hornung, 2015; Redding and Turner, 2015; Donaldson and Hornbeck, 2016; Michaels and Rauch, 2016; Storeygard, 2016; Flückiger and Ludwig, 2019; Baum-Snow et al., 2017; Bakker et al., forthcoming). Particularly closely related to our paper are studies that specifically focus on the effects of Roman transport infrastructure. The recent paper by Dalgaard et al. (2018) documents that Roman road network density pre-determines modern road density and thereby influences the level of economic activity today. Similarly, García-López, Holl and Viladecans-Marsal (2015), Percoco (2015) and De Benedictis, Licio and Pinna (2018) show that Roman roads influence current urbanisation patterns, firm locations, and transport costs via the routing of modern roads. Wahl (2017) shows that integration into the Roman Empire increases current-day economic activity. Again, persistence in access to the road network is identified as the main mediating factor. We complement these findings by considering all modes of transport in the Roman network—including waterborne transport—and documenting that, in addition to levels of development, historical connectivity influences the intensity of bilateral economic exchange. Although trade is very sensitive to shocks (Eaton et al., 2016), we show that the relative intensity in economic integration between regions is very stable in the long run.

Our study further informs the ongoing debate among historians of antiquity about whether or not Rome was a market economy. While there is broad consensus that staples, luxury goods, and a wide range of manufactured products were traded over long distances throughout the Ro-
The extent to which trade patterns were driven by market forces and trade costs rather than central planning remains debated (see, e.g., Whittaker, 1994; Polak, 2000; Mees, 2011; Willis, 2005; Fulford, 2018; Mees, 2018). We contribute to this discussion by providing first econometric evidence that the intensity of Roman trade in terra sigillata was indeed determined by transportation costs, suggesting that market forces mattered.² Importantly, our empirical approach enables us to circumvent issues related to preservation and excavation biases typically prevalent in the archaeological literature (Wilson, 2009).

Our findings directly speak to the literature on the determinants of interregional investment. Portes and Rey (2005) document that (geographical) distance deters exchange in financial assets. Similarly, Giroud (2013) and Campante and Yanagizawa-Drott (2018) show that air-link connectivity influences firms’ decisions of where to invest. Leblang (2010) and Burchardi, Chaney and Hassan (2019) find that social ties created by historical migration are important determinants of foreign direct investment. They identify information asymmetries as an important underlying mechanism. Similarly, Guiso, Sapienza and Zingales (2009) show that genetic and somatic similarity affect bilateral trust, which, in turn, influences investment flows between countries.³ We show that infrastructure investments of the distant past can lead to increased similarity in preferences and values and thereby foster investment flows. In this regard, our paper is also related to a literature concerned with explaining differences in economic preferences across space (Tabellini, 2008; Chen, 2013; Galor and Özak, 2016; Litina, 2016; Falk et al., 2018).

Also linked to our paper is the literature on the network structure of trade. The fact that networks influence international trade in differentiated products has been established both theoretically and empirically (e.g., Chaney, 2014; Garmendia et al., 2012; Combes, Lafourcade and Mayer, 2005; Rauch and Trindade, 2002; Rauch, 1999). In the spirit of this literature, we focus on a trade network that was established when the Roman transport network was created and show that it strongly and continuously influences interregional interaction.

Finally, we also connect to the discussion about the determinants of business cycle co-movement (see, e.g., Burstein, Kurz and Tesar, 2008; Cravino and Levchenko, 2017). Our results highlight that events of the distant past can influence interregional transmission of economic shocks. In our case, the intensity of transmission is determined by connectivity within the Roman transport network.

The remainder of the paper is structured as follows: In Section 2, we provide background information on the creation of the Roman transport network along with qualitative evidence of its effect on contemporary trade; characteristics of the traded Roman terra sigillata are also described. The data is presented in Section 3. Section 4 describes our empirical framework. Regression results are discussed in Section 5; threats to identification are then addressed in Section 6. We investigate potential channels underlying our main results in Section 7, before

²To our knowledge, Kessler and Temin (2008) is the only study that provides econometric evidence for trade costs influencing economic integration during the Roman era. They show that Roman grain price differentials decline in distance (based on six price pairs).

concluding with Section 8.

2 Background

This section serves two purposes. First, it describes the evolution of the Roman transport network and outlines how it created a new pattern of cross-regional economic integration within the empire. Second, it illustrates why terra sigillata excavated at archaeological sites is well-suited to measure the intensity of interregional trade during the Roman era.

2.1 The Roman transport network and its effect on economic integration

At the time of maximum territorial expansion around 117 CE, the multi-modal Roman transport network consisted of approximately 80,000 km of paved roads, 25,000 km of inland waterways and a vast number of well-established shipping routes along the Mediterranean and Atlantic coasts (Chevallier, 1972; Scheidel, 2014). Starting with the connection of the capital Rome to regions on the Italian Peninsula, the (spatio-temporal) growth of the network had closely followed the territorial expansion of Rome. Once occupied, soldiers built roads connecting and cutting through the newly annexed regions in order to facilitate supply shipments and bringing in reinforcements. To minimise building cost and travel times for troops, Roman engineers designed roads to follow straight lines over long distances, thereby often ignoring local geographic and socio-economic conditions (Davies, 1998; Laurence, 2002). Progress in civil engineering, such as the newly developed ability to construct permanent bridges, helped with the straight-line routing of roads. While the construction and design of roads was determined by military-strategic aims, they were subsequently used for commercial as well as private transport and communication (see, e.g., Temin, 2012, p. 223).

Roadworks followed clear and technologically novel standards, with surfaces consisting of several layers of sand, gravel, and rocks as well as drainage systems (Berechman, 2003). Combined with the construction of new road segments in core and peripheral regions, these technological advances greatly increased the freight-carrying capacity of the road network (Adams, 2012). The embedding of the road system into a unified legal framework constituted a further important Roman innovation that facilitated overland transport. Among other things, this ensured that roads remained in good repair (Berechman, 2003).

Similar to terrestrial transport, capacities and organisation of waterborne transport substantially changed during Roman reign (see, e.g., Schmidts, 2011). Along with the size of boats...
and ships, the quantity of goods shipped via waterways increased dramatically. Large flat-bottomed barges used for river transport were able to carry around 150 tonnes of cargo. Seagoing ships were even loaded with up to 1,000 tonnes of freight (Campbell, 2012, p. 217). Canals—typically constructed to bypass dangerous parts of rivers or to facilitate navigation through river deltas—also contributed to the reduction of water transportation costs (McWhirr, 2002). Adding to the innovations in terrestrial and waterborne transport infrastructure, the empire-wide (political) stability and peace (pax Romana) further stimulated the establishment and deepening of long distance trade relationships (Sidebotham, 1986, p. 181). Piracy in the Mediterranean, for example, a previously common and trade-deterring problem, was largely suppressed after 67 BCE (de Souza, 2002, p. 96). The introduction of a common currency as well as improvements in container technologies (amphorae and barrels) further facilitated long distance trade (see Wilson and Bowman, 2018, p. 5–6).

Information on cross-regional economic interaction before Roman occupation is scarce.\(^7\) While certainly existing, trade among tribes or between Roman merchants and tribes was comparatively limited and localised prior to occupation. The amount of Roman goods excavated in Celtic regions (such as amphorae and other pottery products) that pre-date the occupation is low (Fitzpatrick, 1985, p. 310). Following annexation and integration into the empire-wide transport network, diversity and quantity of goods exchanged substantially changed. Agricultural surpluses of the former Celtic and Egyptian regions, for example, crucially contributed to the food security of Rome (Erdkamp, 2013). Similarly, new types of cereals were imported from southern provinces (Reddé, 2018, p. 147). Access to the transport network also promoted specialisation and the exchange of manufactured products. Various commodities—e.g. amphorae, ceramics, glass, lamps, bronze statuettes—were produced in large quantities at centralized production sites and traded over long distances (Bowman and Wilson, 2009, p. 17). Accompanying economic interaction, the transport network increased interpersonal interaction and induced migration as well as technological and cultural diffusion (see, e.g., Willis, 2005). For example, the custom of sharing meals was spread by Roman soldiers (Willis, 2005, ch. 7.2.2). As a result of such exchange, similar goods and technologies could be found across all Roman provinces (see Wilson and Bowman, 2018, p. 5).\(^8\) The ‘Roman consumption package’ consisting of amphorae for wine, olive oil, fish products, and table pottery was available throughout the empire (Bowman and Wilson, 2009, p. 17).

In sum, the Roman Empire-wide integrated transport network led to an unparalleled degree of market integration and created a new pattern of interregional (socio)-economic exchange (Bowman and Wilson, 2009, p. 17). While pre-existing roads and waterways may have facilitated initial Roman occupation, the ‘barbarian regions’ had not been part of an *integrated* cooperations of *nautae* (boatmen) (Schmidts, 2011).

\(^7\)For Celtic Gauls there is evidence of considerable trading activity. Ships, for example, were used for river transport. Furthermore, they maintained ports in Britain to control trade with this region. Shipwrecks discovered in the Mediterranean additionally hint at a Celtic ship-building tradition (Schmidts, 2011, p. 93).

\(^8\)Hitchner (2003, p. 398) emphasises that “A citizen of the empire travelling from Britain to the Euphrates in the mid-second century CE would have found in virtually every town along the journey foods, goods, landscapes, buildings, institutions, laws, entertainment, and sacred elements not dissimilar to those in his own community.”
supra-regional transport network. Furthermore, technology, routing, density, and maintenance of transport infrastructure substantially changed after Roman annexation. These alterations, along with the unprecedented geographical reach of the network imply that the (bilateral) accessibility between regions dramatically changed (e.g., Hitchner, 2012). We provide empirical support for this notion in Section 6.

The cost of shipping goods between regions potentially plays a dominant role in explaining how the Roman transport network shaped the pattern of bilateral exchange. Although disputed among early historians of antiquity (see, e.g., Finley, 1999; Jones, 1964; Yeo, 1946), it is plausible that the intensity of trade between regions depended on the costs of transportation. These were influenced by the available means of transport and their associated per unit freight rates. The latter varied dramatically across modes and reflected efficiency differences between Roman transport technologies. On the basis of emperor Diocletian’s Edict on Maximum Prices from 301 CE—an original contemporary source—Scheidel (2014) recently revised existing estimates of relative per-unit-distance transport costs (see Appendix A.4 for more details). They show that seaborne transport was the most cost effective mode of shipping with a (normalised) per unit distance freight rate of one, followed by downstream and upstream river transport with associated costs of 5 and 10, respectively. Road transport was by far the most expensive way of moving goods. The historical freight rate data suggest a cost of 52 relative to seaborne transport. Qualitative accounts and case studies indicate that these transport-mode-dependent cost differentials influenced the decision along which routes to ship goods. The geographical distribution of archaeological pottery finds produced at Banassac in the south of France, for example, implies that indirect routes were chosen over distance- or time-wise shortest paths in order to make use of cost-effective means of transport, i.e., sea or river (Mees, 2011, p. 260).

To date, there is no systematic assessment of the effects of transport costs on interregional trade during the Roman era. The first principal aim of this paper is to fill this research gap. To this end, we require historical data on bilateral transport costs and trade volumes. The former can be inferred from the structure of the Roman transport network and relative freight rate differentials across shipping modes. As outlined below, the spatial distribution of terra sigillata excavations allows for the reconstruction of trade flows.

The second aim of this paper is to analyse how differences in connectivity within the Roman transport network influence economic integration today. In this context, it is important to note that today’s routing of roads is strongly influenced by the paths chosen by the Roman engineers. Furthermore, relative transport costs across shipping modes were relatively stable.

9Until the defeat of Vercingetorix by Caesar in 46 BCE, for example, Romans used local Gaulish roads and seized Gaulish ships to move troops (Chevallier, 1972, p. 25). However, since Gaulish tribes were not unified, no coherent concept of road building, let alone an integrated cross-regional transport network designed for purposes of trade or military campaigns, existed.

10While there is some debate about the appropriate estimates of absolute levels of transport costs among historians, there is broader consensus that the above-mentioned cost ratios are reflective of relative freight rate differentials during Roman times (see Scheidel, 2014, p. 9). The first price-edict-based estimates produced by Duncan-Jones (1974), for example, suggest the following cost ratios: 1 (sea), 4.9 (river), and 34–42 (road). Additionally taking differences in upstream and downstream river transport into account, more recent studies estimate relative costs of 1 (sea), 5 (downriver), 10 (upriver), 34–42 (road) on the basis of the price edict (Franconi, 2014, p. 57).

11There are many examples of today’s highways following Roman roads. Well-known stretches include Arles to...
2.2 Production and trade of terra sigillata

Gallo-Roman terra sigillata is a red-gloss tableware made out of clay which was manufactured at several large production centres in Italy (est. 1st century BCE), Gaul (est. 1–2 century CE), Germania and Raetia (est. 2–3 century CE). These centres, whose location were determined by clay deposits, produced millions of pieces using an unprecedented division of labour. At La Graufesenque (South France), for example, batches of more than 30,000 vessels were common; kiln firings reached very high temperatures (around 950 degrees Celsius) and were shared by up to twelve potters (Marichal, 1988; Polak, 1998). Potters stamped their names in the inside of vessels to identify their works and distinguish between production batches (Wilson, 2009, p. 397). Based on these stamps, each piece of tableware can be traced from production site to the location of consumption, where it was later excavated by archaeologists. This ability to identify origin and destination of (stamped) products is—in the context of our study—a core property of terra sigillata.

A second aspect that makes it well-suited for our analysis is its widespread use. Measured as a share of Roman trade, terra sigillata accounted for approximately 10 percent of total volume and an even higher proportion of value (Mees, 2018). High-quality Gallo-Roman terra sigillata—often produced at kiln sites located in hard-to-reach inland regions—was traded across most of the Mediterranean, the Northwestern Empire, the Danube region, and the Barbaricum up to Poland. Low quality ceramic cooking ware and amphorae, in contrast, were almost exclusively manufactured at coastal kiln sites, thus allowing for a cost-effective distribution (see Wilson and Bowman, 2018, p. 10–11). Due to the wide range of terra sigillata products—such as bowls, cups, platters, amphorae, and mortaria—demand stemmed from a great variety of sources, including public, private and commercial entities located in urban as well as rural areas. The distribution of terra sigillata was organised in sophisticated logistics chains. Rather than directly delivered to individual costumers, it was typically shipped in bulk from production sites to warehouses and shops (Willis, 2005, ch. 6.4.6). Terra sigillata produced at La Graufesenque and destined for consumption in the northern border region of the empire, for example, was first transported via mountainous roads to Narbonne. There, it was transferred to barges and shipped upstream on the Rhône to Lyon, the regional trade centre. It was then stored in warehouses until further distribution (Mees, 2011).

12 Figure A.3 in Appendix A depicts (examples of) kiln sites and excavated terra sigillata products.

13 The price for a piece of terra sigillata typically ranged from 12 to 20 *asses*, equivalent to the daily pay of a soldier (Darling, 1998, p. 169).
The geographical distribution of production and excavation sites of stamped terra sigillata—
on the basis of which we construct our measure of bilateral trade intensity—is depicted in Figure 1. Possibly important factors explaining the varying penetration of different terra sigillata products are taste for variety, variation in quality, and shipping costs. Depending on the available transport modes, the latter could vary greatly, even for two regions located equidistant from a given production site. By employing a gravity-type estimation approach, we isolate the effect of transport costs from other factors and estimate to what extent they influenced interregional trade flows and thus help explain the spatial distribution of archaeological finds.

(a) (b)

Figure 1: Origins and Destinations of Roman Terra Sigillata
Panel (a) depicts the locations of terra sigillata production sites; panel (b) shows the spatial distribution of terra sigillata excavation sites. The figure is restricted to the geographical scope of our analysis (see Section 3).

3 Data

Our study covers the regions within Austria, Belgium, England, France, Germany, Italy, Luxembourg, Netherlands, Portugal, Spain, and Switzerland that were once part of the Roman Empire. For the empirical analysis, we divide this area—referred to as ‘Western Europe’—into grid cells of 0.5×0.5 degrees longitude/latitude (ca. 55×55 kilometres). In our main analysis, we only consider cells that are intersected by the Roman transport network. Illustrating the high density of the network, the 903 intersected grid cells cover 88% of the territory of Western Europe.\footnote{Figure A.1 in Appendix A depicts the grid cells that are intersected by the Roman transport network. In Tables C.1–C.2 in Appendix C, we show that our findings remain unchanged when we incorporate non-intersected cells into the network by creating artificial road connections. The motivation for excluding the non-intersected cells in our main analysis is that they are structurally different because their ‘artificial connection’ from the centroid to the network is substantially longer compared to intersected cells (24.2 vs 7.5 kilometres). See below for more details.} Based
on the 903 cells we construct grid-cell-pair-level measures of (i) transport network connectivity, (ii) economic integration during Roman times, and (iii) current-day intensity of economic ties.

3.1 Transport network connectivity

We predict the cost of transporting goods between two regions during the Roman era under the assumption that agents can use the full, empire-wide, Roman transport network at its maximum extent (reached in year 117 CE). To this end, we combine information on location of Roman roads, navigable rivers, and coastal routes. The road network is extracted from the digitised version of the Barrington Atlas of the Greek and Roman World (Talbert and Bagnall, 2000). We identify navigable river sections that the Romans used for transport using a wide range of historical sources (listed in Table A.2 in Appendix A). Transport by sea is possible along the coast. Combined, roads, navigable rivers, and coastal routes, make up our multi-modal Roman transport network.15 This network—depicted in Figure 2—is subsequently denoted by N^{Rome} and represents a collection of numerous segments which differ in length and associated mode of transport. As outlined above, the cost of shipping goods over a given distance varied substantially across transport modes. These Roman technology-driven differences in relative shipping costs are captured by the vector $\alpha^{\text{Rome}} = (\alpha_{\text{sea}}, \alpha_{\text{river}}, \alpha_{\text{road}})$. We normalise freight rates such that $\alpha_{\text{sea}} = 1$; drawing on Scheidel (2014) we set $\alpha^{\text{Rome}} = (1, 7.5, 52)$. The relative cost of shipping goods via rivers (7.5) represents the average between up- and downstream freight rates (5 and 10, respectively).16

To predict transport costs between two grid cells, we assume that agents choose the cheapest among all possible routes given the Roman-specific transport cost differentials α^{Rome} and transport network N^{Rome}.17 The least-cost path is identified using Dijkstra (1959)’s algorithm, where the geographical centres (centroids) of grid cells are set as origins and destinations.18 Throughout, we assume that transshipment between different transport modes is costless. Following Donaldson (2018), we refer to the costs associated with transporting goods along the optimal path as the ‘Roman effective distance’. Subsequently, this cost is denoted by

15Compared to the Stanford geospatial network model of the Roman world (ORBIS) our data source offers a greater geographical coverage in terms of routes and sites. Furthermore, the broad spectrum of information that is used by ORBIS to compute transport costs raises concerns that connectivity within the ORBIS transport network is partly determined by observed interaction (i.e., endogenous) during Roman times. Network segments, for example, are ranked according to their significance.

16We use the undirected rather than the directed transport network to identify the least cost paths. Two reasons motivate this choice. First, when analysing the effects of the Roman transport network on the intensity of interregional business links today, it is not \textit{a priori} clear how transport-direction-dependent cost differentials should affect the direction of investment flows. Second, in auxiliary regressions discussed in Section 6, we employ measures of bilateral interaction that do not allow for a distinction between origin and destination. In these cases, we would have to arbitrarily impose a directed structure. As illustrated in Tables C.1–C.2 in Appendix C, results are similar if we use the directed instead of undirected transport network to predict shipping costs.

17Agents are allowed to use segments of the Roman transport network that lie outside Western Europe.

18Similar to Donaldson and Hornbeck (2016), grid cell centres are connected to the transport network by creating an artificial straight-line road segment between the centroid and the closest point on the section of the network that intersects the grid cell. This procedure is illustrated in Appendix A.3. On average, we create an artificial road of 7.5 kilometres in length, representing 5.7% of the total cost of the optimal path. Results remain stable if we vary per-unit costs of the artificial connections within the range zero to 200. Estimates are presented in Table C.3 in Appendix C.
Figure 2: The Multi-Modal Roman Transport Network
Map shows the Roman transport network (restricted to the geographical scope of our analysis). Grey lines symbolise roads, solid black lines navigable river sections, and dashed lines coastal shipping routes.

Figure 3: Least-Cost Paths
Map depicts five different least-cost paths between Turin and Dijon: (a) The least-cost path within the Roman transport network, given N^{Rome} and Roman-specific technology a^{Rome} (solid black). (b) The distance-wise shortest path within the Roman transport network (grey). (c) The time-wise shortest path within the Roman transport network (black cross-lined). (d) The topography-based least-cost path identified using the Human Mobility Index with Seafaring (Özak, 2018) (starred). (e) The straight-line (as the crow flies) path. The length of this path is equal to the geodesic distance (dashed). ‘Transport cost’ refers to the cost of shipping goods along a given path (i.e., the freight-rate-weighted distance). ‘Distance’ refers to the distance of a given path (measured in kilometres). ‘Time’ refers to the shipping time along a given path (measured in hours).
To gain an intuitive picture of the difference between the transport-cost minimising and other least-cost paths, Figure 3 depicts three separate types of least cost paths within the Roman transport network that connect Turin to Dijon: (a) The transport-cost minimising path within the Roman transport network given the Roman transport technology. Costs associated with shipping goods along this path are referred to as Roman effective distance (i.e., $LC(N_{Rome}, \alpha_{Rome})$). (b) The distance-wise shortest path within the Roman transport network. The costs associated with using this path—which we subsequently refer to as network distance—are equal to the length of the path (measured in kilometres). (c) The time-wise shortest path within the Roman transport network, where costs are expressed in hours (referred to as network time).

Additionally, Figure 3 depicts two commonly used least-cost paths that are independent of the structure of the Roman transport network: (d) The topography-based least-cost path identified on the basis of the Human Mobility Index with Seafaring (HMISea, Özak, 2018). This index is a proxy for pre-industrial human mobility and takes into account human biological constraints as well as geographical and technological factors. The HMISea least-cost path is not dependent on the transport network structure N_{Rome}. The costs associated with this optimal path are captured by travel time (in hours). (e) The straight-line path (as the crow flies). The length of this line—also interpretable as costs—is equal to the geodesic distance between Turin and Dijon.

Figure 3 visualises two important points: First, within the Roman transport network, the path that minimises transport costs differs markedly from the distance- as well as the time-wise shortest paths. The differences are exclusively driven by the mode-dependent shipping costs (α_{Rome}). When seeking to minimise transport costs, there is a trade-off between (i) minimising distance covered when transporting goods between two locations and (ii) reaching and making use of cost-effective modes of transport (i.e., minimising average transport costs per kilometre). In the example of Figure 3, this trade-off results in a substantial detour of the transport-cost minimising path. The table in Figure 3 illustrates the effects of α_{Rome}. The transport-cost minimising path is more than 2.7 times longer compared to the shortest possible route and 2.6 times slower than the fastest route. However, because the detour allows for the use of more cost-effective means of transport, overall shipping costs are more than 20% lower compared to transport over the distance- or time-minimising path.

The second important point illustrated in Figure 3 is that the distance- and time-wise shortest paths are almost identical (apart from a segment that crosses the Lake Geneva) and connect Dijon to Turin in a relatively direct line. Similarly, the topography-based least-cost path (HMISea) does not take any major detours. This suggests that the cost of transporting along

19 To identify the time-wise shortest path, we combine the network N_{Rome} with mode-specific travel speeds $\alpha_{Time} = (3.7, 1.565, 2)$ from Carreras and Soto (2013). Differences in travel speeds, measured in km/h are relatively small.

20 The table also shows that the quickest path within the network takes more time than the geography-based least-cost path (HMISea). Two factors explain this difference. First, the HMISea captures the time it takes humans to move between location whereas the time-wise shortest path within the Roman transport network specifically captures shipping time of goods. Second, movement is not restricted to follow the network in the case of the HMI.
these three optimal paths proportionally increases with geodesic distance. In contrast, the non-linearity of the transport-cost minimising path indicates that the correlation between the Roman effective distance and geodesic distance is limited.

Table 1 confirms that this conjecture is borne out in the data. Column (1) shows that within our historical sample (see details below), the correlation between Roman effective distance and geodesic distance is 0.38. That is, Roman effective distance does increase in geodesic distance, but this effect is limited. The correlation with the remaining three least-cost measures is similar in magnitude, ranging from 0.36–0.47. Figure A.4 in Appendix A illustrates that these relatively low correlations are not driven by a specific part of the Roman effective distance distribution.

Costs of the distance- and time-wise shortest paths within the Roman network, on the other hand, are extremely highly correlated with geodesic distance (column 2). Correlation is also high between geodesic distance and the topography-based HMISea measure. This implies that the variation in these three least-cost measures is largely captured by geodesic distance. On the other hand, a large part of the variation in Roman effective distance is specifically due to combination of the layout of the Roman transport network (NRM) and transport technology (αRome). To isolate the Roman-era specific aspects in the subsequent empirical analysis, we account for geodesic and other topography-based distances.

Table 1: Bivariate correlation coefficients between least cost measures

<table>
<thead>
<tr>
<th></th>
<th>ln Roman effective distance</th>
<th>ln geodesic distance</th>
<th>ln network distance</th>
<th>ln network time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln geodesic distance</td>
<td>0.379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln network distance</td>
<td>0.393</td>
<td>0.982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln network time</td>
<td>0.468</td>
<td>0.976</td>
<td>0.984</td>
<td></td>
</tr>
<tr>
<td>ln HMISea</td>
<td>0.357</td>
<td>0.934</td>
<td>0.915</td>
<td>0.904</td>
</tr>
</tbody>
</table>

Notes: This table presents bivariate correlation coefficients between the least-cost measures depicted in Figure 3, based on the historical sample used in Table 2. ‘effective distance’ represents the cost associated with shipping goods along the least cost path between grid cells, given the Roman transport network and Roman-era-specific freight rates for each mode of transport. ‘geodesic distance’ represents the length in kilometres of the straight-line path (as the crow flies) between grid cells. ‘network distance’ represents the length in kilometres of the distance-wise shortest path between grid cells, given the Roman transport network. ‘network time’ represents the travel time in hours along the time-wise shortest path between grid cells, given the Roman transport network and Roman-era-specific speed for each mode of transport. ‘HMISea’ represents the travel time in hours along the topography-based shortest path between grid cells, identified based on the methodology in (Özak, 2018) that incorporates only geographical features and pre-industrial technology.

3.2 Measuring economic integration during the Roman era: terra sigillata

To measure bilateral trade volumes during Roman times, we extract information on terra sigillata finds from the Roman tableware database which has recently been made available online by the Römisch-Germanisches Zentralmuseum in Mainz. The stamped vessels were produced between the beginning of the first century and the middle of the third century. Between 75–125

21Correlation coefficients are very similar—and even somewhat lower—in our current-day sample (Table A.4 in Appendix A).

22www.rgzm.de/samian. The samian data is based on the publications of Names on Terra Sigillata (see Hartley et al., 2008) and the Corpus Vasorum Arretinorum (see Oxé, Comfort and Kenrick, 2000).
CE a range of terra sigillata products were not stamped. These unstamped items amount to approximately 30% of total excavated terra sigillata (Furger and Deschler-Erb, 1992, Fig. 84).23 Crucial for our analysis, there is no indication that shipment and distribution of these types systematically differed from stamped types.

Based on the precise information on the site of production, identified via the potters’ stamp, and location of excavation, we assign each find to its grid cell of origin and destination.

23This implies that terra-sigillata-based estimates of variation in trade over time would need to be interpreted with caution and may suffer from measurement error.
We then aggregate this information to the grid-cell-pair level giving us the number of terra sigillata finds within grid cell j that were produced in grid cell i. Following Eaton, Kortum and Sotelo (2013), we define the share of j’s total number of ceramics that originate from i as our measure of interregional trade flows. The 56 individual production sites fall into 44 different grid cells. For the Roman era, we thus have 44 origin grid cells from which goods can potentially be shipped to the 903 grid cells that are connected to the network. For 520 of these grid cells, we observe at least one terra sigillata find manufactured in any one of the 44 ‘production grid cells’. Because we employ a Poisson pseudo-maximum-likelihood estimator and account for origin and destination fixed effects in our data analysis, any grid cell with zero terra sigillata finds and zero production sites is excluded due to collinearity (see Appendix A.1 for more details). Abstracting from within grid-cell trade, our dataset for the historical analysis consists of 22,839 observations. Figure 4 visualises the trade flows (expressed in shares of total imports); Table A.5 in Appendix A reports summary statistics of the key variables.

3.3 Measuring economic integration today: cross-regional firm ownership

The number of cross-regional firm ownership links is based on the Bureau van Dijk’s Orbis database. This database covers around 300 million companies worldwide and contains detailed firm-level information on industry, location, and ownership. For our analysis, we focus on firms with an annual operating revenue of more than 2 million U.S. dollars. The data was downloaded between February–April 2018, and consequently captures a snapshot of ownership patterns at that point in time. To compute the grid-cell-pair number of business links, we first identify all firms that are located within Western Europe. Among these firms we then extract the subset of companies that are in a cross-regional parent-subsidiary relationship. Specifically, we keep all firms that either own a stake of at least 25% in another firm that is domiciled in a different grid cell or that are 25% owned by a company registered in another grid cell. The location of these firms was geocoded manually. For our analysis, we are left with 106,996 cross-regional parent-subsidiary links. These business links are aggregated to the grid-cell-pair level by counting the number of firms located in ‘destination grid cell’ j that are (part-)owned by firms registered in ‘origin grid cell’ i. Again, we use shares—i.e., bilateral inflow divided by total inflows—as measure of interaction intensity. Our final grid-cell-pair-level dataset consists of 731,823 observations, made up of 865 origin and 847 destination grid cells for which we observe at least one non-zero investment flow. For summary statistics see Appendix A.1.

In extensions to our main analysis, we make use of further data sources (price correlations, onset of the Black Death, and night-time light intensities). These data are described as they become relevant (see also Appendices B–I).

24This variable therefore captures trade volumes rather than values.

25For the main analysis, we aggregate trade flows across production sites within grid cells. Our results remain qualitatively unchanged if we aggregate trade flows to the production-site level and run regressions at the production-site-destination-grid-cell level. To that end, we augmented Eq. (1) to include production site and destination fixed effects. The results are presented in Table C.4 in Appendix C.
4 Empirical framework

To explain the bilateral (socio-)economic integration—past and present—we rely on the gravity framework. The gravity framework has many micro-economic foundations (see Yotov et al., 2016, for a discussion). The underlying data for our dependent variable is, similar to Barjamovic et al. (2019), a count of finds rather than a volume of trade. Hence, we base our specification on the finite-sample version of the gravity framework developed by Eaton, Kortum and Sotelo (2013) and use shares rather than counts as outcome. We therefore estimate the following regression model using the Poisson Pseudo Maximum Likelihood (PPML) estimator:

\[X_{ij} = \exp\left(\delta \ln LC(N_{Rome}, \alpha) + \theta d_{ij} + T_{ij}' \gamma + \beta_i + \beta_j \right) + \varepsilon_{ij}, \]

where \(X_{ij} \) denotes the share of imports in grid cell \(j \) that originate from grid cell \(i \), i.e., the number of pottery finds in \(j \) originating from \(i \) relative to all pottery finds in \(j \). The main explanatory variable is the least-cost path effective distance, \(LC(N_{Rome}, \alpha_{Rome})_{ij} \). The coefficient \(\delta \) captures the elasticity of economic integration with respect to the Roman effective distance. As discussed above, variation in Roman effective distance is generated by both the structure of the transport network \((N_{Rome}) \) and the mode-specific differences in transport costs \((\alpha_{Rome}) \). To isolate the Roman-era specific part of the variation, we condition on geodesic distance \((d_{ij}) \) as well as geographical and historical factors. The latter are subsumed in the vector \(T_{ij} \).

Throughout our analysis, we control for the full set of origin and destination fixed effects (represented by \(\beta_i \) and \(\beta_j \), respectively). These dummies control for market size which, in addition to trade costs, is a central feature of gravity-type equations. They also absorb any other differences in region-specific characteristics—such as income levels or geographical location—that influence the overall level of economic integration. In the context of archaeological data it is important to note that the fixed effects wash out potentially existing excavation biases, i.e., the possibility that discovering Roman tableware is more likely in economically more integrated and populated areas. Finally, the inclusion of origin dummies also controls for production-site-specific quality differences that influence the magnitude of interregional trade flows. The error terms \(\varepsilon_{ij} \) are clustered along two dimensions: the origin and destination grid-cell level.

The crucial assumption underlying our estimation strategy is that conditional on control variables, Roman effective distance captures Roman-era-specific variation in transport network connectivity and is uncorrelated with factors in the error term that influence outcomes. There are two primary threats to the validity of this assumption. The first is that Roman effective distance

26As shown by Sotelo (2019), estimating the gravity model with the Multinomial Pseudo Maximum Likelihood (MPML) estimator developed by Eaton, Kortum and Sotelo (2013) produces the same estimates as the Poisson Pseudo Maximum Likelihood (PPML) estimator from Santos Silva and Tenreyro (2006) when destination fixed effects are included. As we have comparably many fixed effects, estimates are performed with the Stata command ppmlhdfe developed by Correia, Guimarães and Zylkin (2020).

27Baldwin and Harrigan (2011) discuss the possibility of identifying valid trade theories (including theories that do account for quality differences) by looking at quantities, values, and prices. Lacking information on the latter two dimensions, we cannot identify which theory most accurately explains trade flows during Roman times. However, as we are interested in investigating the effect of trade costs on the bilateral allocation rather than assessing the validity of specific theories, controlling for quality differences using origin and destination fixed effects is sufficient.
is endogenous to pre-existing patterns of interaction. For example, it is possible that roads were built to more directly connect regions that already interacted more intensely. The second is that Roman effective distance partially captures geographic connectivity.

In Section 6, we address these concerns and document that connectivity within the Roman transport network does not predict intensity of interregional interaction in pre-Roman times. Furthermore, we develop an instrumental variable strategy to mitigate the concern that routing captures geographic features. The approach exploits the fact that the routing of Roman roads was primarily influenced by military-strategic considerations. We additionally show that our estimates remain stable when we account for a variety of geography-based least-cost measures as well as a wide range of geographical aspects. Finally, we conduct a falsification exercise in which we document that Roman-era-specific transport network connectivity does not influence interregional business link intensity in regions of Europe that were never part of the Roman Empire.

5 Main results

In this section, we first document that effective distance within the Roman transport network determined the geography of Roman trade. In the second step, we move to the current day and show that variation in Roman transport network connectivity is reflected in today’s spatial firm ownership structure. Possible threats to the validity of our estimation strategy are discussed in detail in Section 6.

5.1 Roman transport network connectivity and economic integration during the Roman era

We start our empirical analysis by regressing bilateral terra sigillata trade shares on Roman effective distance as well as origin and destination fixed effects. The point estimate obtained from running this parsimonious specification can be directly interpreted as the elasticity of trade with respect to distance. Column (1) of Table 2 documents that transport costs strongly deter Roman trade. The statistically highly significant point estimate of -2.895 implies that a one percent increase in Roman effective distance reduced bilateral trade by almost 3%.

In column (2), we control for the number of centuries that two grid cells jointly spent under Roman rule. This variable accounts for the fact that total trade volumes potentially increase with time belonging to the same economic and political entity. The fact that two regions were connected through the Roman transport network only once both had become part of the empire increases this likelihood further. Confirming expectations, we observe that the total trade volume between two regions increases by 294% with each additional century shared under Ro-

28Note that endogeneity in placement of roads does not constitute a threat to identification in the context of our analysis. The fact that a grid cell is cross-cut by (multiple) roads is absorbed by the origin and destination fixed effects. Furthermore, we only include grid cells that are intersected by at least one segment of the Roman transport network. In the context of our study, issues arise only if bilateral (i.e. grid-cell-pair-specific) aspects systematically influenced the routing of the network.
Table 2: Roman transport network connectivity and trade during the Roman era

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Share of Terra Sigillata Finds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>In Roman effective distance</td>
<td>-2.895***</td>
</tr>
<tr>
<td></td>
<td>(0.593)</td>
</tr>
<tr>
<td>Joint duration under Roman rule (centuries)</td>
<td>2.943***</td>
</tr>
<tr>
<td></td>
<td>(0.294)</td>
</tr>
<tr>
<td>In geodesic distance</td>
<td>-0.655***</td>
</tr>
<tr>
<td></td>
<td>(0.230)</td>
</tr>
<tr>
<td>In network distance</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.680)</td>
</tr>
<tr>
<td>In network time</td>
<td>-0.886</td>
</tr>
<tr>
<td></td>
<td>(0.601)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geography controls</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>22,839</td>
<td>22,839</td>
<td>22,839</td>
<td>22,839</td>
<td>22,839</td>
<td>22,839</td>
</tr>
<tr>
<td>Estimator</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
</tr>
</tbody>
</table>

Notes: This table reports estimates of Equation (1) using the PPML estimator. Standard errors two-way clustered at the origin and destination grid-cell level are reported in parentheses. Dependent variable is the share of terra sigillata finds in cell j that originates from cell i. ‘Roman effective distance’ represents the cost associated with shipping goods along the least cost path between grid cells, given the Roman transport network and Roman-era-specific freight rates for each mode of transport. ‘Joint duration under Roman rule’ is the number of centuries two grid cells were jointly under Roman rule. ‘geodesic distance’ represents the length in kilometres of the straight-line (as the crow flies) between grid cells. ‘network distance’ represents the length in kilometres of the distance-wise shortest path between grid cells, given the Roman transport network. ‘network time’ represents the travel time in hours along the time-wise shortest path between grid cells, given the Roman transport network and Roman-era-specific speed for each mode of transport. Geography controls include the absolute difference in latitude between grid cell centroids i and j and three indicator variables that take the value one if grid-cell pairs share the same biome (i.e., the same biological community). * p < 0.10, ** p < 0.05, *** p < 0.01.

Compared to column (1), the Roman effective distance coefficient decreases by around 28%. When additionally accounting for geographical features in column (3), the point estimate remains stable. The geography controls include absolute difference in latitude between grid cell centroids, an indicator capturing whether both grids cells have access to a river or coast, an indicator for joint access to the Mediterranean Sea, and an indicator that takes the value one if grid-cell pairs share the same biome (i.e., the same biological community).

As illustrated in Section 3, Roman effective distance is correlated with geodesic distance. Ceteris paribus, the shipping costs within the Roman transport network increase when regions are further apart. To isolate the portion of the variation in Roman effective distance that is Roman-era specific, we therefore control for geodesic distance in column (4). While we find that—consistent with the trade literature—trade intensity rapidly declines with geodesic distance, the coefficient of Roman effective distance remains statistically significant and sizeable.

29Note that the PPML estimator specifies the conditional mean as \(E[X_i | X] = \exp(X\beta) \), where \(X \) collects all explanatory variables. Hence, the marginal effect of the exogenous variable \(x_k \) is given by \(\frac{\partial E[X_i | X]}{\partial x_k} = \exp(X\beta)\beta_k \). Reformulating leads to \(\frac{\partial E[X_i | X]}{\exp(X\beta)} \) / \(\partial x_k = \frac{E[X_i | X] / E[X_i | X]}{\exp(X\beta)} \) / \(\partial x_k = \beta_k \), which implies that the coefficients can be interpreted as semi-elasticities.

30Due to the fact that we do not have detailed information on timing, neither on trade flows nor on the evolution of the Roman transport network, we cannot exploit time variation in our analysis. However, as mentioned previously, our results remain qualitatively unaltered if we run our regressions at the production-site level and include production site fixed effects. These dummies account, to a certain extent, for differences in timing, as production sites were operating at different times.
This document that variation in Roman effective distance is to a large part driven by Roman-era specific factors, i.e., the combination of the structure of the new transport network \(N_{\text{Rome}}\) and the mode-specific freight rate differentials \(\alpha_{\text{Rome}}\). The finding also accords well with historical narrative that indicates that the transport routes were highly non-linear in geographical distance (see Section 2). Traders made substantial detours to reach and make avail of more cost-effective transport modes.

The results in columns (1)–(4) document that transport costs—measured by Roman effective distance—influenced the pattern of Roman trade. In columns (5)–(6) we show that our estimates do not conflate other aspects of connectivity within the Roman network. Accounting for the distance-wise shortest path or the time-wise shortest path changes the point estimate of Roman effective distance little. The coefficient of geodesic distance, on the other hand, becomes non-significant due to the high collinearity with the two measures.

The magnitude of the coefficients for the Roman effective distance elasticity in Table 2 is similar, although somewhat larger, compared to the pre-modern geographic-distance elasticity of trade of \(-1.9\) reported in Barjamovic et al. (2019). Their estimates are based on commercial records produced by Assyrian merchants during the Bronze Age. Donaldson (2018) reports an effective-distance elasticity estimate of around \(-1.6\) for 19th and 20th-century India. In a meta analysis of papers that estimate the effects of distance on trade for the current day, Disdier and Head (2008) find an average elasticity of \(-0.9\), with 90% of the coefficients lying between \(-1.55\) and \(-0.28\).\(^{31}\) Regardless of the controls included, our point estimates for the Roman era are at the upper end or above intervals estimated for later periods. This implies that the importance of distance has declined over time, which is in line with the common perception of decreasing transport costs and increased globalisation (see for example Bergstrand, Larch and Yotov, 2015).

The fact that a gravity-type relationship holds for Roman trade in terra sigillata implies that we observe regional specialisation in products or product varieties, which, in turn, leads to exchange of products or varieties, i.e., trade between regions. Many prominent theoretical underpinnings of the gravity model build on the existence of products or product varieties which induces intra-industry trade (see Anderson, 1979; Eaton and Kortum, 2002, for examples). Hence, such a framework fits well to the nature of our terra sigillata data, where product type and quality likely vary across production sites (see Section 2).\(^{32}\)

Summing up, the results presented in Table 2 show that the creation of the Roman transport network and resulting differences in interregional costs of shipping goods strongly influ-

\(^{31}\)Note that many surveyed studies proxy trade costs by geographical distance, whereas our measure is effective distance.

\(^{32}\)All theoretical foundations of the gravity model build on the assumption that there are many more goods than factors, which allows for complete specialization in different products or product varieties across countries (see Feenstra, 2016, p. 133). Gravity is consistent with perfect competition (see Eaton and Kortum, 2002; Eaton, Kortum and Sotelo, 2013) and monopolistic competition (see Anderson, 1979; Bergstrand, 1985) as well as a constant-elasticity of substitution utility function allowing for love-of-variety. However, the assumptions about trade-incentive-generating differences vary: Anderson (1979) and Bergstrand (1985) assume same productivities across countries, but allow for some monopoly power, Eaton and Kortum (2002) and Eaton, Kortum and Sotelo (2013) assume productivity differences across countries and perfect competition. But also a perfect competition Heckscher-Ohlin model with a continuum of goods may lead to a gravity-type relationship if factor prices differ (see Davis, 1995). In this case, countries specialise in different goods rather than varieties.
enced the contemporary geography of trade.

5.2 From past to present

Historical narratives indicate that the Roman transport network continued to influence the trade patterns at least until the Industrial Revolution. Roman roads, for example, were maintained and continuously used during the Middle Ages (De Luca, 2016). Absent major innovations in transport technologies, this suggests that Roman-era specific differences in transport network connectivity persisted long after the collapse of the Roman Empire. In Appendix B we empirically support the historical evidence. Absent spatially disaggregated and temporally consistent information on economic interaction for the post-Roman period, we use two alternative proxies for market integration. The first proxy uses grid-cell-pair price correlations over the time period 1208–1790 and is constructed from data compiled in Federico, Schulze and Volckart (forthcoming). The second proxy is the time lag in the onset of the Black Death (1346–51) between grid cells and is constructed from information reported in Christakos et al. (2005). The use of this metric is motivated by the fact that the Plague spread along trade routes with merchants being the primary carriers of the disease (see, e.g., Cipolla, 1974; Biraben, 1975; Benedictow, 2006). Differences in the timing of onset can therefore be seen as measure of trade intensity during the Middle Ages (Boerner and Severgnini, 2014).

Using a regression setup analogous to Equation (1), we find that greater connectivity within the Roman transport network increases cross-regional price correlations and reduces time lags in the onset of the Black Death. This shows that differences in Roman effective distance continuously influenced the intensity of interregional economic integration from medieval times up to the beginning of the Industrial Revolution. Along with the sustained effect on economic interaction, greater connectivity within the Roman transport network arguably increased the flow of migrants and ideas and fostered cultural exchange. Such uninterrupted exchange reduces information asymmetries and thereby may influence interregional business link intensity until today (see, e.g., Guiso, Sapienza and Zingales, 2009; Leblang, 2010; Burchardi, Chaney and Hassan, 2019).

5.3 Roman transport network connectivity and economic integration today

To investigate whether the intensity of interregional business links today is influenced by differences in connectivity that emerged due to the creation of the Roman transport network, we continue to use regression equation (1), but employ the share of all subsidiaries located in grid cell j whose parent company is in grid cell i as outcome. Table 3 presents the results. In column (1), we estimate the effect of Roman effective distance conditional on geodesic distance, a same-country dummy, as well as the complete set of origin and destination fixed effects. When conditioning on geodesic distance, the Roman effective distance coefficient captures only the part of the transport network effect that is Roman-era specific. The point estimate of -0.475 illustrates that this Roman-era specific part of the transport cost variation strongly influences today’s spatial firm ownership structure. Cross-regional firm link intensity decreases by 0.48%
for each percent reduction in connectivity. Column (1) also shows that geodesic distance exerts a strong negative effect on the intensity of economic interaction. Furthermore, the positive and statistically significant coefficient of the intra-national dummy unveils the existence of a home bias. That is, cross-regional firm ownership is more common within than across national borders.

Table 3: Roman transport network connectivity and interregional firm ownership today

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Share of Ownership Links (>25% Ownership)</th>
<th>Full Sample</th>
<th>Manufacturing</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>ln Roman effective distance</td>
<td>-0.475***</td>
<td>-0.404***</td>
<td>-0.431***</td>
<td>-0.510***</td>
</tr>
<tr>
<td>(0.075)</td>
<td>(0.077)</td>
<td>(0.088)</td>
<td>(0.090)</td>
<td>(0.090)</td>
</tr>
<tr>
<td>ln geodesic distance</td>
<td>-1.397***</td>
<td>-1.521***</td>
<td>-1.572***</td>
<td>-1.672***</td>
</tr>
<tr>
<td>(0.054)</td>
<td>(0.060)</td>
<td>(0.085)</td>
<td>(0.078)</td>
<td>(0.070)</td>
</tr>
<tr>
<td>Intra-national ownership</td>
<td>1.623***</td>
<td>1.593***</td>
<td>1.596***</td>
<td>1.599***</td>
</tr>
<tr>
<td>(0.102)</td>
<td>(0.107)</td>
<td>(0.107)</td>
<td>(0.108)</td>
<td>(0.107)</td>
</tr>
<tr>
<td>Joint duration under Roman rule (centuries)</td>
<td>0.479***</td>
<td>0.480***</td>
<td>0.485***</td>
<td>0.719***</td>
</tr>
<tr>
<td>(0.131)</td>
<td>(0.131)</td>
<td>(0.130)</td>
<td>(0.142)</td>
<td>(0.162)</td>
</tr>
<tr>
<td>ln network distance</td>
<td>0.075</td>
<td>0.249**</td>
<td>(0.102)</td>
<td></td>
</tr>
<tr>
<td>In network time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geography controls</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>731,823</td>
<td>731,823</td>
<td>731,823</td>
<td>731,823</td>
<td>602,597</td>
<td>470,736</td>
</tr>
<tr>
<td>Estimator</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
</tr>
</tbody>
</table>

Notes: This table reports estimates of Equation (1) using the PPML estimator. Standard errors two-way clustered at the origin and destination grid cell level are reported in parentheses. Dependent variable is the share of firms in cell j that are (partly) owned by firms located in cell i. ‘Roman effective distance’ represents the cost associated with shipping goods along the least cost path between grid cells, given the Roman transport network and Roman-era-specific freight rates for each mode of transport. ‘geodesic distance’ represents the length in kilometres of the straight-line (as the crow flies) between grid cells. ‘Intra-national ownership’ is a dummy variable that captures whether grid cells i and j lie within the same country. Further controls are described in the notes of Table 2. The dependent variables in column 5 (Manufacturing) and column 6 (Service) include only ownership links whose parent firms belong in the specified sector. * p < 0.10, ** p < 0.05, *** p < 0.01.

Column (2) documents that the least-cost route coefficient remains stable when we augment the set of controls to include historical and geographical variables. As for Roman trade, the number of years jointly spent under Roman rule strongly increases cross-regional investment intensity. In column (3), we additionally control for network distance. This has little effect on the coefficient of Roman effective distance, documenting that our estimates do not capture differences in the distance-wise shortest route within the Roman network alone, but the combined effect of the network structure and Roman transport-mode-specific differences in transport costs. Accounting for differences in time-wise shortest path in column (4) also leaves the Roman effective distance coefficient relatively stable and highly statistically significant.

In the last two columns of Table 3, we analyse whether the effects of Roman effective distance varies between manufacturing and service parent firms. As the physical transport of goods is (relatively) unimportant for firms within the service industry, stark differences in the

33 Not conditioning on geodesic distance produces an Roman effective distance coefficient of −2.272.
effect across sectors could provide an insight into whether the movement of goods today plays an important part in explaining our findings. There is, however, no indication that this is the case. Separately estimating regression Eq. (1) for manufacturing and service ownership companies produces similar, and statistically indistinguishable, point estimates. In Section 7, we discuss possible mechanisms that link Roman transport network connectivity to today’s ownership structure in more detail.

5.4 Robustness
A number of robustness checks show that our findings are not driven by specific assumptions or data construction choices. The results of all subsequently discussed exercises are presented in Appendix C in Tables C.1 (Roman era) and C.2 (today). We first show that Roman effective distance reduces trade along the extensive as well as the intensive margin. We then document that our results remain stable if we include grid cells in our analysis that are not intersected by the Roman transport network or use the directed network (in which we differentiate between costs of up- and downstream river transportation) to calculate Roman effective distance. Alternative standard error clustering approaches also produce similar results. Additionally accounting for country-pair fixed effects in the current-day regressions changes little. We also show that our findings do not hinge upon the choice of a threshold in the ownership definition. Results are similar when we define ownership as having a minimum stake of 50% in another firm. Furthermore, we document that we obtain qualitative equivalent results if we use counts (i.e., number of pottery finds or number of ownership links) rather than shares as outcome variables (Tables C.5–C.6 in Appendix C).

5.5 Extension
Before discussing the internal validity of our analysis, we reproduce our results using an alternative outcome. Recent evidence documents the importance of cross-border firm ownership— i.e., multinational firms—in explaining international business cycle transmissions (Cravino and Levchenko, 2017). Motivated by these findings, we investigate whether the Roman-era-specific effect on interregional firm ownership is also reflected in more synchronised business cycles. This auxiliary analysis, presented in Appendix D, may add to our understanding of the determinants of interregional contagion of economic shocks. Furthermore, using an alternative measure of economic integration (i.e., the intensity of business cycle transmission rather than business links) helps corroborate the findings presented above. Absent yearly grid-cell level data on GDP, we employ night-time light intensity as a proxy for regional income and compute the correlation in night-time lights growth between 1992 and 2013 for each grid-cell pair. As shown in Table D.2 in Appendix D, income growth fluctuations between regions become less synchronised as connectivity within the Roman transport network decreases. Together with the results of Table 3, this illustrates that the Roman transport network continues to shape today’s pattern of interregional economic integration in Western Europe. That is, today’s intensity of economic interaction between two regions was (partly) determined by infrastructure investments and available transport technologies two millennia ago.
6 Threats to identification

As outlined in Section 3, variation in Roman effective distance is generated by two components: the structure of the network \(N^{\text{Rome}} \) (i.e., the Roman roads combined with the course of rivers and coastal routes) and the relative, mode-dependent, transport costs \(\alpha^{\text{Rome}} \). The validity of our estimation strategy hinges on the assumption that—conditional on controls—the combination of these two components captures Roman-era-specific variation in transport costs and is uncorrelated with factors in the error term that influence outcome variables. There are two main threats to the validity of this assumption. The first is that the connectivity within the Roman network is influenced by pre-existing patterns of exchange and therefore is endogenous. The second is that Roman effective distance is spuriously capturing the effects of geography. Below, we apply a variety of complementary approaches to mitigate these concerns and document that our estimates are, in fact, capturing Roman-era-specific effects.

6.1 Pre-Roman interaction

We address the worry that connectivity within the Roman transport network is endogenous by testing if Roman effective distance predicts pre-existing patterns of interaction. To this end, we use a variety of measures for (socio)-economic exchange.

Goods trade The first set of measures for pre-Roman interaction is based on archaeological artefacts traded during the Neolithic and Bronze age. In analogy to the terra sigillata data, we define excavation sites as destinations and derive information on origins from provenance studies undertaken in the archaeological literature. For our empirical analysis, we draw on two existing databases of pre-Roman trade. These contain information on Neolithic axeheads that were primarily made from jade, for which the mining sites can be identified. Together the two sources include ca. 3,700 artefacts (Pétrequin et al., 2012; Schauer et al., 2020). We complement the existing databases with our own collection. From a variety of academic sources, we collect information on origin and destination of an additional 3,744 metal-based artefacts that were exchanged during the Bronze Age. These include weapons, tools, and jewellery made from bronze, copper, and silver (for further information, see Appendix E).

In analogy to our main analysis, we focus on Western Europe and aggregate the individual flows to the grid-cell-pair level by weighting all observations equally. That is, we interpret each find (irrespective of the type of good and data source) as one interaction. In Panel A of Table 4 we use regression model (1) and test if Roman effective distance influences pre-Roman interaction. Column (1) conditions on geodesic distance while geographic controls are added in column (2). In both specifications, the coefficient of geodesic distance is highly statistically significant. The estimates imply that trade decreases by more than 2% when geodesic distance increases by 1%. On the other hand, the point estimates of Roman effective distance—i.e., the Roman transport-technology-specific cost of shipping goods within the not yet existing Roman transport network—are small and non-significant. To investigate whether aggregation across goods and databases masks important heterogeneity, we run separate regressions for each of...
the three databases in columns (3)–(5). Reassuringly, the picture remains consistent. Across all datasets, the coefficient of Roman effective distance is imprecisely estimated (and even positive in two instances), while geodesic distance continues to exert a strong negative effect on pre-Roman intensity of exchange. To address possible concerns related to low numbers of observations, we extend our dataset to include artefacts for which only the origin falls into Western Europe. To integrate these finds into the analysis, we assign their destinations to the nearest grid cell within Western Europe and weight these finds using the inverse distance (see Appendix E). This almost doubles the sample size. The pattern of results, however, does not change: Roman transport network connectivity does not predict intensity of interaction in pre-Roman times.

Cultural diffusion

The second set of measures for pre-Roman interaction is based on burial and other cultural practices of the Neolithic and Bronze Age. Archaeologists generally agree that the spatio-temporal diffusion of these traditions took place by way of cultural exchange, including trade and migration (Cummings, Midgley and Scarre, 2015, p. 825 ff., Paulsson, 2019, Holst, 2013, p. 117, Childe, 1958, p. 123 ff., Childe, 1930, p. 173 ff.). The occurrence of the same burial practice in two regions therefore implies economic and social interaction. Based on this insight, we use an indicator variable that takes the value of one if the same type of burial site, namely dolmen, chambered cairn, or round barrow, is found in grid i and grid j to reflect the extensive margin measure of interaction. Analogously, we construct a dummy that captures whether menhirs are located in both cells (see Appendix E for more information). These standing stones mark locations that are associated with a variety of cultural and religious practices and are an indicator of cultural and religious conformity across space (Walkowitz, 2003, p. 7). Due to the binary nature of the outcome variables, we estimate regression model (1) using OLS rather than PPML.\footnote{That is, we estimate the following regression equation using OLS: $X_{ij} = \delta \ln LC(N_Rome, \alpha_Rome)_{ij} + T'_{ij} \gamma + \beta_i + \beta_j + \epsilon_{ij}$. If we would use the number of burial sites found in each location and construct a variable thereof, we could also estimate the model in multiplicative form using PPML. However, we believe that the number of burial sites is not directly informative about the intensity of cultural exchange. Due to the fact that grid cells without any indication of the respective cultural practice will result in an indicator that is zero for every grid-cell pair, the corresponding fixed effects perfectly explain these observations, which in the case of PPML leads to non-existence of the estimates as the first-order conditions corresponding to the fixed effects can never be satisfied (see Santos Silva and Tenreyro, 2010).}

Panel B of Table 4 presents the results. They show that while geodesic distance deterred cultural exchange during the Neolithic and the Bronze Age, Roman effective distance did not (columns 1–4). The same pattern of results prevails when we use a dummy for the (concurrent) presence of Celtic settlements during the La Tène culture in Gaul (Oppida) as proxy for interaction during the Iron Age (column 5). The use of this indicator is motivated by the observation that the Celtic culture spread across Europe via migration during the Iron Age. Taken together, the results presented in Table 4 provide strong evidence that connectivity within the Roman transport network does not reflect pre-existing patterns of interaction.
Table 4: Pre-Roman interaction

Panel a: Bilateral Trade in Goods (shares)

<table>
<thead>
<tr>
<th>Panel</th>
<th>All Goods</th>
<th>All Goods</th>
<th>Alpine Jade</th>
<th>British Jade</th>
<th>Metal Goods</th>
<th>All Goods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>In Roman effective distance</td>
<td>0.264</td>
<td>-0.252</td>
<td>-0.262</td>
<td>1.068</td>
<td>0.745</td>
<td>-0.136</td>
</tr>
<tr>
<td></td>
<td>(0.361)</td>
<td>(0.376)</td>
<td>(0.488)</td>
<td>(0.920)</td>
<td>(1.256)</td>
<td>(0.335)</td>
</tr>
<tr>
<td>In geodesic distance</td>
<td>-2.503***</td>
<td>-2.071***</td>
<td>-4.067***</td>
<td>-1.158***</td>
<td>-2.993***</td>
<td>-1.846***</td>
</tr>
<tr>
<td></td>
<td>(0.186)</td>
<td>(0.155)</td>
<td>(0.794)</td>
<td>(0.177)</td>
<td>(1.036)</td>
<td>(0.152)</td>
</tr>
<tr>
<td>Baseline controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Additional destinations assigned to grid</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>7,923</td>
<td>7,923</td>
<td>2,026</td>
<td>425</td>
<td>376</td>
<td>15,143</td>
</tr>
<tr>
<td>Estimator</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
<td>PPML</td>
</tr>
</tbody>
</table>

Panel b: Diffusion of culture

<table>
<thead>
<tr>
<th>Panel</th>
<th>Neolithic</th>
<th>Bronze Age</th>
<th>Iron Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Both Cells</td>
<td>Both Cells</td>
<td>Both Cells</td>
</tr>
<tr>
<td></td>
<td>Dolmen (Megalithic)</td>
<td>Chambered Cairns (Megalithic)</td>
<td>Menhir (Megalithic)</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>In Roman effective distance</td>
<td>-0.009</td>
<td>0.002**</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.001)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>In geodesic distance</td>
<td>-0.081***</td>
<td>-0.003***</td>
<td>-0.042***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.001)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Mean dep. var.</td>
<td>0.135</td>
<td>0.002</td>
<td>0.158</td>
</tr>
<tr>
<td>Baseline controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin FEs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>407,253</td>
<td>407,253</td>
<td>407,253</td>
</tr>
<tr>
<td>Estimator</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
</tbody>
</table>

Notes: This table reports estimates of Equation (1) using the PPML estimator (panel a) and the OLS estimator (panel b). Standard errors two-way clustered at the origin and destination grid cell level are reported in parentheses. Dependent variables in Panel A are shares of finds in cell j that originates from cell i. In column (3) finds are Alpine jade (Neolithic) from Pétrequin et al. (2012); in column (4) finds are British axeheads (Neolithic) from Schauer et al. (2020); in column (5) finds are metal artefacts from our own data collection exercise; in columns (1)–(2) and (6) finds are all three types of goods combined. For more details see Appendix E. Dependent variables in Panel B are indicator variables taking the value one if a given feature is observed in grid cell i and j. The Neolithic features are: dolmen (column 1), chambered cairns (column 2), and menhirs (column 3). The Bronze age feature is: round barrow (column 4). The Iron age feature is: oppidum. For more details see Appendix E. ‘Roman effective distance’ represents the cost associated with shipping goods along the least cost path between grid cells, given the Roman transport network and Roman-era-specific freight rates for each mode of transport. ‘geodesic distance’ represents the length in kilometres of the straight-line (as the crow flies) between grid cells. Baseline controls correspond to column 2 in Table 2 and are described in the respective table notes. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

6.2 Instrumental variable approach

Notwithstanding the evidence just presented, there may be remaining concerns that connectivity in the Roman transport network is endogenous. One particular worry is that the construction of Roman roads—the Roman-specific component in the structure of the multi-modal transport network—was influenced by unobserved (socio-)economic factors. To address this, we develop an instrumental variable strategy. The approach—outlined in more detail in Appendix F—is based on the historical evidence that construction and design of Roman roads was primarily...
determined by military-strategic aims. Roads were primarily built to facilitate supply shipments and bringing in reinforcements from Rome into newly annexed regions. To minimise construction cost and travel times for troops, roads often followed straight lines over long distances (cf. Section 2). Building on these insights, we construct a road network that connects the capital Rome to the locations of Roman battlefields using the Gabriel graph (Gabriel and Sokal, 1969). This hands-off approach ensures that road connections are not drawn based on subjective (or arbitrary) criteria. Intuitively, the Gabriel graph algorithm produces a road network in which neighbouring locations are connected using straight-line segments. The direct connection between strategic-military nodes implies that neither economic conditions nor geographic characteristics influence the path of these roads.

To construct our instrument, we replace the Roman roads in the multi-modal network with the Gabriel roads and identify least cost paths and associated costs in analogy to the procedure described in Section 3. Transshipment between road and the two other modes of transport is allowed at intersections. Because the Gabriel road network is less dense than the actual Roman road network, fewer grid cells are intersected by the IV network. For non-intersected grid cells we cannot predict Roman effective distance using the IV. Compared to the main analysis, the number of observations is thus reduced. The exclusion restriction would be violated if the location of battles is ‘chosen’ such that the resulting connectivity within the IV network is endogenous to geographical connectivity or pre-existing patterns of exchange. We believe that this is unlikely to be the case because the routing of roads as straight lines in the Gabriel graph ignores any economic or geographic characteristics. Furthermore, the concern that battles are potentially more likely to occur in cells that are valuable trading partners is addressed by the inclusion of origin and destination fixed effects.

Table 5 presents results of the instrumental variable approach for the Roman era (columns 1–3) and today (columns 4–6). For reference, column (1) replicates the results of our preferred specification (column 4 of Table 2). In column (2), we run the same specification using the sample restricted to grid-cell pairs that are intersected by the IV network. The results are very similar. Crucially, column (3) shows that the IV procedure also produces a negative and statistically highly significant point estimate of Roman effective distance on Roman trade. In columns (4)–(6) we repeat the above exercise using current-day ownership link intensity as dependent variable (replicating the preferred specification from column (2) in Table 3). Again, the IV estimates in column (6) confirm the relationship of Roman effective distance with business links. Compared to the standard PPML estimates in columns (2) and (5), the IV coefficients are somewhat larger. One potential explanation is that the PPML estimates suffer from attenuation bias. Classical measurement error may arise from imprecise maps of Roman roads or differences in the quality of roads, biasing our estimates towards zero. Combined, the results of Table 5 show that military-strategic objectives were a key determinant of Roman road construction and that our findings are not driven by endogenous or geography-driven routing of Roman roads.
Table 5: Instrumental variable approach

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Share of Pottery Finds</th>
<th>Share of Ownership Links (>25% Ownership)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>ln Roman effective distance</td>
<td>-1.493***</td>
<td>-1.789***</td>
</tr>
<tr>
<td></td>
<td>(0.542)</td>
<td>(0.457)</td>
</tr>
<tr>
<td>ln geodesic distance</td>
<td>-0.655***</td>
<td>-0.866***</td>
</tr>
<tr>
<td></td>
<td>(0.230)</td>
<td>(0.314)</td>
</tr>
<tr>
<td>Same country</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Baseline controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination FEs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin FEs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sample</td>
<td>Full</td>
<td>IV</td>
</tr>
<tr>
<td>Observations</td>
<td>22,839</td>
<td>15,698</td>
</tr>
<tr>
<td>Estimator</td>
<td>PPML</td>
<td>PPML</td>
</tr>
</tbody>
</table>

Notes: This table reports estimates of Equation (1) using the PPML estimator (columns 1–2 and 4–5) and the IV PPML estimator (columns 3 and 6). Standard errors two-way clustered at the origin and destination grid cell level are reported in parentheses. Dependent variables are the share of terra sigillata finds in cell j that originates from cell i (columns 1–3) or the share of firms in cell j that are (partly) owned by firms located in cell i (columns 4–6). Column (1) shows the baseline specification from column (4) in Table 2; column (2) shows results from this specification in the sample for which the instrumental variable is available; column (3) shows results where effective distance is instrumented with a measure of effective distance that replaces roads with straight-line segments from a Gabriel graph, as described in detail in Appendix F. Columns (4–6) repeat the procedure of columns (1–3) based on the specification in column (2) in Table 3. 'Roman effective distance' represents the cost associated with shipping goods along the least cost path between grid cells, given the Roman transport network and Roman-era-specific freight rates for each mode of transport. 'geodesic distance' represents the length in kilometres of the straight-line (as the crow flies) between grid cells. Baseline controls correspond to column 2 in Table 2 and are described in the respective table notes. * p < 0.10, ** p < 0.05, *** p < 0.01.

6.3 Controlling for geographic connectivity
The routing of roads is only one component that generates variation in Roman effective distance. The IV exercise therefore does not (entirely) quash concerns related to the possibility that connectivity within the network is correlated with underlying geography (access to rivers and coastlines in particular). To document that this is not the case, we control for a variety of geography-based least-cost path measures. These measures, described in Appendix G, are designed to capture general, Roman-infrastructure-unrelated, costs of transporting goods and people between regions during the pre-industrial era. Importantly, all least-cost path measures allow for transport over land, river, and sea. In both the Roman and the current-day analysis, coefficients of Roman effective distance remain stable irrespective of whether we model the costs for geography-based least-cost paths in terms of time or energy expenditure (see Table G.1–G.2 in Appendix G). These tables also show that coefficients change very little when we augment the regressions with a wide range of additional geographical and climatic aspects.35

6.4 Falsification
The exercises presented above suggest that our estimates specifically capture the effects of Roman transport network connectivity rather than pre-existing patterns of exchange or geographic proximity. As a final approach to underpin the credibility of our results, we conduct a falsifica-

35This set of additional controls encompasses the absolute difference in longitude, elevation, ruggedness, agricultural suitability, precipitation, temperature, and access to waterways. Measures of ruggedness along the straight line, indicators whether the straight line crosses a river or coastline, an indicator for location on the same watershed, and three indicators that capture whether the least cost path runs via any river, road and sea segments, respectively.
tion test. Due to data availability, the test is restricted to business link intensity as outcome.

For the purpose of this exercise and contrary to all the historical and empirical evidence presented above, we assume the following:

(i) The routing of roads is determined by geographical features, meaning that the structure of the Roman transport network is simply reflecting underlying geography. The layout of the network would therefore not be Roman specific.

(ii) The vector of relative transport costs \(\alpha_{\text{Rome}} \) represents general historical transport cost ratios and would therefore not be Roman specific.

If (i) and (ii) hold, Roman effective distance captures variation in connectivity that is not specific to the Roman era but rather determined by geographical features and universally applicable historical transport technologies. This implies that Roman effective distance should also predict the intensity of interregional interaction outside of the former Roman Empire.

Unfortunately, we lack (detailed) information on the structure of historical road networks for non-Roman areas. However, assuming that today’s primary roads (highways) largely follow historical routes, we can use the structure of the current road network as a proxy for the historical one. We regard this assumption as plausible given the quantitative and qualitative evidence that current highways follow historical paths, both in regions within and beyond the Roman Empire (e.g. Garcia-López, Holl and Viladecans-Marsal, 2015; Percoco, 2015; Redding and Turner, 2015; Hitchner, 2012). We therefore combine today’s highway network (as a proxy for the historical road network) with rivers and coastlines into a multi-modal transport network that spans regions of Europe that were part of the Roman Empire and those that were not.\(^{36}\) Based on the historical cost ratios \(\alpha_{\text{Rome}} \), we identify the least cost paths between grid-cell pairs and compute the corresponding Roman effective distance in analogy to the procedure described in Section 3. This produces a measure of bilateral connectivity that is constructed in an identical way for regions within and outside Western Europe. This measure allows us to test whether the relationship between Roman effective distance and business link intensity differs between European areas located inside and outside of Rome applying regression equation (1) (see Appendix H for more details). For regions once integrated into Rome, we unambiguously expect that lower transport-network connectivity is associated with lower business link intensity. For regions beyond Roman influence, we expect that higher effective distance deters business link formation only if this measure captures variation in connectivity that is not specific to the Roman-era. It is important to note that the results of the falsification test are not driven by the fact that one area was occupied by the Romans while the other was not. We run separate regressions for the regions inside and outside the empire. Furthermore, we are not looking at levels of interaction, but at differences in the intensity of bilateral interaction as transport costs within the (hypothetical) network vary.

Table 6 reports the results of the falsification exercise. In column (1), we find that business link intensity between grid-cell pairs located within the border of Rome decreases with Roman effective distance. Compared to our main results (Table 2, column 2), the coefficient size is

\(^{36}\) Data on primary roads come from ESRI (2020), information on course of large rivers is taken from WISE (2020).
Table 6: Falsification exercise

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Share of Ownership Links (>25% Ownership)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Europe once part of Roman Empire</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>ln Roman effective distance</td>
<td>-0.327*** (0.086)</td>
</tr>
<tr>
<td>ln geodesic distance</td>
<td>-1.559*** (0.058)</td>
</tr>
<tr>
<td>Same country</td>
<td>Yes</td>
</tr>
<tr>
<td>Geography controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination FEs</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin FEs</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>723,323</td>
</tr>
<tr>
<td>Estimator</td>
<td>PPML</td>
</tr>
</tbody>
</table>

Notes: This table reports estimates of Equation (1) using the PPML estimator. Column (1) uses a sample of grid cells located in Western Europe, i.e. the geographical scope of our analysis. Column (2) uses a sample of grid cells located in Europe outside of the former borders of Rome (for details, see Appendix H). Standard errors two-way clustered at the origin and destination grid cell level are reported in parentheses. Dependent variable is the share of firms in cell \(j \) that are (partly) owned by firms located in cell \(i \), restricted to the respective regions of each sample. ‘Roman effective distance’ represents the cost associated with shipping goods along the least cost path between grid cells, given the Roman transport network and Roman-era-specific freight rates for each mode of transport. ‘geodesic distance’ represents the length in kilometres of the straight-line (as the crow flies) between grid cells. Control variables are described in the notes of Tables 2 and 3. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \).

The cost of transporting goods and people influences investment decisions of firms. If Roman transport network connectivity influences the (relative) accessibility of regions within today’s transport networks, this could provide one explanation for our findings. To test for the plausibility of persistent transport network connectivity as mechanism we use two distinct measures of transport costs. The first is driving distance along the time-minimising route between grid cell centroids (extracted from Google Maps), which we interpret as capturing the cost of transport-
ing goods and people using today’s road network.37 This metric captures variation arising from distance in the road network and differences in the speed of transport associated with different technologies (i.e. motorways, rural roads, etc.)38 The second measure specifically captures passenger-transport network connectivity. The focus on passenger transport links is motivated by recent studies showing that travel times strongly influence the intensity of cross-regional business connections (Giroud, 2013; Campante and Yanagizawa-Drott, 2018). Minimum travel time—our measure for passenger transport connectivity—between grid-cell-centre pairs is extracted from rome2rio.com. Within this multi-modal network, passengers are allowed to use any combination of public transport (bus, train, aeroplane).39

In Table 7, we investigate the plausibility of these two channels by testing if Roman effective distance influences accessibility within today’s transport networks. To facilitate comparison, the dependent variables are standardised with mean zero and a standard deviation of one.40 Column (1) shows that lower transport costs during Roman times are reflected in better accessibility within the road network today. However, the coefficient is small and estimated relatively imprecisely. A potential explanation for this finding is that the road network today is extremely dense and only allows for one mode of transportation. This implies that road network distances are highly correlated with geodesic distance. The amount of residual variation left to explain is therefore very small. For the multi-modal passenger transport, on the other hand, we find a large and statistically highly significant effect (column 2). This suggests that regions with historically stronger ties were connected more directly when new transport technologies became available (e.g., railways, aeroplanes, and highways). Thus, even though past and present multi-modal transport networks structurally differ in their layout and transport technologies, Roman-era-specific connectivity still explains patterns of bilateral accessibility today.

As a second potential channel, we investigate whether regions better connected within the Roman transport network have similar production structures. Continued economic interaction could, for example, have resulted in assimilation of industry structures and thereby facilitate cross-regional firm ownership (see Burchardi, Chaney and Hassan, 2019). Column (3) indeed indicates that production structures between regions become more dissimilar—as measured by an industry dissimilarity index based on Jaffe (1986)—when bilateral connectivity decreases (i.e., when Roman effective distance increases).

Along with stimulating interregional trade, greater connectivity within the Roman transport network is likely to have affected the flow of migrants, ideas, and culture. This could have led to co-evolution and assimilation of preferences, values, and attitudes over the long run. Greater similarity in these fundamental determinants of economic interaction, in turn, can facilitate investment (Guiso, Sapienza and Zingales, 2009; Leblang, 2010; Burchardi, Chaney and Hassan, 2019). Firms, for example, may derive a competitive advantage from catering to multi-

\begin{itemize}
\item 37Today, road transport is the dominant mode of shipping within Europe, accounting for 76% of the total volume of goods transported in 2017 (Eurostat, \url{http://bit.do/ModalSplit}).
\item 38The two aspects—distance and time—are two main determinants of the overall road transport costs today (Persyn, Díaz-Lanchas and Barbero, 2020).
\item 39We also allow for taxi rides when public transport is not available.
\item 40Note that we use OLS instead of PPML because dependent variables can take negative values.
\end{itemize}
Table 7: Channels connecting Roman transport network connectivity and current integration

<table>
<thead>
<tr>
<th></th>
<th>In Google driving distance (SD)</th>
<th>In Rio2Rome travel time (SD)</th>
<th>Industry dissimilarity (SD)</th>
<th>First principal component preferences (SD)</th>
<th>First principal component attitudes (SD)</th>
<th>ln SCI (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln Roman effective distance</td>
<td>0.012***</td>
<td>0.405***</td>
<td>0.116***</td>
<td>0.112***</td>
<td>0.170***</td>
<td>-0.274***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.025)</td>
<td>(0.026)</td>
<td>(0.021)</td>
<td>(0.024)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>ln geodesic distance</td>
<td>1.389***</td>
<td>0.798***</td>
<td>0.041***</td>
<td>0.225***</td>
<td>0.168***</td>
<td>-0.588***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.014)</td>
<td>(0.012)</td>
<td>(0.015)</td>
<td>(0.013)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Raw mean of dep. var.</td>
<td>6.962</td>
<td>6.241</td>
<td>0.800</td>
<td>0</td>
<td>6.518</td>
<td></td>
</tr>
<tr>
<td>SD of raw dep. var.</td>
<td>0.680</td>
<td>0.331</td>
<td>0.161</td>
<td>1.228</td>
<td>1.344</td>
<td>1.713</td>
</tr>
<tr>
<td>Baseline controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination FE s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin FE s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>674,805</td>
<td>674,805</td>
<td>674,805</td>
<td>674,805</td>
<td>674,805</td>
<td>674,805</td>
</tr>
<tr>
<td>Estimator</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
</tbody>
</table>

Notes: This table reports estimates of Equation (1) using the OLS estimator. Standard errors two-way clustered at the origin and destination grid cell level are reported in parentheses. Each column uses a different dependent variable that serves a mechanism, such as current-day transport connectivity (columns 1–2), industry dissimilarity (column 3), cultural dissimilarity (column 4–5), and social connectedness (column 6). For details on the dependent variables, see the main text and Appendix I. Baseline controls correspond to column 2 in Table 3 and are described in the notes of Tables 2 and 3. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \).

The table shows the relationships between different connectivity measures and various dependent variables, such as distance, geodesic distance, and other socio-economic factors, and the implications for current integration. The results highlight the importance of considering socio-economic factors in understanding the current integration of regions.

Notes: This table reports estimates of Equation (1) using the OLS estimator. Standard errors two-way clustered at the origin and destination grid cell level are reported in parentheses. Each column uses a different dependent variable that serves a mechanism, such as current-day transport connectivity (columns 1–2), industry dissimilarity (column 3), cultural dissimilarity (column 4–5), and social connectedness (column 6). For details on the dependent variables, see the main text and Appendix I. Baseline controls correspond to column 2 in Table 3 and are described in the notes of Tables 2 and 3. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \).

Note that the most detailed geographical information available on residence of respondents in both surveys is the NUTS 2 level. A detailed description of the data construction process, including the matching of respondents to grid cells, is provided in Appendix I.

The table indicates that there are several mechanisms through which the Roman transport network connectivity affects current integration. These mechanisms include driving distance, travel time, industry and cultural dissimilarity, and social connectedness. The table also shows that these relationships are statistically significant, as indicated by the asterisks representing different significance levels.

The results suggest that regions with greater connectivity under the Roman network exhibit less disparity in preferences and attitudes, highlighting the enduring effects of historical transport networks on current socio-economic dynamics. This underlines the importance of considering the cumulative history of exchange between regions when trying to understand why preferences and attitudes vary across regions.
results. These include, for example, reduced genetic distance due to (network-connectivity-induced) historical migration or simply increased familiarity and trust due to cumulative history of exchange. Such channels, while plausibly important, are inherently hard to measure and can therefore not be included in our analysis. However, one measure that potentially subsumes many potential mechanisms (including the ones discussed in columns (1)–(5) of Table 7) is the Social Connectedness Index (SCI), developed and described in detail in Bailey et al. (2018a). The SCI captures the link strength between two regions within the Facebook network and has been shown to influence investment flows (Bailey et al., 2018b). In the context of our analysis, social connectedness can (loosely) be interpreted as a composite index of revealed similarity. Assuming that differences in transport network infrastructure, preferences and values are likely to be reflected in the intensity of social ties, we expect that Roman transport network connectivity predicts differences in SCI. Column (6) shows that this is, in fact, the case. Social connections are less intense between region pairs that were ill-connected within the Roman network.

7.2 Relative importance of channels

Table 8: Accounting for potential channels

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Number of Ownership Links (>25% Ownership)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>In Roman effective distance</td>
<td>-0.370***</td>
</tr>
<tr>
<td>In Driving distance (SD)</td>
<td>-0.218*</td>
</tr>
<tr>
<td>In Rome2Rio (SD)</td>
<td>-0.249***</td>
</tr>
<tr>
<td>Industry dissimilarity (SD)</td>
<td>-0.122***</td>
</tr>
<tr>
<td>Distance preferences (SD)</td>
<td>-0.217***</td>
</tr>
<tr>
<td>Distance values (SD)</td>
<td>-0.246***</td>
</tr>
<tr>
<td>In SCI (SD)</td>
<td>1.140***</td>
</tr>
<tr>
<td>In geodesic distance</td>
<td>1.541***</td>
</tr>
<tr>
<td>Baseline controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination FEs</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin FEs</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>674,805</td>
</tr>
<tr>
<td>Estimator</td>
<td>PPML</td>
</tr>
</tbody>
</table>

Notes: This table reports estimates of Equation (1) using the PPML estimator. Standard errors two-way clustered at the origin and destination grid cell level are reported in parentheses. Dependent variable is the share of firms in cell \(j\) that are (partly) owned by firms located in cell \(i\). Each column adds explanatory variables that serve as mechanisms to explain the results in Table 3. Lower number of observations due to missing data for BEL and LUX. For details on these explanatory variables, see the main text and Appendix I. Baseline controls correspond to column 2 in Table 3 and are described in the notes of Tables 2 and 3. * \(p < 0.10\), ** \(p < 0.05\), *** \(p < 0.01\).

In the final step of our analysis, we assess the relative importance of the channels introduced above. In a horse race specification we regress the number of business links on Roman effective distance while adding the proxies for the various potential mechanisms. The results are reported in Table 8. In column (1), we run our preferred regression specification (see column (2), Table 3) on the restricted sample. This produces a point estimate of \(-0.370\). The size
of the Roman effective distance coefficient drops by 2% (column 2) and 36% (column 3) when we account for differences in modern road transport costs and passenger transport accessibility. Combined, the two variables absorb 36% of the Roman transport network coefficient (column 4). This implies that continued interregional transport infrastructure connectivity—particularly bilateral passenger accessibility—is one reason why the Roman transport network influences today’s spatial firm ownership structure. However, a substantial part of the main effect remains unexplained by this mechanism. As shown in column (5), differences in production structures do not help explain this gap. Compared to column (1), the Roman effective distance coefficient is reduced only marginally when we control for industry similarity.

Next, we analyse the importance of preference and value similarity as mediating channels. Including preference disparities into the regression setup reduces the Roman effective distance coefficient by 12% (column 6), while it drops by 14% when differences in attitudes and values are accounted for in column (7). Combined, differences in preferences and values account for 18% of the Roman effective distance coefficient (column 8). Our earlier findings suggest that the Roman transport network created a new pattern of bilateral interregional (socio-)economic interaction which, over time, led to an increase in preference and value similarity. This, in turn, can (partly) explain variation in cross-regional investment intensity. In column (9), we simultaneously add all potential mechanisms. Together, they absorb half of the Roman transport network effect on today’s spatial firm ownership structure.

In the last column of Table 8, we account for the SCI rather than specific mechanisms. This index absorbs a large part of the variation in Roman transport network connectivity. The point estimate of Roman effective distance drops by 82% and is no longer statistically significant at conventional confidence levels. This result supports our argument that by creating and intensifying socio-economic exchange, the Roman transport network influences business link intensity today. Due to the composite nature of the SCI, however, we cannot derive any additional insights regarding specific mechanisms underlying our reduced-form effects.

8 Conclusion

This paper aimed at analysing the effects of the Roman transport network on economic integration in the past and the present. We document that the creation of the network generated a new pattern of interregional trade within Western Europe that persisted long after the fall of the Roman Empire. Along with continued economic integration, greater connectivity also led to convergence in values and attitudes. This network-induced assimilation in fundamental determinants of economic interaction, in turn, helps to explain patterns of economic interaction today. Similarly, despite the fundamental changes in available transport technologies, today’s transport network connectivity patterns reflect ancient connectivity patterns. Partly as a result of these effects, business links are much stronger between regions that were better connected within the Roman network, illustrating the long-lasting and multifaceted consequences of infrastructure

42In Table I.3 in Appendix I, we add all individual measures of preferences and values and attitudes instead of their principal components. The results are very similar.
investments. Current barriers to integration are thus an outcome of historical integration. Therefore, policy makers need to be aware of, and take into account, the long-run consequences of public infrastructure investments. These investments can create or reshape networks in which the transmission of positive and negative shocks is more pronounced.

Acknowledgments

We thank the editor and three anonymous referees, as well as Alina Bartscher, Sascha O. Becker, Michael Burda, Sebastian Braun, Alan de Bromhead, José De Sousa, Hartmut Egger, Richard Franke, David Jacks, Krisztina Kis-Katos, Udo Kreickemeier, Miren Lafourcade, Claire Lelarge, Stephan Maurer, Eric Melander, Luigi Pascali, Fabian Wahl, David Weil, Niko Wolf, and seminar participants at Bayreuth, HU Berlin, Bonn, TU Braunschweig, Brown, Cologne, George Mason, Goethe Frankfurt, Göttingen, Hamburg, Hong-Kong University, Konstanz, Mannheim, Paris-Sud, Stellenbosch, WU Vienna, the 2nd Workshop on Geodata and Economics in Hamburg, the Canadian Economics Association Annual Meeting 2019, and the 2020 RIDGE Virtual Forum for excellent feedback. We are grateful to Giovanni Federico for making the price correlation data available, Ömer Özak for kindly sharing data on the Human Mobility Index and Rome2rio.com for providing us with data on travel times. We also thank Kathrin Bank, Lukas Diebold, Tim Kleinlein, Leandro Navarro, Oliver Parker, and Antonia Weddeling for excellent research assistance. Hornung acknowledges that his research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2126/1– 390838866. We declare that we have no relevant or material financial interests that relate to the research described in this paper.

Supplementary Data

The data and replication files underlying this article are available at Zenodo under: http://doi.org/10.5281/zenodo.4788227.
References

Römisch-Germanisches Zentralmuseum in Mainz. “http://www.rgzm.de/samian/.”

Yeo, Cedric A. 1946. “Land and Sea Transportation in Imperial Italy.” Transactions and Proceedings of the American Philological Association 77: 221–244.